blob: 0e978d17c4d0a326d20fdbdef0192a60ca7d6a20 [file] [log] [blame]
xf.libdd93d52023-05-12 07:10:14 -07001/* Test compilation of tgmath macros.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com> and
5 Ulrich Drepper <drepper@redhat.com>, 2001.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
20
21#ifndef HAVE_MAIN
22#undef __NO_MATH_INLINES
23#define __NO_MATH_INLINES 1
24#include <math.h>
25#include <stdio.h>
26#include <tgmath.h>
27
28//#define DEBUG
29
30static void compile_test (void);
31static void compile_testf (void);
32#ifndef NO_LONG_DOUBLE
33static void compile_testl (void);
34#endif
35
36float fx;
37double dx;
38long double lx;
39const float fy = 1.25;
40const double dy = 1.25;
41const long double ly = 1.25;
42complex float fz;
43complex double dz;
44complex long double lz;
45
46int count_double;
47int count_float;
48int count_ldouble;
49int count_cdouble;
50int count_cfloat;
51int count_cldouble;
52
53#define NCALLS 115
54#define NCALLS_INT 4
55#define NCCALLS 47
56
57static int
58do_test (void)
59{
60 int result = 0;
61
62 count_float = count_double = count_ldouble = 0;
63 count_cfloat = count_cdouble = count_cldouble = 0;
64 compile_test ();
65 if (count_float != 0 || count_cfloat != 0)
66 {
67 puts ("float function called for double test");
68 result = 1;
69 }
70 if (count_ldouble != 0 || count_cldouble != 0)
71 {
72 puts ("long double function called for double test");
73 result = 1;
74 }
75 if (count_double < NCALLS + NCALLS_INT)
76 {
77 printf ("double functions not called often enough (%d)\n",
78 count_double);
79 result = 1;
80 }
81 else if (count_double > NCALLS + NCALLS_INT)
82 {
83 printf ("double functions called too often (%d)\n",
84 count_double);
85 result = 1;
86 }
87 if (count_cdouble < NCCALLS)
88 {
89 printf ("double complex functions not called often enough (%d)\n",
90 count_cdouble);
91 result = 1;
92 }
93 else if (count_cdouble > NCCALLS)
94 {
95 printf ("double complex functions called too often (%d)\n",
96 count_cdouble);
97 result = 1;
98 }
99
100 count_float = count_double = count_ldouble = 0;
101 count_cfloat = count_cdouble = count_cldouble = 0;
102 compile_testf ();
103 if (count_double != 0 || count_cdouble != 0)
104 {
105 puts ("double function called for float test");
106 result = 1;
107 }
108 if (count_ldouble != 0 || count_cldouble != 0)
109 {
110 puts ("long double function called for float test");
111 result = 1;
112 }
113 if (count_float < NCALLS)
114 {
115 printf ("float functions not called often enough (%d)\n", count_float);
116 result = 1;
117 }
118 else if (count_float > NCALLS)
119 {
120 printf ("float functions called too often (%d)\n",
121 count_double);
122 result = 1;
123 }
124 if (count_cfloat < NCCALLS)
125 {
126 printf ("float complex functions not called often enough (%d)\n",
127 count_cfloat);
128 result = 1;
129 }
130 else if (count_cfloat > NCCALLS)
131 {
132 printf ("float complex functions called too often (%d)\n",
133 count_cfloat);
134 result = 1;
135 }
136
137#ifndef NO_LONG_DOUBLE
138 count_float = count_double = count_ldouble = 0;
139 count_cfloat = count_cdouble = count_cldouble = 0;
140 compile_testl ();
141 if (count_float != 0 || count_cfloat != 0)
142 {
143 puts ("float function called for long double test");
144 result = 1;
145 }
146 if (count_double != 0 || count_cdouble != 0)
147 {
148 puts ("double function called for long double test");
149 result = 1;
150 }
151 if (count_ldouble < NCALLS)
152 {
153 printf ("long double functions not called often enough (%d)\n",
154 count_ldouble);
155 result = 1;
156 }
157 else if (count_ldouble > NCALLS)
158 {
159 printf ("long double functions called too often (%d)\n",
160 count_double);
161 result = 1;
162 }
163 if (count_cldouble < NCCALLS)
164 {
165 printf ("long double complex functions not called often enough (%d)\n",
166 count_cldouble);
167 result = 1;
168 }
169 else if (count_cldouble > NCCALLS)
170 {
171 printf ("long double complex functions called too often (%d)\n",
172 count_cldouble);
173 result = 1;
174 }
175#endif
176
177 return result;
178}
179
180/* Now generate the three functions. */
181#define HAVE_MAIN
182
183#define F(name) name
184#define TYPE double
185#define TEST_INT 1
186#define x dx
187#define y dy
188#define z dz
189#define count count_double
190#define ccount count_cdouble
191#include "test-tgmath.c"
192
193#define F(name) name##f
194#define TYPE float
195#define x fx
196#define y fy
197#define z fz
198#define count count_float
199#define ccount count_cfloat
200#include "test-tgmath.c"
201
202#ifndef NO_LONG_DOUBLE
203#define F(name) name##l
204#define TYPE long double
205#define x lx
206#define y ly
207#define z lz
208#define count count_ldouble
209#define ccount count_cldouble
210#include "test-tgmath.c"
211#endif
212
213#define TEST_FUNCTION do_test ()
214#include "../test-skeleton.c"
215
216#else
217
218#ifdef DEBUG
219#define P() puts (__FUNCTION__)
220#else
221#define P()
222#endif
223
224static void
225F(compile_test) (void)
226{
227 TYPE a, b, c = 1.0;
228 complex TYPE d;
229 int i;
230 int saved_count;
231 long int j;
232 long long int k;
233
234 a = cos (cos (x));
235 b = acos (acos (a));
236 a = sin (sin (x));
237 b = asin (asin (a));
238 a = tan (tan (x));
239 b = atan (atan (a));
240 c = atan2 (atan2 (a, c), atan2 (b, x));
241 a = cosh (cosh (x));
242 b = acosh (acosh (a));
243 a = sinh (sinh (x));
244 b = asinh (asinh (a));
245 a = tanh (tanh (x));
246 b = atanh (atanh (a));
247 a = exp (exp (x));
248 b = log (log (a));
249 a = log10 (log10 (x));
250 b = ldexp (ldexp (a, 1), 5);
251 a = frexp (frexp (x, &i), &i);
252 b = expm1 (expm1 (a));
253 a = log1p (log1p (x));
254 b = logb (logb (a));
255 a = exp2 (exp2 (x));
256 b = log2 (log2 (a));
257 a = pow (pow (x, a), pow (c, b));
258 b = sqrt (sqrt (a));
259 a = hypot (hypot (x, b), hypot (c, a));
260 b = cbrt (cbrt (a));
261 a = ceil (ceil (x));
262 b = fabs (fabs (a));
263 a = floor (floor (x));
264 b = fmod (fmod (a, b), fmod (c, x));
265 a = nearbyint (nearbyint (x));
266 b = round (round (a));
267 a = trunc (trunc (x));
268 b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
269 j = lrint (x) + lround (a);
270 k = llrint (b) + llround (c);
271 a = erf (erf (x));
272 b = erfc (erfc (a));
273 a = tgamma (tgamma (x));
274 b = lgamma (lgamma (a));
275 a = rint (rint (x));
276 b = nextafter (nextafter (a, b), nextafter (c, x));
277 a = nexttoward (nexttoward (x, a), c);
278 b = remainder (remainder (a, b), remainder (c, x));
279 a = scalb (scalb (x, a), (TYPE) (6));
280 k = scalbn (a, 7) + scalbln (c, 10l);
281 i = ilogb (x);
282 a = fdim (fdim (x, a), fdim (c, b));
283 b = fmax (fmax (a, x), fmax (c, b));
284 a = fmin (fmin (x, a), fmin (c, b));
285 b = fma (sin (a), sin (x), sin (c));
286
287#ifdef TEST_INT
288 a = atan2 (i, b);
289 b = remquo (i, a, &i);
290 c = fma (i, b, i);
291 a = pow (i, c);
292#endif
293 x = a + b + c + i + j + k;
294
295 saved_count = count;
296 if (ccount != 0)
297 ccount = -10000;
298
299 d = cos (cos (z));
300 z = acos (acos (d));
301 d = sin (sin (z));
302 z = asin (asin (d));
303 d = tan (tan (z));
304 z = atan (atan (d));
305 d = cosh (cosh (z));
306 z = acosh (acosh (d));
307 d = sinh (sinh (z));
308 z = asinh (asinh (d));
309 d = tanh (tanh (z));
310 z = atanh (atanh (d));
311 d = exp (exp (z));
312 z = log (log (d));
313 d = sqrt (sqrt (z));
314 z = conj (conj (d));
315 d = fabs (conj (a));
316 z = pow (pow (a, d), pow (b, z));
317 d = cproj (cproj (z));
318 z += fabs (cproj (a));
319 a = carg (carg (z));
320 b = creal (creal (d));
321 c = cimag (cimag (z));
322 x += a + b + c + i + j + k;
323 z += d;
324
325 if (saved_count != count)
326 count = -10000;
327
328 if (0)
329 {
330 a = cos (y);
331 a = acos (y);
332 a = sin (y);
333 a = asin (y);
334 a = tan (y);
335 a = atan (y);
336 a = atan2 (y, y);
337 a = cosh (y);
338 a = acosh (y);
339 a = sinh (y);
340 a = asinh (y);
341 a = tanh (y);
342 a = atanh (y);
343 a = exp (y);
344 a = log (y);
345 a = log10 (y);
346 a = ldexp (y, 5);
347 a = frexp (y, &i);
348 a = expm1 (y);
349 a = log1p (y);
350 a = logb (y);
351 a = exp2 (y);
352 a = log2 (y);
353 a = pow (y, y);
354 a = sqrt (y);
355 a = hypot (y, y);
356 a = cbrt (y);
357 a = ceil (y);
358 a = fabs (y);
359 a = floor (y);
360 a = fmod (y, y);
361 a = nearbyint (y);
362 a = round (y);
363 a = trunc (y);
364 a = remquo (y, y, &i);
365 j = lrint (y) + lround (y);
366 k = llrint (y) + llround (y);
367 a = erf (y);
368 a = erfc (y);
369 a = tgamma (y);
370 a = lgamma (y);
371 a = rint (y);
372 a = nextafter (y, y);
373 a = nexttoward (y, y);
374 a = remainder (y, y);
375 a = scalb (y, (const TYPE) (6));
376 k = scalbn (y, 7) + scalbln (y, 10l);
377 i = ilogb (y);
378 a = fdim (y, y);
379 a = fmax (y, y);
380 a = fmin (y, y);
381 a = fma (y, y, y);
382
383#ifdef TEST_INT
384 a = atan2 (i, y);
385 a = remquo (i, y, &i);
386 a = fma (i, y, i);
387 a = pow (i, y);
388#endif
389
390 d = cos ((const complex TYPE) z);
391 d = acos ((const complex TYPE) z);
392 d = sin ((const complex TYPE) z);
393 d = asin ((const complex TYPE) z);
394 d = tan ((const complex TYPE) z);
395 d = atan ((const complex TYPE) z);
396 d = cosh ((const complex TYPE) z);
397 d = acosh ((const complex TYPE) z);
398 d = sinh ((const complex TYPE) z);
399 d = asinh ((const complex TYPE) z);
400 d = tanh ((const complex TYPE) z);
401 d = atanh ((const complex TYPE) z);
402 d = exp ((const complex TYPE) z);
403 d = log ((const complex TYPE) z);
404 d = sqrt ((const complex TYPE) z);
405 d = pow ((const complex TYPE) z, (const complex TYPE) z);
406 d = fabs ((const complex TYPE) z);
407 d = carg ((const complex TYPE) z);
408 d = creal ((const complex TYPE) z);
409 d = cimag ((const complex TYPE) z);
410 d = conj ((const complex TYPE) z);
411 d = cproj ((const complex TYPE) z);
412 }
413}
414#undef x
415#undef y
416#undef z
417
418
419TYPE
420(F(cos)) (TYPE x)
421{
422 ++count;
423 P ();
424 return x;
425}
426
427TYPE
428(F(acos)) (TYPE x)
429{
430 ++count;
431 P ();
432 return x;
433}
434
435TYPE
436(F(sin)) (TYPE x)
437{
438 ++count;
439 P ();
440 return x;
441}
442
443TYPE
444(F(asin)) (TYPE x)
445{
446 ++count;
447 P ();
448 return x;
449}
450
451TYPE
452(F(tan)) (TYPE x)
453{
454 ++count;
455 P ();
456 return x;
457}
458
459TYPE
460(F(atan)) (TYPE x)
461{
462 ++count;
463 P ();
464 return x;
465}
466
467TYPE
468(F(atan2)) (TYPE x, TYPE y)
469{
470 ++count;
471 P ();
472 return x + y;
473}
474
475TYPE
476(F(cosh)) (TYPE x)
477{
478 ++count;
479 P ();
480 return x;
481}
482
483TYPE
484(F(acosh)) (TYPE x)
485{
486 ++count;
487 P ();
488 return x;
489}
490
491TYPE
492(F(sinh)) (TYPE x)
493{
494 ++count;
495 P ();
496 return x;
497}
498
499TYPE
500(F(asinh)) (TYPE x)
501{
502 ++count;
503 P ();
504 return x;
505}
506
507TYPE
508(F(tanh)) (TYPE x)
509{
510 ++count;
511 P ();
512 return x;
513}
514
515TYPE
516(F(atanh)) (TYPE x)
517{
518 ++count;
519 P ();
520 return x;
521}
522
523TYPE
524(F(exp)) (TYPE x)
525{
526 ++count;
527 P ();
528 return x;
529}
530
531TYPE
532(F(log)) (TYPE x)
533{
534 ++count;
535 P ();
536 return x;
537}
538
539TYPE
540(F(log10)) (TYPE x)
541{
542 ++count;
543 P ();
544 return x;
545}
546
547TYPE
548(F(ldexp)) (TYPE x, int y)
549{
550 ++count;
551 P ();
552 return x + y;
553}
554
555TYPE
556(F(frexp)) (TYPE x, int *y)
557{
558 ++count;
559 P ();
560 return x + *y;
561}
562
563TYPE
564(F(expm1)) (TYPE x)
565{
566 ++count;
567 P ();
568 return x;
569}
570
571TYPE
572(F(log1p)) (TYPE x)
573{
574 ++count;
575 P ();
576 return x;
577}
578
579TYPE
580(F(logb)) (TYPE x)
581{
582 ++count;
583 P ();
584 return x;
585}
586
587TYPE
588(F(exp2)) (TYPE x)
589{
590 ++count;
591 P ();
592 return x;
593}
594
595TYPE
596(F(log2)) (TYPE x)
597{
598 ++count;
599 P ();
600 return x;
601}
602
603TYPE
604(F(pow)) (TYPE x, TYPE y)
605{
606 ++count;
607 P ();
608 return x + y;
609}
610
611TYPE
612(F(sqrt)) (TYPE x)
613{
614 ++count;
615 P ();
616 return x;
617}
618
619TYPE
620(F(hypot)) (TYPE x, TYPE y)
621{
622 ++count;
623 P ();
624 return x + y;
625}
626
627TYPE
628(F(cbrt)) (TYPE x)
629{
630 ++count;
631 P ();
632 return x;
633}
634
635TYPE
636(F(ceil)) (TYPE x)
637{
638 ++count;
639 P ();
640 return x;
641}
642
643TYPE
644(F(fabs)) (TYPE x)
645{
646 ++count;
647 P ();
648 return x;
649}
650
651TYPE
652(F(floor)) (TYPE x)
653{
654 ++count;
655 P ();
656 return x;
657}
658
659TYPE
660(F(fmod)) (TYPE x, TYPE y)
661{
662 ++count;
663 P ();
664 return x + y;
665}
666
667TYPE
668(F(nearbyint)) (TYPE x)
669{
670 ++count;
671 P ();
672 return x;
673}
674
675TYPE
676(F(round)) (TYPE x)
677{
678 ++count;
679 P ();
680 return x;
681}
682
683TYPE
684(F(trunc)) (TYPE x)
685{
686 ++count;
687 P ();
688 return x;
689}
690
691TYPE
692(F(remquo)) (TYPE x, TYPE y, int *i)
693{
694 ++count;
695 P ();
696 return x + y + *i;
697}
698
699long int
700(F(lrint)) (TYPE x)
701{
702 ++count;
703 P ();
704 return x;
705}
706
707long int
708(F(lround)) (TYPE x)
709{
710 ++count;
711 P ();
712 return x;
713}
714
715long long int
716(F(llrint)) (TYPE x)
717{
718 ++count;
719 P ();
720 return x;
721}
722
723long long int
724(F(llround)) (TYPE x)
725{
726 ++count;
727 P ();
728 return x;
729}
730
731TYPE
732(F(erf)) (TYPE x)
733{
734 ++count;
735 P ();
736 return x;
737}
738
739TYPE
740(F(erfc)) (TYPE x)
741{
742 ++count;
743 P ();
744 return x;
745}
746
747TYPE
748(F(tgamma)) (TYPE x)
749{
750 ++count;
751 P ();
752 return x;
753}
754
755TYPE
756(F(lgamma)) (TYPE x)
757{
758 ++count;
759 P ();
760 return x;
761}
762
763TYPE
764(F(rint)) (TYPE x)
765{
766 ++count;
767 P ();
768 return x;
769}
770
771TYPE
772(F(nextafter)) (TYPE x, TYPE y)
773{
774 ++count;
775 P ();
776 return x + y;
777}
778
779TYPE
780(F(nexttoward)) (TYPE x, long double y)
781{
782 ++count;
783 P ();
784 return x + y;
785}
786
787TYPE
788(F(remainder)) (TYPE x, TYPE y)
789{
790 ++count;
791 P ();
792 return x + y;
793}
794
795TYPE
796(F(scalb)) (TYPE x, TYPE y)
797{
798 ++count;
799 P ();
800 return x + y;
801}
802
803TYPE
804(F(scalbn)) (TYPE x, int y)
805{
806 ++count;
807 P ();
808 return x + y;
809}
810
811TYPE
812(F(scalbln)) (TYPE x, long int y)
813{
814 ++count;
815 P ();
816 return x + y;
817}
818
819int
820(F(ilogb)) (TYPE x)
821{
822 ++count;
823 P ();
824 return x;
825}
826
827TYPE
828(F(fdim)) (TYPE x, TYPE y)
829{
830 ++count;
831 P ();
832 return x + y;
833}
834
835TYPE
836(F(fmin)) (TYPE x, TYPE y)
837{
838 ++count;
839 P ();
840 return x + y;
841}
842
843TYPE
844(F(fmax)) (TYPE x, TYPE y)
845{
846 ++count;
847 P ();
848 return x + y;
849}
850
851TYPE
852(F(fma)) (TYPE x, TYPE y, TYPE z)
853{
854 ++count;
855 P ();
856 return x + y + z;
857}
858
859complex TYPE
860(F(cacos)) (complex TYPE x)
861{
862 ++ccount;
863 P ();
864 return x;
865}
866
867complex TYPE
868(F(casin)) (complex TYPE x)
869{
870 ++ccount;
871 P ();
872 return x;
873}
874
875complex TYPE
876(F(catan)) (complex TYPE x)
877{
878 ++ccount;
879 P ();
880 return x;
881}
882
883complex TYPE
884(F(ccos)) (complex TYPE x)
885{
886 ++ccount;
887 P ();
888 return x;
889}
890
891complex TYPE
892(F(csin)) (complex TYPE x)
893{
894 ++ccount;
895 P ();
896 return x;
897}
898
899complex TYPE
900(F(ctan)) (complex TYPE x)
901{
902 ++ccount;
903 P ();
904 return x;
905}
906
907complex TYPE
908(F(cacosh)) (complex TYPE x)
909{
910 ++ccount;
911 P ();
912 return x;
913}
914
915complex TYPE
916(F(casinh)) (complex TYPE x)
917{
918 ++ccount;
919 P ();
920 return x;
921}
922
923complex TYPE
924(F(catanh)) (complex TYPE x)
925{
926 ++ccount;
927 P ();
928 return x;
929}
930
931complex TYPE
932(F(ccosh)) (complex TYPE x)
933{
934 ++ccount;
935 P ();
936 return x;
937}
938
939complex TYPE
940(F(csinh)) (complex TYPE x)
941{
942 ++ccount;
943 P ();
944 return x;
945}
946
947complex TYPE
948(F(ctanh)) (complex TYPE x)
949{
950 ++ccount;
951 P ();
952 return x;
953}
954
955complex TYPE
956(F(cexp)) (complex TYPE x)
957{
958 ++ccount;
959 P ();
960 return x;
961}
962
963complex TYPE
964(F(clog)) (complex TYPE x)
965{
966 ++ccount;
967 P ();
968 return x;
969}
970
971complex TYPE
972(F(csqrt)) (complex TYPE x)
973{
974 ++ccount;
975 P ();
976 return x;
977}
978
979complex TYPE
980(F(cpow)) (complex TYPE x, complex TYPE y)
981{
982 ++ccount;
983 P ();
984 return x + y;
985}
986
987TYPE
988(F(cabs)) (complex TYPE x)
989{
990 ++ccount;
991 P ();
992 return x;
993}
994
995TYPE
996(F(carg)) (complex TYPE x)
997{
998 ++ccount;
999 P ();
1000 return x;
1001}
1002
1003TYPE
1004(F(creal)) (complex TYPE x)
1005{
1006 ++ccount;
1007 P ();
1008 return __real__ x;
1009}
1010
1011TYPE
1012(F(cimag)) (complex TYPE x)
1013{
1014 ++ccount;
1015 P ();
1016 return __imag__ x;
1017}
1018
1019complex TYPE
1020(F(conj)) (complex TYPE x)
1021{
1022 ++ccount;
1023 P ();
1024 return x;
1025}
1026
1027complex TYPE
1028(F(cproj)) (complex TYPE x)
1029{
1030 ++ccount;
1031 P ();
1032 return x;
1033}
1034
1035#undef F
1036#undef TYPE
1037#undef count
1038#undef ccount
1039#undef TEST_INT
1040#endif