xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* Test compilation of tgmath macros. |
| 2 | Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Jakub Jelinek <jakub@redhat.com> and |
| 5 | Ulrich Drepper <drepper@redhat.com>, 2001. |
| 6 | |
| 7 | The GNU C Library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public |
| 9 | License as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | |
| 12 | The GNU C Library is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | Lesser General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU Lesser General Public |
| 18 | License along with the GNU C Library; if not, see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #ifndef HAVE_MAIN |
| 22 | #undef __NO_MATH_INLINES |
| 23 | #define __NO_MATH_INLINES 1 |
| 24 | #include <math.h> |
| 25 | #include <stdio.h> |
| 26 | #include <tgmath.h> |
| 27 | |
| 28 | //#define DEBUG |
| 29 | |
| 30 | static void compile_test (void); |
| 31 | static void compile_testf (void); |
| 32 | #ifndef NO_LONG_DOUBLE |
| 33 | static void compile_testl (void); |
| 34 | #endif |
| 35 | |
| 36 | float fx; |
| 37 | double dx; |
| 38 | long double lx; |
| 39 | const float fy = 1.25; |
| 40 | const double dy = 1.25; |
| 41 | const long double ly = 1.25; |
| 42 | complex float fz; |
| 43 | complex double dz; |
| 44 | complex long double lz; |
| 45 | |
| 46 | int count_double; |
| 47 | int count_float; |
| 48 | int count_ldouble; |
| 49 | int count_cdouble; |
| 50 | int count_cfloat; |
| 51 | int count_cldouble; |
| 52 | |
| 53 | #define NCALLS 115 |
| 54 | #define NCALLS_INT 4 |
| 55 | #define NCCALLS 47 |
| 56 | |
| 57 | static int |
| 58 | do_test (void) |
| 59 | { |
| 60 | int result = 0; |
| 61 | |
| 62 | count_float = count_double = count_ldouble = 0; |
| 63 | count_cfloat = count_cdouble = count_cldouble = 0; |
| 64 | compile_test (); |
| 65 | if (count_float != 0 || count_cfloat != 0) |
| 66 | { |
| 67 | puts ("float function called for double test"); |
| 68 | result = 1; |
| 69 | } |
| 70 | if (count_ldouble != 0 || count_cldouble != 0) |
| 71 | { |
| 72 | puts ("long double function called for double test"); |
| 73 | result = 1; |
| 74 | } |
| 75 | if (count_double < NCALLS + NCALLS_INT) |
| 76 | { |
| 77 | printf ("double functions not called often enough (%d)\n", |
| 78 | count_double); |
| 79 | result = 1; |
| 80 | } |
| 81 | else if (count_double > NCALLS + NCALLS_INT) |
| 82 | { |
| 83 | printf ("double functions called too often (%d)\n", |
| 84 | count_double); |
| 85 | result = 1; |
| 86 | } |
| 87 | if (count_cdouble < NCCALLS) |
| 88 | { |
| 89 | printf ("double complex functions not called often enough (%d)\n", |
| 90 | count_cdouble); |
| 91 | result = 1; |
| 92 | } |
| 93 | else if (count_cdouble > NCCALLS) |
| 94 | { |
| 95 | printf ("double complex functions called too often (%d)\n", |
| 96 | count_cdouble); |
| 97 | result = 1; |
| 98 | } |
| 99 | |
| 100 | count_float = count_double = count_ldouble = 0; |
| 101 | count_cfloat = count_cdouble = count_cldouble = 0; |
| 102 | compile_testf (); |
| 103 | if (count_double != 0 || count_cdouble != 0) |
| 104 | { |
| 105 | puts ("double function called for float test"); |
| 106 | result = 1; |
| 107 | } |
| 108 | if (count_ldouble != 0 || count_cldouble != 0) |
| 109 | { |
| 110 | puts ("long double function called for float test"); |
| 111 | result = 1; |
| 112 | } |
| 113 | if (count_float < NCALLS) |
| 114 | { |
| 115 | printf ("float functions not called often enough (%d)\n", count_float); |
| 116 | result = 1; |
| 117 | } |
| 118 | else if (count_float > NCALLS) |
| 119 | { |
| 120 | printf ("float functions called too often (%d)\n", |
| 121 | count_double); |
| 122 | result = 1; |
| 123 | } |
| 124 | if (count_cfloat < NCCALLS) |
| 125 | { |
| 126 | printf ("float complex functions not called often enough (%d)\n", |
| 127 | count_cfloat); |
| 128 | result = 1; |
| 129 | } |
| 130 | else if (count_cfloat > NCCALLS) |
| 131 | { |
| 132 | printf ("float complex functions called too often (%d)\n", |
| 133 | count_cfloat); |
| 134 | result = 1; |
| 135 | } |
| 136 | |
| 137 | #ifndef NO_LONG_DOUBLE |
| 138 | count_float = count_double = count_ldouble = 0; |
| 139 | count_cfloat = count_cdouble = count_cldouble = 0; |
| 140 | compile_testl (); |
| 141 | if (count_float != 0 || count_cfloat != 0) |
| 142 | { |
| 143 | puts ("float function called for long double test"); |
| 144 | result = 1; |
| 145 | } |
| 146 | if (count_double != 0 || count_cdouble != 0) |
| 147 | { |
| 148 | puts ("double function called for long double test"); |
| 149 | result = 1; |
| 150 | } |
| 151 | if (count_ldouble < NCALLS) |
| 152 | { |
| 153 | printf ("long double functions not called often enough (%d)\n", |
| 154 | count_ldouble); |
| 155 | result = 1; |
| 156 | } |
| 157 | else if (count_ldouble > NCALLS) |
| 158 | { |
| 159 | printf ("long double functions called too often (%d)\n", |
| 160 | count_double); |
| 161 | result = 1; |
| 162 | } |
| 163 | if (count_cldouble < NCCALLS) |
| 164 | { |
| 165 | printf ("long double complex functions not called often enough (%d)\n", |
| 166 | count_cldouble); |
| 167 | result = 1; |
| 168 | } |
| 169 | else if (count_cldouble > NCCALLS) |
| 170 | { |
| 171 | printf ("long double complex functions called too often (%d)\n", |
| 172 | count_cldouble); |
| 173 | result = 1; |
| 174 | } |
| 175 | #endif |
| 176 | |
| 177 | return result; |
| 178 | } |
| 179 | |
| 180 | /* Now generate the three functions. */ |
| 181 | #define HAVE_MAIN |
| 182 | |
| 183 | #define F(name) name |
| 184 | #define TYPE double |
| 185 | #define TEST_INT 1 |
| 186 | #define x dx |
| 187 | #define y dy |
| 188 | #define z dz |
| 189 | #define count count_double |
| 190 | #define ccount count_cdouble |
| 191 | #include "test-tgmath.c" |
| 192 | |
| 193 | #define F(name) name##f |
| 194 | #define TYPE float |
| 195 | #define x fx |
| 196 | #define y fy |
| 197 | #define z fz |
| 198 | #define count count_float |
| 199 | #define ccount count_cfloat |
| 200 | #include "test-tgmath.c" |
| 201 | |
| 202 | #ifndef NO_LONG_DOUBLE |
| 203 | #define F(name) name##l |
| 204 | #define TYPE long double |
| 205 | #define x lx |
| 206 | #define y ly |
| 207 | #define z lz |
| 208 | #define count count_ldouble |
| 209 | #define ccount count_cldouble |
| 210 | #include "test-tgmath.c" |
| 211 | #endif |
| 212 | |
| 213 | #define TEST_FUNCTION do_test () |
| 214 | #include "../test-skeleton.c" |
| 215 | |
| 216 | #else |
| 217 | |
| 218 | #ifdef DEBUG |
| 219 | #define P() puts (__FUNCTION__) |
| 220 | #else |
| 221 | #define P() |
| 222 | #endif |
| 223 | |
| 224 | static void |
| 225 | F(compile_test) (void) |
| 226 | { |
| 227 | TYPE a, b, c = 1.0; |
| 228 | complex TYPE d; |
| 229 | int i; |
| 230 | int saved_count; |
| 231 | long int j; |
| 232 | long long int k; |
| 233 | |
| 234 | a = cos (cos (x)); |
| 235 | b = acos (acos (a)); |
| 236 | a = sin (sin (x)); |
| 237 | b = asin (asin (a)); |
| 238 | a = tan (tan (x)); |
| 239 | b = atan (atan (a)); |
| 240 | c = atan2 (atan2 (a, c), atan2 (b, x)); |
| 241 | a = cosh (cosh (x)); |
| 242 | b = acosh (acosh (a)); |
| 243 | a = sinh (sinh (x)); |
| 244 | b = asinh (asinh (a)); |
| 245 | a = tanh (tanh (x)); |
| 246 | b = atanh (atanh (a)); |
| 247 | a = exp (exp (x)); |
| 248 | b = log (log (a)); |
| 249 | a = log10 (log10 (x)); |
| 250 | b = ldexp (ldexp (a, 1), 5); |
| 251 | a = frexp (frexp (x, &i), &i); |
| 252 | b = expm1 (expm1 (a)); |
| 253 | a = log1p (log1p (x)); |
| 254 | b = logb (logb (a)); |
| 255 | a = exp2 (exp2 (x)); |
| 256 | b = log2 (log2 (a)); |
| 257 | a = pow (pow (x, a), pow (c, b)); |
| 258 | b = sqrt (sqrt (a)); |
| 259 | a = hypot (hypot (x, b), hypot (c, a)); |
| 260 | b = cbrt (cbrt (a)); |
| 261 | a = ceil (ceil (x)); |
| 262 | b = fabs (fabs (a)); |
| 263 | a = floor (floor (x)); |
| 264 | b = fmod (fmod (a, b), fmod (c, x)); |
| 265 | a = nearbyint (nearbyint (x)); |
| 266 | b = round (round (a)); |
| 267 | a = trunc (trunc (x)); |
| 268 | b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i); |
| 269 | j = lrint (x) + lround (a); |
| 270 | k = llrint (b) + llround (c); |
| 271 | a = erf (erf (x)); |
| 272 | b = erfc (erfc (a)); |
| 273 | a = tgamma (tgamma (x)); |
| 274 | b = lgamma (lgamma (a)); |
| 275 | a = rint (rint (x)); |
| 276 | b = nextafter (nextafter (a, b), nextafter (c, x)); |
| 277 | a = nexttoward (nexttoward (x, a), c); |
| 278 | b = remainder (remainder (a, b), remainder (c, x)); |
| 279 | a = scalb (scalb (x, a), (TYPE) (6)); |
| 280 | k = scalbn (a, 7) + scalbln (c, 10l); |
| 281 | i = ilogb (x); |
| 282 | a = fdim (fdim (x, a), fdim (c, b)); |
| 283 | b = fmax (fmax (a, x), fmax (c, b)); |
| 284 | a = fmin (fmin (x, a), fmin (c, b)); |
| 285 | b = fma (sin (a), sin (x), sin (c)); |
| 286 | |
| 287 | #ifdef TEST_INT |
| 288 | a = atan2 (i, b); |
| 289 | b = remquo (i, a, &i); |
| 290 | c = fma (i, b, i); |
| 291 | a = pow (i, c); |
| 292 | #endif |
| 293 | x = a + b + c + i + j + k; |
| 294 | |
| 295 | saved_count = count; |
| 296 | if (ccount != 0) |
| 297 | ccount = -10000; |
| 298 | |
| 299 | d = cos (cos (z)); |
| 300 | z = acos (acos (d)); |
| 301 | d = sin (sin (z)); |
| 302 | z = asin (asin (d)); |
| 303 | d = tan (tan (z)); |
| 304 | z = atan (atan (d)); |
| 305 | d = cosh (cosh (z)); |
| 306 | z = acosh (acosh (d)); |
| 307 | d = sinh (sinh (z)); |
| 308 | z = asinh (asinh (d)); |
| 309 | d = tanh (tanh (z)); |
| 310 | z = atanh (atanh (d)); |
| 311 | d = exp (exp (z)); |
| 312 | z = log (log (d)); |
| 313 | d = sqrt (sqrt (z)); |
| 314 | z = conj (conj (d)); |
| 315 | d = fabs (conj (a)); |
| 316 | z = pow (pow (a, d), pow (b, z)); |
| 317 | d = cproj (cproj (z)); |
| 318 | z += fabs (cproj (a)); |
| 319 | a = carg (carg (z)); |
| 320 | b = creal (creal (d)); |
| 321 | c = cimag (cimag (z)); |
| 322 | x += a + b + c + i + j + k; |
| 323 | z += d; |
| 324 | |
| 325 | if (saved_count != count) |
| 326 | count = -10000; |
| 327 | |
| 328 | if (0) |
| 329 | { |
| 330 | a = cos (y); |
| 331 | a = acos (y); |
| 332 | a = sin (y); |
| 333 | a = asin (y); |
| 334 | a = tan (y); |
| 335 | a = atan (y); |
| 336 | a = atan2 (y, y); |
| 337 | a = cosh (y); |
| 338 | a = acosh (y); |
| 339 | a = sinh (y); |
| 340 | a = asinh (y); |
| 341 | a = tanh (y); |
| 342 | a = atanh (y); |
| 343 | a = exp (y); |
| 344 | a = log (y); |
| 345 | a = log10 (y); |
| 346 | a = ldexp (y, 5); |
| 347 | a = frexp (y, &i); |
| 348 | a = expm1 (y); |
| 349 | a = log1p (y); |
| 350 | a = logb (y); |
| 351 | a = exp2 (y); |
| 352 | a = log2 (y); |
| 353 | a = pow (y, y); |
| 354 | a = sqrt (y); |
| 355 | a = hypot (y, y); |
| 356 | a = cbrt (y); |
| 357 | a = ceil (y); |
| 358 | a = fabs (y); |
| 359 | a = floor (y); |
| 360 | a = fmod (y, y); |
| 361 | a = nearbyint (y); |
| 362 | a = round (y); |
| 363 | a = trunc (y); |
| 364 | a = remquo (y, y, &i); |
| 365 | j = lrint (y) + lround (y); |
| 366 | k = llrint (y) + llround (y); |
| 367 | a = erf (y); |
| 368 | a = erfc (y); |
| 369 | a = tgamma (y); |
| 370 | a = lgamma (y); |
| 371 | a = rint (y); |
| 372 | a = nextafter (y, y); |
| 373 | a = nexttoward (y, y); |
| 374 | a = remainder (y, y); |
| 375 | a = scalb (y, (const TYPE) (6)); |
| 376 | k = scalbn (y, 7) + scalbln (y, 10l); |
| 377 | i = ilogb (y); |
| 378 | a = fdim (y, y); |
| 379 | a = fmax (y, y); |
| 380 | a = fmin (y, y); |
| 381 | a = fma (y, y, y); |
| 382 | |
| 383 | #ifdef TEST_INT |
| 384 | a = atan2 (i, y); |
| 385 | a = remquo (i, y, &i); |
| 386 | a = fma (i, y, i); |
| 387 | a = pow (i, y); |
| 388 | #endif |
| 389 | |
| 390 | d = cos ((const complex TYPE) z); |
| 391 | d = acos ((const complex TYPE) z); |
| 392 | d = sin ((const complex TYPE) z); |
| 393 | d = asin ((const complex TYPE) z); |
| 394 | d = tan ((const complex TYPE) z); |
| 395 | d = atan ((const complex TYPE) z); |
| 396 | d = cosh ((const complex TYPE) z); |
| 397 | d = acosh ((const complex TYPE) z); |
| 398 | d = sinh ((const complex TYPE) z); |
| 399 | d = asinh ((const complex TYPE) z); |
| 400 | d = tanh ((const complex TYPE) z); |
| 401 | d = atanh ((const complex TYPE) z); |
| 402 | d = exp ((const complex TYPE) z); |
| 403 | d = log ((const complex TYPE) z); |
| 404 | d = sqrt ((const complex TYPE) z); |
| 405 | d = pow ((const complex TYPE) z, (const complex TYPE) z); |
| 406 | d = fabs ((const complex TYPE) z); |
| 407 | d = carg ((const complex TYPE) z); |
| 408 | d = creal ((const complex TYPE) z); |
| 409 | d = cimag ((const complex TYPE) z); |
| 410 | d = conj ((const complex TYPE) z); |
| 411 | d = cproj ((const complex TYPE) z); |
| 412 | } |
| 413 | } |
| 414 | #undef x |
| 415 | #undef y |
| 416 | #undef z |
| 417 | |
| 418 | |
| 419 | TYPE |
| 420 | (F(cos)) (TYPE x) |
| 421 | { |
| 422 | ++count; |
| 423 | P (); |
| 424 | return x; |
| 425 | } |
| 426 | |
| 427 | TYPE |
| 428 | (F(acos)) (TYPE x) |
| 429 | { |
| 430 | ++count; |
| 431 | P (); |
| 432 | return x; |
| 433 | } |
| 434 | |
| 435 | TYPE |
| 436 | (F(sin)) (TYPE x) |
| 437 | { |
| 438 | ++count; |
| 439 | P (); |
| 440 | return x; |
| 441 | } |
| 442 | |
| 443 | TYPE |
| 444 | (F(asin)) (TYPE x) |
| 445 | { |
| 446 | ++count; |
| 447 | P (); |
| 448 | return x; |
| 449 | } |
| 450 | |
| 451 | TYPE |
| 452 | (F(tan)) (TYPE x) |
| 453 | { |
| 454 | ++count; |
| 455 | P (); |
| 456 | return x; |
| 457 | } |
| 458 | |
| 459 | TYPE |
| 460 | (F(atan)) (TYPE x) |
| 461 | { |
| 462 | ++count; |
| 463 | P (); |
| 464 | return x; |
| 465 | } |
| 466 | |
| 467 | TYPE |
| 468 | (F(atan2)) (TYPE x, TYPE y) |
| 469 | { |
| 470 | ++count; |
| 471 | P (); |
| 472 | return x + y; |
| 473 | } |
| 474 | |
| 475 | TYPE |
| 476 | (F(cosh)) (TYPE x) |
| 477 | { |
| 478 | ++count; |
| 479 | P (); |
| 480 | return x; |
| 481 | } |
| 482 | |
| 483 | TYPE |
| 484 | (F(acosh)) (TYPE x) |
| 485 | { |
| 486 | ++count; |
| 487 | P (); |
| 488 | return x; |
| 489 | } |
| 490 | |
| 491 | TYPE |
| 492 | (F(sinh)) (TYPE x) |
| 493 | { |
| 494 | ++count; |
| 495 | P (); |
| 496 | return x; |
| 497 | } |
| 498 | |
| 499 | TYPE |
| 500 | (F(asinh)) (TYPE x) |
| 501 | { |
| 502 | ++count; |
| 503 | P (); |
| 504 | return x; |
| 505 | } |
| 506 | |
| 507 | TYPE |
| 508 | (F(tanh)) (TYPE x) |
| 509 | { |
| 510 | ++count; |
| 511 | P (); |
| 512 | return x; |
| 513 | } |
| 514 | |
| 515 | TYPE |
| 516 | (F(atanh)) (TYPE x) |
| 517 | { |
| 518 | ++count; |
| 519 | P (); |
| 520 | return x; |
| 521 | } |
| 522 | |
| 523 | TYPE |
| 524 | (F(exp)) (TYPE x) |
| 525 | { |
| 526 | ++count; |
| 527 | P (); |
| 528 | return x; |
| 529 | } |
| 530 | |
| 531 | TYPE |
| 532 | (F(log)) (TYPE x) |
| 533 | { |
| 534 | ++count; |
| 535 | P (); |
| 536 | return x; |
| 537 | } |
| 538 | |
| 539 | TYPE |
| 540 | (F(log10)) (TYPE x) |
| 541 | { |
| 542 | ++count; |
| 543 | P (); |
| 544 | return x; |
| 545 | } |
| 546 | |
| 547 | TYPE |
| 548 | (F(ldexp)) (TYPE x, int y) |
| 549 | { |
| 550 | ++count; |
| 551 | P (); |
| 552 | return x + y; |
| 553 | } |
| 554 | |
| 555 | TYPE |
| 556 | (F(frexp)) (TYPE x, int *y) |
| 557 | { |
| 558 | ++count; |
| 559 | P (); |
| 560 | return x + *y; |
| 561 | } |
| 562 | |
| 563 | TYPE |
| 564 | (F(expm1)) (TYPE x) |
| 565 | { |
| 566 | ++count; |
| 567 | P (); |
| 568 | return x; |
| 569 | } |
| 570 | |
| 571 | TYPE |
| 572 | (F(log1p)) (TYPE x) |
| 573 | { |
| 574 | ++count; |
| 575 | P (); |
| 576 | return x; |
| 577 | } |
| 578 | |
| 579 | TYPE |
| 580 | (F(logb)) (TYPE x) |
| 581 | { |
| 582 | ++count; |
| 583 | P (); |
| 584 | return x; |
| 585 | } |
| 586 | |
| 587 | TYPE |
| 588 | (F(exp2)) (TYPE x) |
| 589 | { |
| 590 | ++count; |
| 591 | P (); |
| 592 | return x; |
| 593 | } |
| 594 | |
| 595 | TYPE |
| 596 | (F(log2)) (TYPE x) |
| 597 | { |
| 598 | ++count; |
| 599 | P (); |
| 600 | return x; |
| 601 | } |
| 602 | |
| 603 | TYPE |
| 604 | (F(pow)) (TYPE x, TYPE y) |
| 605 | { |
| 606 | ++count; |
| 607 | P (); |
| 608 | return x + y; |
| 609 | } |
| 610 | |
| 611 | TYPE |
| 612 | (F(sqrt)) (TYPE x) |
| 613 | { |
| 614 | ++count; |
| 615 | P (); |
| 616 | return x; |
| 617 | } |
| 618 | |
| 619 | TYPE |
| 620 | (F(hypot)) (TYPE x, TYPE y) |
| 621 | { |
| 622 | ++count; |
| 623 | P (); |
| 624 | return x + y; |
| 625 | } |
| 626 | |
| 627 | TYPE |
| 628 | (F(cbrt)) (TYPE x) |
| 629 | { |
| 630 | ++count; |
| 631 | P (); |
| 632 | return x; |
| 633 | } |
| 634 | |
| 635 | TYPE |
| 636 | (F(ceil)) (TYPE x) |
| 637 | { |
| 638 | ++count; |
| 639 | P (); |
| 640 | return x; |
| 641 | } |
| 642 | |
| 643 | TYPE |
| 644 | (F(fabs)) (TYPE x) |
| 645 | { |
| 646 | ++count; |
| 647 | P (); |
| 648 | return x; |
| 649 | } |
| 650 | |
| 651 | TYPE |
| 652 | (F(floor)) (TYPE x) |
| 653 | { |
| 654 | ++count; |
| 655 | P (); |
| 656 | return x; |
| 657 | } |
| 658 | |
| 659 | TYPE |
| 660 | (F(fmod)) (TYPE x, TYPE y) |
| 661 | { |
| 662 | ++count; |
| 663 | P (); |
| 664 | return x + y; |
| 665 | } |
| 666 | |
| 667 | TYPE |
| 668 | (F(nearbyint)) (TYPE x) |
| 669 | { |
| 670 | ++count; |
| 671 | P (); |
| 672 | return x; |
| 673 | } |
| 674 | |
| 675 | TYPE |
| 676 | (F(round)) (TYPE x) |
| 677 | { |
| 678 | ++count; |
| 679 | P (); |
| 680 | return x; |
| 681 | } |
| 682 | |
| 683 | TYPE |
| 684 | (F(trunc)) (TYPE x) |
| 685 | { |
| 686 | ++count; |
| 687 | P (); |
| 688 | return x; |
| 689 | } |
| 690 | |
| 691 | TYPE |
| 692 | (F(remquo)) (TYPE x, TYPE y, int *i) |
| 693 | { |
| 694 | ++count; |
| 695 | P (); |
| 696 | return x + y + *i; |
| 697 | } |
| 698 | |
| 699 | long int |
| 700 | (F(lrint)) (TYPE x) |
| 701 | { |
| 702 | ++count; |
| 703 | P (); |
| 704 | return x; |
| 705 | } |
| 706 | |
| 707 | long int |
| 708 | (F(lround)) (TYPE x) |
| 709 | { |
| 710 | ++count; |
| 711 | P (); |
| 712 | return x; |
| 713 | } |
| 714 | |
| 715 | long long int |
| 716 | (F(llrint)) (TYPE x) |
| 717 | { |
| 718 | ++count; |
| 719 | P (); |
| 720 | return x; |
| 721 | } |
| 722 | |
| 723 | long long int |
| 724 | (F(llround)) (TYPE x) |
| 725 | { |
| 726 | ++count; |
| 727 | P (); |
| 728 | return x; |
| 729 | } |
| 730 | |
| 731 | TYPE |
| 732 | (F(erf)) (TYPE x) |
| 733 | { |
| 734 | ++count; |
| 735 | P (); |
| 736 | return x; |
| 737 | } |
| 738 | |
| 739 | TYPE |
| 740 | (F(erfc)) (TYPE x) |
| 741 | { |
| 742 | ++count; |
| 743 | P (); |
| 744 | return x; |
| 745 | } |
| 746 | |
| 747 | TYPE |
| 748 | (F(tgamma)) (TYPE x) |
| 749 | { |
| 750 | ++count; |
| 751 | P (); |
| 752 | return x; |
| 753 | } |
| 754 | |
| 755 | TYPE |
| 756 | (F(lgamma)) (TYPE x) |
| 757 | { |
| 758 | ++count; |
| 759 | P (); |
| 760 | return x; |
| 761 | } |
| 762 | |
| 763 | TYPE |
| 764 | (F(rint)) (TYPE x) |
| 765 | { |
| 766 | ++count; |
| 767 | P (); |
| 768 | return x; |
| 769 | } |
| 770 | |
| 771 | TYPE |
| 772 | (F(nextafter)) (TYPE x, TYPE y) |
| 773 | { |
| 774 | ++count; |
| 775 | P (); |
| 776 | return x + y; |
| 777 | } |
| 778 | |
| 779 | TYPE |
| 780 | (F(nexttoward)) (TYPE x, long double y) |
| 781 | { |
| 782 | ++count; |
| 783 | P (); |
| 784 | return x + y; |
| 785 | } |
| 786 | |
| 787 | TYPE |
| 788 | (F(remainder)) (TYPE x, TYPE y) |
| 789 | { |
| 790 | ++count; |
| 791 | P (); |
| 792 | return x + y; |
| 793 | } |
| 794 | |
| 795 | TYPE |
| 796 | (F(scalb)) (TYPE x, TYPE y) |
| 797 | { |
| 798 | ++count; |
| 799 | P (); |
| 800 | return x + y; |
| 801 | } |
| 802 | |
| 803 | TYPE |
| 804 | (F(scalbn)) (TYPE x, int y) |
| 805 | { |
| 806 | ++count; |
| 807 | P (); |
| 808 | return x + y; |
| 809 | } |
| 810 | |
| 811 | TYPE |
| 812 | (F(scalbln)) (TYPE x, long int y) |
| 813 | { |
| 814 | ++count; |
| 815 | P (); |
| 816 | return x + y; |
| 817 | } |
| 818 | |
| 819 | int |
| 820 | (F(ilogb)) (TYPE x) |
| 821 | { |
| 822 | ++count; |
| 823 | P (); |
| 824 | return x; |
| 825 | } |
| 826 | |
| 827 | TYPE |
| 828 | (F(fdim)) (TYPE x, TYPE y) |
| 829 | { |
| 830 | ++count; |
| 831 | P (); |
| 832 | return x + y; |
| 833 | } |
| 834 | |
| 835 | TYPE |
| 836 | (F(fmin)) (TYPE x, TYPE y) |
| 837 | { |
| 838 | ++count; |
| 839 | P (); |
| 840 | return x + y; |
| 841 | } |
| 842 | |
| 843 | TYPE |
| 844 | (F(fmax)) (TYPE x, TYPE y) |
| 845 | { |
| 846 | ++count; |
| 847 | P (); |
| 848 | return x + y; |
| 849 | } |
| 850 | |
| 851 | TYPE |
| 852 | (F(fma)) (TYPE x, TYPE y, TYPE z) |
| 853 | { |
| 854 | ++count; |
| 855 | P (); |
| 856 | return x + y + z; |
| 857 | } |
| 858 | |
| 859 | complex TYPE |
| 860 | (F(cacos)) (complex TYPE x) |
| 861 | { |
| 862 | ++ccount; |
| 863 | P (); |
| 864 | return x; |
| 865 | } |
| 866 | |
| 867 | complex TYPE |
| 868 | (F(casin)) (complex TYPE x) |
| 869 | { |
| 870 | ++ccount; |
| 871 | P (); |
| 872 | return x; |
| 873 | } |
| 874 | |
| 875 | complex TYPE |
| 876 | (F(catan)) (complex TYPE x) |
| 877 | { |
| 878 | ++ccount; |
| 879 | P (); |
| 880 | return x; |
| 881 | } |
| 882 | |
| 883 | complex TYPE |
| 884 | (F(ccos)) (complex TYPE x) |
| 885 | { |
| 886 | ++ccount; |
| 887 | P (); |
| 888 | return x; |
| 889 | } |
| 890 | |
| 891 | complex TYPE |
| 892 | (F(csin)) (complex TYPE x) |
| 893 | { |
| 894 | ++ccount; |
| 895 | P (); |
| 896 | return x; |
| 897 | } |
| 898 | |
| 899 | complex TYPE |
| 900 | (F(ctan)) (complex TYPE x) |
| 901 | { |
| 902 | ++ccount; |
| 903 | P (); |
| 904 | return x; |
| 905 | } |
| 906 | |
| 907 | complex TYPE |
| 908 | (F(cacosh)) (complex TYPE x) |
| 909 | { |
| 910 | ++ccount; |
| 911 | P (); |
| 912 | return x; |
| 913 | } |
| 914 | |
| 915 | complex TYPE |
| 916 | (F(casinh)) (complex TYPE x) |
| 917 | { |
| 918 | ++ccount; |
| 919 | P (); |
| 920 | return x; |
| 921 | } |
| 922 | |
| 923 | complex TYPE |
| 924 | (F(catanh)) (complex TYPE x) |
| 925 | { |
| 926 | ++ccount; |
| 927 | P (); |
| 928 | return x; |
| 929 | } |
| 930 | |
| 931 | complex TYPE |
| 932 | (F(ccosh)) (complex TYPE x) |
| 933 | { |
| 934 | ++ccount; |
| 935 | P (); |
| 936 | return x; |
| 937 | } |
| 938 | |
| 939 | complex TYPE |
| 940 | (F(csinh)) (complex TYPE x) |
| 941 | { |
| 942 | ++ccount; |
| 943 | P (); |
| 944 | return x; |
| 945 | } |
| 946 | |
| 947 | complex TYPE |
| 948 | (F(ctanh)) (complex TYPE x) |
| 949 | { |
| 950 | ++ccount; |
| 951 | P (); |
| 952 | return x; |
| 953 | } |
| 954 | |
| 955 | complex TYPE |
| 956 | (F(cexp)) (complex TYPE x) |
| 957 | { |
| 958 | ++ccount; |
| 959 | P (); |
| 960 | return x; |
| 961 | } |
| 962 | |
| 963 | complex TYPE |
| 964 | (F(clog)) (complex TYPE x) |
| 965 | { |
| 966 | ++ccount; |
| 967 | P (); |
| 968 | return x; |
| 969 | } |
| 970 | |
| 971 | complex TYPE |
| 972 | (F(csqrt)) (complex TYPE x) |
| 973 | { |
| 974 | ++ccount; |
| 975 | P (); |
| 976 | return x; |
| 977 | } |
| 978 | |
| 979 | complex TYPE |
| 980 | (F(cpow)) (complex TYPE x, complex TYPE y) |
| 981 | { |
| 982 | ++ccount; |
| 983 | P (); |
| 984 | return x + y; |
| 985 | } |
| 986 | |
| 987 | TYPE |
| 988 | (F(cabs)) (complex TYPE x) |
| 989 | { |
| 990 | ++ccount; |
| 991 | P (); |
| 992 | return x; |
| 993 | } |
| 994 | |
| 995 | TYPE |
| 996 | (F(carg)) (complex TYPE x) |
| 997 | { |
| 998 | ++ccount; |
| 999 | P (); |
| 1000 | return x; |
| 1001 | } |
| 1002 | |
| 1003 | TYPE |
| 1004 | (F(creal)) (complex TYPE x) |
| 1005 | { |
| 1006 | ++ccount; |
| 1007 | P (); |
| 1008 | return __real__ x; |
| 1009 | } |
| 1010 | |
| 1011 | TYPE |
| 1012 | (F(cimag)) (complex TYPE x) |
| 1013 | { |
| 1014 | ++ccount; |
| 1015 | P (); |
| 1016 | return __imag__ x; |
| 1017 | } |
| 1018 | |
| 1019 | complex TYPE |
| 1020 | (F(conj)) (complex TYPE x) |
| 1021 | { |
| 1022 | ++ccount; |
| 1023 | P (); |
| 1024 | return x; |
| 1025 | } |
| 1026 | |
| 1027 | complex TYPE |
| 1028 | (F(cproj)) (complex TYPE x) |
| 1029 | { |
| 1030 | ++ccount; |
| 1031 | P (); |
| 1032 | return x; |
| 1033 | } |
| 1034 | |
| 1035 | #undef F |
| 1036 | #undef TYPE |
| 1037 | #undef count |
| 1038 | #undef ccount |
| 1039 | #undef TEST_INT |
| 1040 | #endif |