xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* Floating point output for `printf'. |
| 2 | Copyright (C) 1995-2016 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of the GNU C Library. |
| 5 | Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. |
| 6 | |
| 7 | The GNU C Library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public |
| 9 | License as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | |
| 12 | The GNU C Library is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | Lesser General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU Lesser General Public |
| 18 | License along with the GNU C Library; if not, see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | /* The gmp headers need some configuration frobs. */ |
| 22 | #define HAVE_ALLOCA 1 |
| 23 | |
| 24 | #include <libioP.h> |
| 25 | #include <alloca.h> |
| 26 | #include <ctype.h> |
| 27 | #include <float.h> |
| 28 | #include <gmp-mparam.h> |
| 29 | #include <gmp.h> |
| 30 | #include <ieee754.h> |
| 31 | #include <stdlib/gmp-impl.h> |
| 32 | #include <stdlib/longlong.h> |
| 33 | #include <stdlib/fpioconst.h> |
| 34 | #include <locale/localeinfo.h> |
| 35 | #include <limits.h> |
| 36 | #include <math.h> |
| 37 | #include <printf.h> |
| 38 | #include <string.h> |
| 39 | #include <unistd.h> |
| 40 | #include <stdlib.h> |
| 41 | #include <wchar.h> |
| 42 | #include <stdbool.h> |
| 43 | #include <rounding-mode.h> |
| 44 | |
| 45 | #ifdef COMPILE_WPRINTF |
| 46 | # define CHAR_T wchar_t |
| 47 | #else |
| 48 | # define CHAR_T char |
| 49 | #endif |
| 50 | |
| 51 | #include "_i18n_number.h" |
| 52 | |
| 53 | #ifndef NDEBUG |
| 54 | # define NDEBUG /* Undefine this for debugging assertions. */ |
| 55 | #endif |
| 56 | #include <assert.h> |
| 57 | |
| 58 | /* This defines make it possible to use the same code for GNU C library and |
| 59 | the GNU I/O library. */ |
| 60 | #define PUT(f, s, n) _IO_sputn (f, s, n) |
| 61 | #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n)) |
| 62 | /* We use this file GNU C library and GNU I/O library. So make |
| 63 | names equal. */ |
| 64 | #undef putc |
| 65 | #define putc(c, f) (wide \ |
| 66 | ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f)) |
| 67 | #define size_t _IO_size_t |
| 68 | #define FILE _IO_FILE |
| 69 | |
| 70 | /* Macros for doing the actual output. */ |
| 71 | |
| 72 | #define outchar(ch) \ |
| 73 | do \ |
| 74 | { \ |
| 75 | const int outc = (ch); \ |
| 76 | if (putc (outc, fp) == EOF) \ |
| 77 | { \ |
| 78 | if (buffer_malloced) \ |
| 79 | free (wbuffer); \ |
| 80 | return -1; \ |
| 81 | } \ |
| 82 | ++done; \ |
| 83 | } while (0) |
| 84 | |
| 85 | #define PRINT(ptr, wptr, len) \ |
| 86 | do \ |
| 87 | { \ |
| 88 | size_t outlen = (len); \ |
| 89 | if (len > 20) \ |
| 90 | { \ |
| 91 | if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \ |
| 92 | { \ |
| 93 | if (buffer_malloced) \ |
| 94 | free (wbuffer); \ |
| 95 | return -1; \ |
| 96 | } \ |
| 97 | ptr += outlen; \ |
| 98 | done += outlen; \ |
| 99 | } \ |
| 100 | else \ |
| 101 | { \ |
| 102 | if (wide) \ |
| 103 | while (outlen-- > 0) \ |
| 104 | outchar (*wptr++); \ |
| 105 | else \ |
| 106 | while (outlen-- > 0) \ |
| 107 | outchar (*ptr++); \ |
| 108 | } \ |
| 109 | } while (0) |
| 110 | |
| 111 | #define PADN(ch, len) \ |
| 112 | do \ |
| 113 | { \ |
| 114 | if (PAD (fp, ch, len) != len) \ |
| 115 | { \ |
| 116 | if (buffer_malloced) \ |
| 117 | free (wbuffer); \ |
| 118 | return -1; \ |
| 119 | } \ |
| 120 | done += len; \ |
| 121 | } \ |
| 122 | while (0) |
| 123 | |
| 124 | /* We use the GNU MP library to handle large numbers. |
| 125 | |
| 126 | An MP variable occupies a varying number of entries in its array. We keep |
| 127 | track of this number for efficiency reasons. Otherwise we would always |
| 128 | have to process the whole array. */ |
| 129 | #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size |
| 130 | |
| 131 | #define MPN_ASSIGN(dst,src) \ |
| 132 | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) |
| 133 | #define MPN_GE(u,v) \ |
| 134 | (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0)) |
| 135 | |
| 136 | extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size, |
| 137 | int *expt, int *is_neg, |
| 138 | double value); |
| 139 | extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size, |
| 140 | int *expt, int *is_neg, |
| 141 | long double value); |
| 142 | extern unsigned int __guess_grouping (unsigned int intdig_max, |
| 143 | const char *grouping); |
| 144 | |
| 145 | |
| 146 | static wchar_t *group_number (wchar_t *buf, wchar_t *bufend, |
| 147 | unsigned int intdig_no, const char *grouping, |
| 148 | wchar_t thousands_sep, int ngroups) |
| 149 | internal_function; |
| 150 | |
| 151 | struct hack_digit_param |
| 152 | { |
| 153 | /* Sign of the exponent. */ |
| 154 | int expsign; |
| 155 | /* The type of output format that will be used: 'e'/'E' or 'f'. */ |
| 156 | int type; |
| 157 | /* and the exponent. */ |
| 158 | int exponent; |
| 159 | /* The fraction of the floting-point value in question */ |
| 160 | MPN_VAR(frac); |
| 161 | /* Scaling factor. */ |
| 162 | MPN_VAR(scale); |
| 163 | /* Temporary bignum value. */ |
| 164 | MPN_VAR(tmp); |
| 165 | }; |
| 166 | |
| 167 | static wchar_t |
| 168 | hack_digit (struct hack_digit_param *p) |
| 169 | { |
| 170 | mp_limb_t hi; |
| 171 | |
| 172 | if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0) |
| 173 | hi = 0; |
| 174 | else if (p->scalesize == 0) |
| 175 | { |
| 176 | hi = p->frac[p->fracsize - 1]; |
| 177 | p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac, |
| 178 | p->fracsize - 1, 10); |
| 179 | } |
| 180 | else |
| 181 | { |
| 182 | if (p->fracsize < p->scalesize) |
| 183 | hi = 0; |
| 184 | else |
| 185 | { |
| 186 | hi = mpn_divmod (p->tmp, p->frac, p->fracsize, |
| 187 | p->scale, p->scalesize); |
| 188 | p->tmp[p->fracsize - p->scalesize] = hi; |
| 189 | hi = p->tmp[0]; |
| 190 | |
| 191 | p->fracsize = p->scalesize; |
| 192 | while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0) |
| 193 | --p->fracsize; |
| 194 | if (p->fracsize == 0) |
| 195 | { |
| 196 | /* We're not prepared for an mpn variable with zero |
| 197 | limbs. */ |
| 198 | p->fracsize = 1; |
| 199 | return L'0' + hi; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10); |
| 204 | if (_cy != 0) |
| 205 | p->frac[p->fracsize++] = _cy; |
| 206 | } |
| 207 | |
| 208 | return L'0' + hi; |
| 209 | } |
| 210 | |
| 211 | int |
| 212 | ___printf_fp (FILE *fp, |
| 213 | const struct printf_info *info, |
| 214 | const void *const *args) |
| 215 | { |
| 216 | /* The floating-point value to output. */ |
| 217 | union |
| 218 | { |
| 219 | double dbl; |
| 220 | __long_double_t ldbl; |
| 221 | } |
| 222 | fpnum; |
| 223 | |
| 224 | /* Locale-dependent representation of decimal point. */ |
| 225 | const char *decimal; |
| 226 | wchar_t decimalwc; |
| 227 | |
| 228 | /* Locale-dependent thousands separator and grouping specification. */ |
| 229 | const char *thousands_sep = NULL; |
| 230 | wchar_t thousands_sepwc = 0; |
| 231 | const char *grouping; |
| 232 | |
| 233 | /* "NaN" or "Inf" for the special cases. */ |
| 234 | const char *special = NULL; |
| 235 | const wchar_t *wspecial = NULL; |
| 236 | |
| 237 | /* We need just a few limbs for the input before shifting to the right |
| 238 | position. */ |
| 239 | mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB]; |
| 240 | /* We need to shift the contents of fp_input by this amount of bits. */ |
| 241 | int to_shift = 0; |
| 242 | |
| 243 | struct hack_digit_param p; |
| 244 | /* Sign of float number. */ |
| 245 | int is_neg = 0; |
| 246 | |
| 247 | /* Counter for number of written characters. */ |
| 248 | int done = 0; |
| 249 | |
| 250 | /* General helper (carry limb). */ |
| 251 | mp_limb_t cy; |
| 252 | |
| 253 | /* Nonzero if this is output on a wide character stream. */ |
| 254 | int wide = info->wide; |
| 255 | |
| 256 | /* Buffer in which we produce the output. */ |
| 257 | wchar_t *wbuffer = NULL; |
| 258 | /* Flag whether wbuffer is malloc'ed or not. */ |
| 259 | int buffer_malloced = 0; |
| 260 | |
| 261 | p.expsign = 0; |
| 262 | |
| 263 | /* Figure out the decimal point character. */ |
| 264 | if (info->extra == 0) |
| 265 | { |
| 266 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
| 267 | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); |
| 268 | } |
| 269 | else |
| 270 | { |
| 271 | decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT); |
| 272 | if (*decimal == '\0') |
| 273 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
| 274 | decimalwc = _NL_CURRENT_WORD (LC_MONETARY, |
| 275 | _NL_MONETARY_DECIMAL_POINT_WC); |
| 276 | if (decimalwc == L'\0') |
| 277 | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, |
| 278 | _NL_NUMERIC_DECIMAL_POINT_WC); |
| 279 | } |
| 280 | /* The decimal point character must not be zero. */ |
| 281 | assert (*decimal != '\0'); |
| 282 | assert (decimalwc != L'\0'); |
| 283 | |
| 284 | if (info->group) |
| 285 | { |
| 286 | if (info->extra == 0) |
| 287 | grouping = _NL_CURRENT (LC_NUMERIC, GROUPING); |
| 288 | else |
| 289 | grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING); |
| 290 | |
| 291 | if (*grouping <= 0 || *grouping == CHAR_MAX) |
| 292 | grouping = NULL; |
| 293 | else |
| 294 | { |
| 295 | /* Figure out the thousands separator character. */ |
| 296 | if (wide) |
| 297 | { |
| 298 | if (info->extra == 0) |
| 299 | thousands_sepwc = |
| 300 | _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC); |
| 301 | else |
| 302 | thousands_sepwc = |
| 303 | _NL_CURRENT_WORD (LC_MONETARY, |
| 304 | _NL_MONETARY_THOUSANDS_SEP_WC); |
| 305 | } |
| 306 | else |
| 307 | { |
| 308 | if (info->extra == 0) |
| 309 | thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP); |
| 310 | else |
| 311 | thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP); |
| 312 | } |
| 313 | |
| 314 | if ((wide && thousands_sepwc == L'\0') |
| 315 | || (! wide && *thousands_sep == '\0')) |
| 316 | grouping = NULL; |
| 317 | else if (thousands_sepwc == L'\0') |
| 318 | /* If we are printing multibyte characters and there is a |
| 319 | multibyte representation for the thousands separator, |
| 320 | we must ensure the wide character thousands separator |
| 321 | is available, even if it is fake. */ |
| 322 | thousands_sepwc = 0xfffffffe; |
| 323 | } |
| 324 | } |
| 325 | else |
| 326 | grouping = NULL; |
| 327 | |
| 328 | /* Fetch the argument value. */ |
| 329 | #ifndef __NO_LONG_DOUBLE_MATH |
| 330 | if (info->is_long_double && sizeof (long double) > sizeof (double)) |
| 331 | { |
| 332 | fpnum.ldbl = *(const long double *) args[0]; |
| 333 | |
| 334 | /* Check for special values: not a number or infinity. */ |
| 335 | if (isnan (fpnum.ldbl)) |
| 336 | { |
| 337 | is_neg = signbit (fpnum.ldbl); |
| 338 | if (isupper (info->spec)) |
| 339 | { |
| 340 | special = "NAN"; |
| 341 | wspecial = L"NAN"; |
| 342 | } |
| 343 | else |
| 344 | { |
| 345 | special = "nan"; |
| 346 | wspecial = L"nan"; |
| 347 | } |
| 348 | } |
| 349 | else if (isinf (fpnum.ldbl)) |
| 350 | { |
| 351 | is_neg = signbit (fpnum.ldbl); |
| 352 | if (isupper (info->spec)) |
| 353 | { |
| 354 | special = "INF"; |
| 355 | wspecial = L"INF"; |
| 356 | } |
| 357 | else |
| 358 | { |
| 359 | special = "inf"; |
| 360 | wspecial = L"inf"; |
| 361 | } |
| 362 | } |
| 363 | else |
| 364 | { |
| 365 | p.fracsize = __mpn_extract_long_double (fp_input, |
| 366 | (sizeof (fp_input) / |
| 367 | sizeof (fp_input[0])), |
| 368 | &p.exponent, &is_neg, |
| 369 | fpnum.ldbl); |
| 370 | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG; |
| 371 | } |
| 372 | } |
| 373 | else |
| 374 | #endif /* no long double */ |
| 375 | { |
| 376 | fpnum.dbl = *(const double *) args[0]; |
| 377 | |
| 378 | /* Check for special values: not a number or infinity. */ |
| 379 | if (isnan (fpnum.dbl)) |
| 380 | { |
| 381 | is_neg = signbit (fpnum.dbl); |
| 382 | if (isupper (info->spec)) |
| 383 | { |
| 384 | special = "NAN"; |
| 385 | wspecial = L"NAN"; |
| 386 | } |
| 387 | else |
| 388 | { |
| 389 | special = "nan"; |
| 390 | wspecial = L"nan"; |
| 391 | } |
| 392 | } |
| 393 | else if (isinf (fpnum.dbl)) |
| 394 | { |
| 395 | is_neg = signbit (fpnum.dbl); |
| 396 | if (isupper (info->spec)) |
| 397 | { |
| 398 | special = "INF"; |
| 399 | wspecial = L"INF"; |
| 400 | } |
| 401 | else |
| 402 | { |
| 403 | special = "inf"; |
| 404 | wspecial = L"inf"; |
| 405 | } |
| 406 | } |
| 407 | else |
| 408 | { |
| 409 | p.fracsize = __mpn_extract_double (fp_input, |
| 410 | (sizeof (fp_input) |
| 411 | / sizeof (fp_input[0])), |
| 412 | &p.exponent, &is_neg, fpnum.dbl); |
| 413 | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | if (special) |
| 418 | { |
| 419 | int width = info->width; |
| 420 | |
| 421 | if (is_neg || info->showsign || info->space) |
| 422 | --width; |
| 423 | width -= 3; |
| 424 | |
| 425 | if (!info->left && width > 0) |
| 426 | PADN (' ', width); |
| 427 | |
| 428 | if (is_neg) |
| 429 | outchar ('-'); |
| 430 | else if (info->showsign) |
| 431 | outchar ('+'); |
| 432 | else if (info->space) |
| 433 | outchar (' '); |
| 434 | |
| 435 | PRINT (special, wspecial, 3); |
| 436 | |
| 437 | if (info->left && width > 0) |
| 438 | PADN (' ', width); |
| 439 | |
| 440 | return done; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | /* We need three multiprecision variables. Now that we have the p.exponent |
| 445 | of the number we can allocate the needed memory. It would be more |
| 446 | efficient to use variables of the fixed maximum size but because this |
| 447 | would be really big it could lead to memory problems. */ |
| 448 | { |
| 449 | mp_size_t bignum_size = ((abs (p.exponent) + BITS_PER_MP_LIMB - 1) |
| 450 | / BITS_PER_MP_LIMB |
| 451 | + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4)) |
| 452 | * sizeof (mp_limb_t); |
| 453 | p.frac = (mp_limb_t *) alloca (bignum_size); |
| 454 | p.tmp = (mp_limb_t *) alloca (bignum_size); |
| 455 | p.scale = (mp_limb_t *) alloca (bignum_size); |
| 456 | } |
| 457 | |
| 458 | /* We now have to distinguish between numbers with positive and negative |
| 459 | exponents because the method used for the one is not applicable/efficient |
| 460 | for the other. */ |
| 461 | p.scalesize = 0; |
| 462 | if (p.exponent > 2) |
| 463 | { |
| 464 | /* |FP| >= 8.0. */ |
| 465 | int scaleexpo = 0; |
| 466 | int explog = LDBL_MAX_10_EXP_LOG; |
| 467 | int exp10 = 0; |
| 468 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
| 469 | int cnt_h, cnt_l, i; |
| 470 | |
| 471 | if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0) |
| 472 | { |
| 473 | MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
| 474 | fp_input, p.fracsize); |
| 475 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
| 476 | } |
| 477 | else |
| 478 | { |
| 479 | cy = __mpn_lshift (p.frac + |
| 480 | (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
| 481 | fp_input, p.fracsize, |
| 482 | (p.exponent + to_shift) % BITS_PER_MP_LIMB); |
| 483 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
| 484 | if (cy) |
| 485 | p.frac[p.fracsize++] = cy; |
| 486 | } |
| 487 | MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB); |
| 488 | |
| 489 | assert (powers > &_fpioconst_pow10[0]); |
| 490 | do |
| 491 | { |
| 492 | --powers; |
| 493 | |
| 494 | /* The number of the product of two binary numbers with n and m |
| 495 | bits respectively has m+n or m+n-1 bits. */ |
| 496 | if (p.exponent >= scaleexpo + powers->p_expo - 1) |
| 497 | { |
| 498 | if (p.scalesize == 0) |
| 499 | { |
| 500 | #ifndef __NO_LONG_DOUBLE_MATH |
| 501 | if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB |
| 502 | && info->is_long_double) |
| 503 | { |
| 504 | #define _FPIO_CONST_SHIFT \ |
| 505 | (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \ |
| 506 | - _FPIO_CONST_OFFSET) |
| 507 | /* 64bit const offset is not enough for |
| 508 | IEEE quad long double. */ |
| 509 | p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT; |
| 510 | memcpy (p.tmp + _FPIO_CONST_SHIFT, |
| 511 | &__tens[powers->arrayoff], |
| 512 | p.tmpsize * sizeof (mp_limb_t)); |
| 513 | MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT); |
| 514 | /* Adjust p.exponent, as scaleexpo will be this much |
| 515 | bigger too. */ |
| 516 | p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB; |
| 517 | } |
| 518 | else |
| 519 | #endif |
| 520 | { |
| 521 | p.tmpsize = powers->arraysize; |
| 522 | memcpy (p.tmp, &__tens[powers->arrayoff], |
| 523 | p.tmpsize * sizeof (mp_limb_t)); |
| 524 | } |
| 525 | } |
| 526 | else |
| 527 | { |
| 528 | cy = __mpn_mul (p.tmp, p.scale, p.scalesize, |
| 529 | &__tens[powers->arrayoff |
| 530 | + _FPIO_CONST_OFFSET], |
| 531 | powers->arraysize - _FPIO_CONST_OFFSET); |
| 532 | p.tmpsize = p.scalesize + |
| 533 | powers->arraysize - _FPIO_CONST_OFFSET; |
| 534 | if (cy == 0) |
| 535 | --p.tmpsize; |
| 536 | } |
| 537 | |
| 538 | if (MPN_GE (p.frac, p.tmp)) |
| 539 | { |
| 540 | int cnt; |
| 541 | MPN_ASSIGN (p.scale, p.tmp); |
| 542 | count_leading_zeros (cnt, p.scale[p.scalesize - 1]); |
| 543 | scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1; |
| 544 | exp10 |= 1 << explog; |
| 545 | } |
| 546 | } |
| 547 | --explog; |
| 548 | } |
| 549 | while (powers > &_fpioconst_pow10[0]); |
| 550 | p.exponent = exp10; |
| 551 | |
| 552 | /* Optimize number representations. We want to represent the numbers |
| 553 | with the lowest number of bytes possible without losing any |
| 554 | bytes. Also the highest bit in the scaling factor has to be set |
| 555 | (this is a requirement of the MPN division routines). */ |
| 556 | if (p.scalesize > 0) |
| 557 | { |
| 558 | /* Determine minimum number of zero bits at the end of |
| 559 | both numbers. */ |
| 560 | for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++) |
| 561 | ; |
| 562 | |
| 563 | /* Determine number of bits the scaling factor is misplaced. */ |
| 564 | count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]); |
| 565 | |
| 566 | if (cnt_h == 0) |
| 567 | { |
| 568 | /* The highest bit of the scaling factor is already set. So |
| 569 | we only have to remove the trailing empty limbs. */ |
| 570 | if (i > 0) |
| 571 | { |
| 572 | MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i); |
| 573 | p.scalesize -= i; |
| 574 | MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i); |
| 575 | p.fracsize -= i; |
| 576 | } |
| 577 | } |
| 578 | else |
| 579 | { |
| 580 | if (p.scale[i] != 0) |
| 581 | { |
| 582 | count_trailing_zeros (cnt_l, p.scale[i]); |
| 583 | if (p.frac[i] != 0) |
| 584 | { |
| 585 | int cnt_l2; |
| 586 | count_trailing_zeros (cnt_l2, p.frac[i]); |
| 587 | if (cnt_l2 < cnt_l) |
| 588 | cnt_l = cnt_l2; |
| 589 | } |
| 590 | } |
| 591 | else |
| 592 | count_trailing_zeros (cnt_l, p.frac[i]); |
| 593 | |
| 594 | /* Now shift the numbers to their optimal position. */ |
| 595 | if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l) |
| 596 | { |
| 597 | /* We cannot save any memory. So just roll both numbers |
| 598 | so that the scaling factor has its highest bit set. */ |
| 599 | |
| 600 | (void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h); |
| 601 | cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h); |
| 602 | if (cy != 0) |
| 603 | p.frac[p.fracsize++] = cy; |
| 604 | } |
| 605 | else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l) |
| 606 | { |
| 607 | /* We can save memory by removing the trailing zero limbs |
| 608 | and by packing the non-zero limbs which gain another |
| 609 | free one. */ |
| 610 | |
| 611 | (void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i, |
| 612 | BITS_PER_MP_LIMB - cnt_h); |
| 613 | p.scalesize -= i + 1; |
| 614 | (void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i, |
| 615 | BITS_PER_MP_LIMB - cnt_h); |
| 616 | p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i; |
| 617 | } |
| 618 | else |
| 619 | { |
| 620 | /* We can only save the memory of the limbs which are zero. |
| 621 | The non-zero parts occupy the same number of limbs. */ |
| 622 | |
| 623 | (void) __mpn_rshift (p.scale, p.scale + (i - 1), |
| 624 | p.scalesize - (i - 1), |
| 625 | BITS_PER_MP_LIMB - cnt_h); |
| 626 | p.scalesize -= i; |
| 627 | (void) __mpn_rshift (p.frac, p.frac + (i - 1), |
| 628 | p.fracsize - (i - 1), |
| 629 | BITS_PER_MP_LIMB - cnt_h); |
| 630 | p.fracsize -= |
| 631 | p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1; |
| 632 | } |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | else if (p.exponent < 0) |
| 637 | { |
| 638 | /* |FP| < 1.0. */ |
| 639 | int exp10 = 0; |
| 640 | int explog = LDBL_MAX_10_EXP_LOG; |
| 641 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
| 642 | |
| 643 | /* Now shift the input value to its right place. */ |
| 644 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift); |
| 645 | p.frac[p.fracsize++] = cy; |
| 646 | assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0)); |
| 647 | |
| 648 | p.expsign = 1; |
| 649 | p.exponent = -p.exponent; |
| 650 | |
| 651 | assert (powers != &_fpioconst_pow10[0]); |
| 652 | do |
| 653 | { |
| 654 | --powers; |
| 655 | |
| 656 | if (p.exponent >= powers->m_expo) |
| 657 | { |
| 658 | int i, incr, cnt_h, cnt_l; |
| 659 | mp_limb_t topval[2]; |
| 660 | |
| 661 | /* The __mpn_mul function expects the first argument to be |
| 662 | bigger than the second. */ |
| 663 | if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET) |
| 664 | cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff |
| 665 | + _FPIO_CONST_OFFSET], |
| 666 | powers->arraysize - _FPIO_CONST_OFFSET, |
| 667 | p.frac, p.fracsize); |
| 668 | else |
| 669 | cy = __mpn_mul (p.tmp, p.frac, p.fracsize, |
| 670 | &__tens[powers->arrayoff + _FPIO_CONST_OFFSET], |
| 671 | powers->arraysize - _FPIO_CONST_OFFSET); |
| 672 | p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET; |
| 673 | if (cy == 0) |
| 674 | --p.tmpsize; |
| 675 | |
| 676 | count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]); |
| 677 | incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB |
| 678 | + BITS_PER_MP_LIMB - 1 - cnt_h; |
| 679 | |
| 680 | assert (incr <= powers->p_expo); |
| 681 | |
| 682 | /* If we increased the p.exponent by exactly 3 we have to test |
| 683 | for overflow. This is done by comparing with 10 shifted |
| 684 | to the right position. */ |
| 685 | if (incr == p.exponent + 3) |
| 686 | { |
| 687 | if (cnt_h <= BITS_PER_MP_LIMB - 4) |
| 688 | { |
| 689 | topval[0] = 0; |
| 690 | topval[1] |
| 691 | = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h); |
| 692 | } |
| 693 | else |
| 694 | { |
| 695 | topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4); |
| 696 | topval[1] = 0; |
| 697 | (void) __mpn_lshift (topval, topval, 2, |
| 698 | BITS_PER_MP_LIMB - cnt_h); |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | /* We have to be careful when multiplying the last factor. |
| 703 | If the result is greater than 1.0 be have to test it |
| 704 | against 10.0. If it is greater or equal to 10.0 the |
| 705 | multiplication was not valid. This is because we cannot |
| 706 | determine the number of bits in the result in advance. */ |
| 707 | if (incr < p.exponent + 3 |
| 708 | || (incr == p.exponent + 3 && |
| 709 | (p.tmp[p.tmpsize - 1] < topval[1] |
| 710 | || (p.tmp[p.tmpsize - 1] == topval[1] |
| 711 | && p.tmp[p.tmpsize - 2] < topval[0])))) |
| 712 | { |
| 713 | /* The factor is right. Adapt binary and decimal |
| 714 | exponents. */ |
| 715 | p.exponent -= incr; |
| 716 | exp10 |= 1 << explog; |
| 717 | |
| 718 | /* If this factor yields a number greater or equal to |
| 719 | 1.0, we must not shift the non-fractional digits down. */ |
| 720 | if (p.exponent < 0) |
| 721 | cnt_h += -p.exponent; |
| 722 | |
| 723 | /* Now we optimize the number representation. */ |
| 724 | for (i = 0; p.tmp[i] == 0; ++i); |
| 725 | if (cnt_h == BITS_PER_MP_LIMB - 1) |
| 726 | { |
| 727 | MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i); |
| 728 | p.fracsize = p.tmpsize - i; |
| 729 | } |
| 730 | else |
| 731 | { |
| 732 | count_trailing_zeros (cnt_l, p.tmp[i]); |
| 733 | |
| 734 | /* Now shift the numbers to their optimal position. */ |
| 735 | if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l) |
| 736 | { |
| 737 | /* We cannot save any memory. Just roll the |
| 738 | number so that the leading digit is in a |
| 739 | separate limb. */ |
| 740 | |
| 741 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
| 742 | cnt_h + 1); |
| 743 | p.fracsize = p.tmpsize + 1; |
| 744 | p.frac[p.fracsize - 1] = cy; |
| 745 | } |
| 746 | else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l) |
| 747 | { |
| 748 | (void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i, |
| 749 | BITS_PER_MP_LIMB - 1 - cnt_h); |
| 750 | p.fracsize = p.tmpsize - i; |
| 751 | } |
| 752 | else |
| 753 | { |
| 754 | /* We can only save the memory of the limbs which |
| 755 | are zero. The non-zero parts occupy the same |
| 756 | number of limbs. */ |
| 757 | |
| 758 | (void) __mpn_rshift (p.frac, p.tmp + (i - 1), |
| 759 | p.tmpsize - (i - 1), |
| 760 | BITS_PER_MP_LIMB - 1 - cnt_h); |
| 761 | p.fracsize = p.tmpsize - (i - 1); |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | --explog; |
| 767 | } |
| 768 | while (powers != &_fpioconst_pow10[1] && p.exponent > 0); |
| 769 | /* All factors but 10^-1 are tested now. */ |
| 770 | if (p.exponent > 0) |
| 771 | { |
| 772 | int cnt_l; |
| 773 | |
| 774 | cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10); |
| 775 | p.tmpsize = p.fracsize; |
| 776 | assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20); |
| 777 | |
| 778 | count_trailing_zeros (cnt_l, p.tmp[0]); |
| 779 | if (cnt_l < MIN (4, p.exponent)) |
| 780 | { |
| 781 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
| 782 | BITS_PER_MP_LIMB - MIN (4, p.exponent)); |
| 783 | if (cy != 0) |
| 784 | p.frac[p.tmpsize++] = cy; |
| 785 | } |
| 786 | else |
| 787 | (void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent)); |
| 788 | p.fracsize = p.tmpsize; |
| 789 | exp10 |= 1; |
| 790 | assert (p.frac[p.fracsize - 1] < 10); |
| 791 | } |
| 792 | p.exponent = exp10; |
| 793 | } |
| 794 | else |
| 795 | { |
| 796 | /* This is a special case. We don't need a factor because the |
| 797 | numbers are in the range of 1.0 <= |fp| < 8.0. We simply |
| 798 | shift it to the right place and divide it by 1.0 to get the |
| 799 | leading digit. (Of course this division is not really made.) */ |
| 800 | assert (0 <= p.exponent && p.exponent < 3 && |
| 801 | p.exponent + to_shift < BITS_PER_MP_LIMB); |
| 802 | |
| 803 | /* Now shift the input value to its right place. */ |
| 804 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift)); |
| 805 | p.frac[p.fracsize++] = cy; |
| 806 | p.exponent = 0; |
| 807 | } |
| 808 | |
| 809 | { |
| 810 | int width = info->width; |
| 811 | wchar_t *wstartp, *wcp; |
| 812 | size_t chars_needed; |
| 813 | int expscale; |
| 814 | int intdig_max, intdig_no = 0; |
| 815 | int fracdig_min; |
| 816 | int fracdig_max; |
| 817 | int dig_max; |
| 818 | int significant; |
| 819 | int ngroups = 0; |
| 820 | char spec = _tolower (info->spec); |
| 821 | |
| 822 | if (spec == 'e') |
| 823 | { |
| 824 | p.type = info->spec; |
| 825 | intdig_max = 1; |
| 826 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
| 827 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
| 828 | /* d . ddd e +- ddd */ |
| 829 | dig_max = INT_MAX; /* Unlimited. */ |
| 830 | significant = 1; /* Does not matter here. */ |
| 831 | } |
| 832 | else if (spec == 'f') |
| 833 | { |
| 834 | p.type = 'f'; |
| 835 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
| 836 | dig_max = INT_MAX; /* Unlimited. */ |
| 837 | significant = 1; /* Does not matter here. */ |
| 838 | if (p.expsign == 0) |
| 839 | { |
| 840 | intdig_max = p.exponent + 1; |
| 841 | /* This can be really big! */ /* XXX Maybe malloc if too big? */ |
| 842 | chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max; |
| 843 | } |
| 844 | else |
| 845 | { |
| 846 | intdig_max = 1; |
| 847 | chars_needed = 1 + 1 + (size_t) fracdig_max; |
| 848 | } |
| 849 | } |
| 850 | else |
| 851 | { |
| 852 | dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec); |
| 853 | if ((p.expsign == 0 && p.exponent >= dig_max) |
| 854 | || (p.expsign != 0 && p.exponent > 4)) |
| 855 | { |
| 856 | if ('g' - 'G' == 'e' - 'E') |
| 857 | p.type = 'E' + (info->spec - 'G'); |
| 858 | else |
| 859 | p.type = isupper (info->spec) ? 'E' : 'e'; |
| 860 | fracdig_max = dig_max - 1; |
| 861 | intdig_max = 1; |
| 862 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
| 863 | } |
| 864 | else |
| 865 | { |
| 866 | p.type = 'f'; |
| 867 | intdig_max = p.expsign == 0 ? p.exponent + 1 : 0; |
| 868 | fracdig_max = dig_max - intdig_max; |
| 869 | /* We need space for the significant digits and perhaps |
| 870 | for leading zeros when < 1.0. The number of leading |
| 871 | zeros can be as many as would be required for |
| 872 | exponential notation with a negative two-digit |
| 873 | p.exponent, which is 4. */ |
| 874 | chars_needed = (size_t) dig_max + 1 + 4; |
| 875 | } |
| 876 | fracdig_min = info->alt ? fracdig_max : 0; |
| 877 | significant = 0; /* We count significant digits. */ |
| 878 | } |
| 879 | |
| 880 | if (grouping) |
| 881 | { |
| 882 | /* Guess the number of groups we will make, and thus how |
| 883 | many spaces we need for separator characters. */ |
| 884 | ngroups = __guess_grouping (intdig_max, grouping); |
| 885 | /* Allocate one more character in case rounding increases the |
| 886 | number of groups. */ |
| 887 | chars_needed += ngroups + 1; |
| 888 | } |
| 889 | |
| 890 | /* Allocate buffer for output. We need two more because while rounding |
| 891 | it is possible that we need two more characters in front of all the |
| 892 | other output. If the amount of memory we have to allocate is too |
| 893 | large use `malloc' instead of `alloca'. */ |
| 894 | if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2 |
| 895 | || chars_needed < fracdig_max, 0)) |
| 896 | { |
| 897 | /* Some overflow occurred. */ |
| 898 | __set_errno (ERANGE); |
| 899 | return -1; |
| 900 | } |
| 901 | size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t); |
| 902 | buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc); |
| 903 | if (__builtin_expect (buffer_malloced, 0)) |
| 904 | { |
| 905 | wbuffer = (wchar_t *) malloc (wbuffer_to_alloc); |
| 906 | if (wbuffer == NULL) |
| 907 | /* Signal an error to the caller. */ |
| 908 | return -1; |
| 909 | } |
| 910 | else |
| 911 | wbuffer = (wchar_t *) alloca (wbuffer_to_alloc); |
| 912 | wcp = wstartp = wbuffer + 2; /* Let room for rounding. */ |
| 913 | |
| 914 | /* Do the real work: put digits in allocated buffer. */ |
| 915 | if (p.expsign == 0 || p.type != 'f') |
| 916 | { |
| 917 | assert (p.expsign == 0 || intdig_max == 1); |
| 918 | while (intdig_no < intdig_max) |
| 919 | { |
| 920 | ++intdig_no; |
| 921 | *wcp++ = hack_digit (&p); |
| 922 | } |
| 923 | significant = 1; |
| 924 | if (info->alt |
| 925 | || fracdig_min > 0 |
| 926 | || (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0))) |
| 927 | *wcp++ = decimalwc; |
| 928 | } |
| 929 | else |
| 930 | { |
| 931 | /* |fp| < 1.0 and the selected p.type is 'f', so put "0." |
| 932 | in the buffer. */ |
| 933 | *wcp++ = L'0'; |
| 934 | --p.exponent; |
| 935 | *wcp++ = decimalwc; |
| 936 | } |
| 937 | |
| 938 | /* Generate the needed number of fractional digits. */ |
| 939 | int fracdig_no = 0; |
| 940 | int added_zeros = 0; |
| 941 | while (fracdig_no < fracdig_min + added_zeros |
| 942 | || (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0))) |
| 943 | { |
| 944 | ++fracdig_no; |
| 945 | *wcp = hack_digit (&p); |
| 946 | if (*wcp++ != L'0') |
| 947 | significant = 1; |
| 948 | else if (significant == 0) |
| 949 | { |
| 950 | ++fracdig_max; |
| 951 | if (fracdig_min > 0) |
| 952 | ++added_zeros; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | /* Do rounding. */ |
| 957 | wchar_t last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2]; |
| 958 | wchar_t next_digit = hack_digit (&p); |
| 959 | bool more_bits; |
| 960 | if (next_digit != L'0' && next_digit != L'5') |
| 961 | more_bits = true; |
| 962 | else if (p.fracsize == 1 && p.frac[0] == 0) |
| 963 | /* Rest of the number is zero. */ |
| 964 | more_bits = false; |
| 965 | else if (p.scalesize == 0) |
| 966 | { |
| 967 | /* Here we have to see whether all limbs are zero since no |
| 968 | normalization happened. */ |
| 969 | size_t lcnt = p.fracsize; |
| 970 | while (lcnt >= 1 && p.frac[lcnt - 1] == 0) |
| 971 | --lcnt; |
| 972 | more_bits = lcnt > 0; |
| 973 | } |
| 974 | else |
| 975 | more_bits = true; |
| 976 | int rounding_mode = get_rounding_mode (); |
| 977 | if (round_away (is_neg, (last_digit - L'0') & 1, next_digit >= L'5', |
| 978 | more_bits, rounding_mode)) |
| 979 | { |
| 980 | wchar_t *wtp = wcp; |
| 981 | |
| 982 | if (fracdig_no > 0) |
| 983 | { |
| 984 | /* Process fractional digits. Terminate if not rounded or |
| 985 | radix character is reached. */ |
| 986 | int removed = 0; |
| 987 | while (*--wtp != decimalwc && *wtp == L'9') |
| 988 | { |
| 989 | *wtp = L'0'; |
| 990 | ++removed; |
| 991 | } |
| 992 | if (removed == fracdig_min && added_zeros > 0) |
| 993 | --added_zeros; |
| 994 | if (*wtp != decimalwc) |
| 995 | /* Round up. */ |
| 996 | (*wtp)++; |
| 997 | else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt |
| 998 | && wtp == wstartp + 1 |
| 999 | && wstartp[0] == L'0', |
| 1000 | 0)) |
| 1001 | /* This is a special case: the rounded number is 1.0, |
| 1002 | the format is 'g' or 'G', and the alternative format |
| 1003 | is selected. This means the result must be "1.". */ |
| 1004 | --added_zeros; |
| 1005 | } |
| 1006 | |
| 1007 | if (fracdig_no == 0 || *wtp == decimalwc) |
| 1008 | { |
| 1009 | /* Round the integer digits. */ |
| 1010 | if (*(wtp - 1) == decimalwc) |
| 1011 | --wtp; |
| 1012 | |
| 1013 | while (--wtp >= wstartp && *wtp == L'9') |
| 1014 | *wtp = L'0'; |
| 1015 | |
| 1016 | if (wtp >= wstartp) |
| 1017 | /* Round up. */ |
| 1018 | (*wtp)++; |
| 1019 | else |
| 1020 | /* It is more critical. All digits were 9's. */ |
| 1021 | { |
| 1022 | if (p.type != 'f') |
| 1023 | { |
| 1024 | *wstartp = '1'; |
| 1025 | p.exponent += p.expsign == 0 ? 1 : -1; |
| 1026 | |
| 1027 | /* The above p.exponent adjustment could lead to 1.0e-00, |
| 1028 | e.g. for 0.999999999. Make sure p.exponent 0 always |
| 1029 | uses + sign. */ |
| 1030 | if (p.exponent == 0) |
| 1031 | p.expsign = 0; |
| 1032 | } |
| 1033 | else if (intdig_no == dig_max) |
| 1034 | { |
| 1035 | /* This is the case where for p.type %g the number fits |
| 1036 | really in the range for %f output but after rounding |
| 1037 | the number of digits is too big. */ |
| 1038 | *--wstartp = decimalwc; |
| 1039 | *--wstartp = L'1'; |
| 1040 | |
| 1041 | if (info->alt || fracdig_no > 0) |
| 1042 | { |
| 1043 | /* Overwrite the old radix character. */ |
| 1044 | wstartp[intdig_no + 2] = L'0'; |
| 1045 | ++fracdig_no; |
| 1046 | } |
| 1047 | |
| 1048 | fracdig_no += intdig_no; |
| 1049 | intdig_no = 1; |
| 1050 | fracdig_max = intdig_max - intdig_no; |
| 1051 | ++p.exponent; |
| 1052 | /* Now we must print the p.exponent. */ |
| 1053 | p.type = isupper (info->spec) ? 'E' : 'e'; |
| 1054 | } |
| 1055 | else |
| 1056 | { |
| 1057 | /* We can simply add another another digit before the |
| 1058 | radix. */ |
| 1059 | *--wstartp = L'1'; |
| 1060 | ++intdig_no; |
| 1061 | } |
| 1062 | |
| 1063 | /* While rounding the number of digits can change. |
| 1064 | If the number now exceeds the limits remove some |
| 1065 | fractional digits. */ |
| 1066 | if (intdig_no + fracdig_no > dig_max) |
| 1067 | { |
| 1068 | wcp -= intdig_no + fracdig_no - dig_max; |
| 1069 | fracdig_no -= intdig_no + fracdig_no - dig_max; |
| 1070 | } |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | /* Now remove unnecessary '0' at the end of the string. */ |
| 1076 | while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0') |
| 1077 | { |
| 1078 | --wcp; |
| 1079 | --fracdig_no; |
| 1080 | } |
| 1081 | /* If we eliminate all fractional digits we perhaps also can remove |
| 1082 | the radix character. */ |
| 1083 | if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc) |
| 1084 | --wcp; |
| 1085 | |
| 1086 | if (grouping) |
| 1087 | { |
| 1088 | /* Rounding might have changed the number of groups. We allocated |
| 1089 | enough memory but we need here the correct number of groups. */ |
| 1090 | if (intdig_no != intdig_max) |
| 1091 | ngroups = __guess_grouping (intdig_no, grouping); |
| 1092 | |
| 1093 | /* Add in separator characters, overwriting the same buffer. */ |
| 1094 | wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc, |
| 1095 | ngroups); |
| 1096 | } |
| 1097 | |
| 1098 | /* Write the p.exponent if it is needed. */ |
| 1099 | if (p.type != 'f') |
| 1100 | { |
| 1101 | if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g')) |
| 1102 | { |
| 1103 | /* This is another special case. The p.exponent of the number is |
| 1104 | really smaller than -4, which requires the 'e'/'E' format. |
| 1105 | But after rounding the number has an p.exponent of -4. */ |
| 1106 | assert (wcp >= wstartp + 1); |
| 1107 | assert (wstartp[0] == L'1'); |
| 1108 | __wmemcpy (wstartp, L"0.0001", 6); |
| 1109 | wstartp[1] = decimalwc; |
| 1110 | if (wcp >= wstartp + 2) |
| 1111 | { |
| 1112 | __wmemset (wstartp + 6, L'0', wcp - (wstartp + 2)); |
| 1113 | wcp += 4; |
| 1114 | } |
| 1115 | else |
| 1116 | wcp += 5; |
| 1117 | } |
| 1118 | else |
| 1119 | { |
| 1120 | *wcp++ = (wchar_t) p.type; |
| 1121 | *wcp++ = p.expsign ? L'-' : L'+'; |
| 1122 | |
| 1123 | /* Find the magnitude of the p.exponent. */ |
| 1124 | expscale = 10; |
| 1125 | while (expscale <= p.exponent) |
| 1126 | expscale *= 10; |
| 1127 | |
| 1128 | if (p.exponent < 10) |
| 1129 | /* Exponent always has at least two digits. */ |
| 1130 | *wcp++ = L'0'; |
| 1131 | else |
| 1132 | do |
| 1133 | { |
| 1134 | expscale /= 10; |
| 1135 | *wcp++ = L'0' + (p.exponent / expscale); |
| 1136 | p.exponent %= expscale; |
| 1137 | } |
| 1138 | while (expscale > 10); |
| 1139 | *wcp++ = L'0' + p.exponent; |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /* Compute number of characters which must be filled with the padding |
| 1144 | character. */ |
| 1145 | if (is_neg || info->showsign || info->space) |
| 1146 | --width; |
| 1147 | width -= wcp - wstartp; |
| 1148 | |
| 1149 | if (!info->left && info->pad != '0' && width > 0) |
| 1150 | PADN (info->pad, width); |
| 1151 | |
| 1152 | if (is_neg) |
| 1153 | outchar ('-'); |
| 1154 | else if (info->showsign) |
| 1155 | outchar ('+'); |
| 1156 | else if (info->space) |
| 1157 | outchar (' '); |
| 1158 | |
| 1159 | if (!info->left && info->pad == '0' && width > 0) |
| 1160 | PADN ('0', width); |
| 1161 | |
| 1162 | { |
| 1163 | char *buffer = NULL; |
| 1164 | char *buffer_end = NULL; |
| 1165 | char *cp = NULL; |
| 1166 | char *tmpptr; |
| 1167 | |
| 1168 | if (! wide) |
| 1169 | { |
| 1170 | /* Create the single byte string. */ |
| 1171 | size_t decimal_len; |
| 1172 | size_t thousands_sep_len; |
| 1173 | wchar_t *copywc; |
| 1174 | size_t factor = (info->i18n |
| 1175 | ? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX) |
| 1176 | : 1); |
| 1177 | |
| 1178 | decimal_len = strlen (decimal); |
| 1179 | |
| 1180 | if (thousands_sep == NULL) |
| 1181 | thousands_sep_len = 0; |
| 1182 | else |
| 1183 | thousands_sep_len = strlen (thousands_sep); |
| 1184 | |
| 1185 | size_t nbuffer = (2 + chars_needed * factor + decimal_len |
| 1186 | + ngroups * thousands_sep_len); |
| 1187 | if (__glibc_unlikely (buffer_malloced)) |
| 1188 | { |
| 1189 | buffer = (char *) malloc (nbuffer); |
| 1190 | if (buffer == NULL) |
| 1191 | { |
| 1192 | /* Signal an error to the caller. */ |
| 1193 | free (wbuffer); |
| 1194 | return -1; |
| 1195 | } |
| 1196 | } |
| 1197 | else |
| 1198 | buffer = (char *) alloca (nbuffer); |
| 1199 | buffer_end = buffer + nbuffer; |
| 1200 | |
| 1201 | /* Now copy the wide character string. Since the character |
| 1202 | (except for the decimal point and thousands separator) must |
| 1203 | be coming from the ASCII range we can esily convert the |
| 1204 | string without mapping tables. */ |
| 1205 | for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc) |
| 1206 | if (*copywc == decimalwc) |
| 1207 | cp = (char *) __mempcpy (cp, decimal, decimal_len); |
| 1208 | else if (*copywc == thousands_sepwc) |
| 1209 | cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len); |
| 1210 | else |
| 1211 | *cp++ = (char) *copywc; |
| 1212 | } |
| 1213 | |
| 1214 | tmpptr = buffer; |
| 1215 | if (__glibc_unlikely (info->i18n)) |
| 1216 | { |
| 1217 | #ifdef COMPILE_WPRINTF |
| 1218 | wstartp = _i18n_number_rewrite (wstartp, wcp, |
| 1219 | wbuffer + wbuffer_to_alloc); |
| 1220 | wcp = wbuffer + wbuffer_to_alloc; |
| 1221 | assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp); |
| 1222 | assert ((uintptr_t) wstartp |
| 1223 | < (uintptr_t) wbuffer + wbuffer_to_alloc); |
| 1224 | #else |
| 1225 | tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end); |
| 1226 | cp = buffer_end; |
| 1227 | assert ((uintptr_t) buffer <= (uintptr_t) tmpptr); |
| 1228 | assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end); |
| 1229 | #endif |
| 1230 | } |
| 1231 | |
| 1232 | PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr); |
| 1233 | |
| 1234 | /* Free the memory if necessary. */ |
| 1235 | if (__glibc_unlikely (buffer_malloced)) |
| 1236 | { |
| 1237 | free (buffer); |
| 1238 | free (wbuffer); |
| 1239 | } |
| 1240 | } |
| 1241 | |
| 1242 | if (info->left && width > 0) |
| 1243 | PADN (info->pad, width); |
| 1244 | } |
| 1245 | return done; |
| 1246 | } |
| 1247 | ldbl_hidden_def (___printf_fp, __printf_fp) |
| 1248 | ldbl_strong_alias (___printf_fp, __printf_fp) |
| 1249 | |
| 1250 | /* Return the number of extra grouping characters that will be inserted |
| 1251 | into a number with INTDIG_MAX integer digits. */ |
| 1252 | |
| 1253 | unsigned int |
| 1254 | __guess_grouping (unsigned int intdig_max, const char *grouping) |
| 1255 | { |
| 1256 | unsigned int groups; |
| 1257 | |
| 1258 | /* We treat all negative values like CHAR_MAX. */ |
| 1259 | |
| 1260 | if (*grouping == CHAR_MAX || *grouping <= 0) |
| 1261 | /* No grouping should be done. */ |
| 1262 | return 0; |
| 1263 | |
| 1264 | groups = 0; |
| 1265 | while (intdig_max > (unsigned int) *grouping) |
| 1266 | { |
| 1267 | ++groups; |
| 1268 | intdig_max -= *grouping++; |
| 1269 | |
| 1270 | if (*grouping == CHAR_MAX |
| 1271 | #if CHAR_MIN < 0 |
| 1272 | || *grouping < 0 |
| 1273 | #endif |
| 1274 | ) |
| 1275 | /* No more grouping should be done. */ |
| 1276 | break; |
| 1277 | else if (*grouping == 0) |
| 1278 | { |
| 1279 | /* Same grouping repeats. */ |
| 1280 | groups += (intdig_max - 1) / grouping[-1]; |
| 1281 | break; |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | return groups; |
| 1286 | } |
| 1287 | |
| 1288 | /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND). |
| 1289 | There is guaranteed enough space past BUFEND to extend it. |
| 1290 | Return the new end of buffer. */ |
| 1291 | |
| 1292 | static wchar_t * |
| 1293 | internal_function |
| 1294 | group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no, |
| 1295 | const char *grouping, wchar_t thousands_sep, int ngroups) |
| 1296 | { |
| 1297 | wchar_t *p; |
| 1298 | |
| 1299 | if (ngroups == 0) |
| 1300 | return bufend; |
| 1301 | |
| 1302 | /* Move the fractional part down. */ |
| 1303 | __wmemmove (buf + intdig_no + ngroups, buf + intdig_no, |
| 1304 | bufend - (buf + intdig_no)); |
| 1305 | |
| 1306 | p = buf + intdig_no + ngroups - 1; |
| 1307 | do |
| 1308 | { |
| 1309 | unsigned int len = *grouping++; |
| 1310 | do |
| 1311 | *p-- = buf[--intdig_no]; |
| 1312 | while (--len > 0); |
| 1313 | *p-- = thousands_sep; |
| 1314 | |
| 1315 | if (*grouping == CHAR_MAX |
| 1316 | #if CHAR_MIN < 0 |
| 1317 | || *grouping < 0 |
| 1318 | #endif |
| 1319 | ) |
| 1320 | /* No more grouping should be done. */ |
| 1321 | break; |
| 1322 | else if (*grouping == 0) |
| 1323 | /* Same grouping repeats. */ |
| 1324 | --grouping; |
| 1325 | } while (intdig_no > (unsigned int) *grouping); |
| 1326 | |
| 1327 | /* Copy the remaining ungrouped digits. */ |
| 1328 | do |
| 1329 | *p-- = buf[--intdig_no]; |
| 1330 | while (p > buf); |
| 1331 | |
| 1332 | return bufend + ngroups; |
| 1333 | } |