xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* mpn_mul_n -- Multiply two natural numbers of length n. |
| 2 | |
| 3 | Copyright (C) 1991-2016 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of the GNU MP Library. |
| 6 | |
| 7 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU Lesser General Public License as published by |
| 9 | the Free Software Foundation; either version 2.1 of the License, or (at your |
| 10 | option) any later version. |
| 11 | |
| 12 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 14 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
| 15 | License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU Lesser General Public License |
| 18 | along with the GNU MP Library; see the file COPYING.LIB. If not, see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include <gmp.h> |
| 22 | #include "gmp-impl.h" |
| 23 | |
| 24 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), |
| 25 | both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are |
| 26 | always stored. Return the most significant limb. |
| 27 | |
| 28 | Argument constraints: |
| 29 | 1. PRODP != UP and PRODP != VP, i.e. the destination |
| 30 | must be distinct from the multiplier and the multiplicand. */ |
| 31 | |
| 32 | /* If KARATSUBA_THRESHOLD is not already defined, define it to a |
| 33 | value which is good on most machines. */ |
| 34 | #ifndef KARATSUBA_THRESHOLD |
| 35 | #define KARATSUBA_THRESHOLD 32 |
| 36 | #endif |
| 37 | |
| 38 | /* The code can't handle KARATSUBA_THRESHOLD smaller than 2. */ |
| 39 | #if KARATSUBA_THRESHOLD < 2 |
| 40 | #undef KARATSUBA_THRESHOLD |
| 41 | #define KARATSUBA_THRESHOLD 2 |
| 42 | #endif |
| 43 | |
| 44 | /* Handle simple cases with traditional multiplication. |
| 45 | |
| 46 | This is the most critical code of multiplication. All multiplies rely |
| 47 | on this, both small and huge. Small ones arrive here immediately. Huge |
| 48 | ones arrive here as this is the base case for Karatsuba's recursive |
| 49 | algorithm below. */ |
| 50 | |
| 51 | void |
| 52 | impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) |
| 53 | { |
| 54 | mp_size_t i; |
| 55 | mp_limb_t cy_limb; |
| 56 | mp_limb_t v_limb; |
| 57 | |
| 58 | /* Multiply by the first limb in V separately, as the result can be |
| 59 | stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| 60 | v_limb = vp[0]; |
| 61 | if (v_limb <= 1) |
| 62 | { |
| 63 | if (v_limb == 1) |
| 64 | MPN_COPY (prodp, up, size); |
| 65 | else |
| 66 | MPN_ZERO (prodp, size); |
| 67 | cy_limb = 0; |
| 68 | } |
| 69 | else |
| 70 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); |
| 71 | |
| 72 | prodp[size] = cy_limb; |
| 73 | prodp++; |
| 74 | |
| 75 | /* For each iteration in the outer loop, multiply one limb from |
| 76 | U with one limb from V, and add it to PROD. */ |
| 77 | for (i = 1; i < size; i++) |
| 78 | { |
| 79 | v_limb = vp[i]; |
| 80 | if (v_limb <= 1) |
| 81 | { |
| 82 | cy_limb = 0; |
| 83 | if (v_limb == 1) |
| 84 | cy_limb = mpn_add_n (prodp, prodp, up, size); |
| 85 | } |
| 86 | else |
| 87 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); |
| 88 | |
| 89 | prodp[size] = cy_limb; |
| 90 | prodp++; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void |
| 95 | impn_mul_n (mp_ptr prodp, |
| 96 | mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace) |
| 97 | { |
| 98 | if ((size & 1) != 0) |
| 99 | { |
| 100 | /* The size is odd, the code code below doesn't handle that. |
| 101 | Multiply the least significant (size - 1) limbs with a recursive |
| 102 | call, and handle the most significant limb of S1 and S2 |
| 103 | separately. */ |
| 104 | /* A slightly faster way to do this would be to make the Karatsuba |
| 105 | code below behave as if the size were even, and let it check for |
| 106 | odd size in the end. I.e., in essence move this code to the end. |
| 107 | Doing so would save us a recursive call, and potentially make the |
| 108 | stack grow a lot less. */ |
| 109 | |
| 110 | mp_size_t esize = size - 1; /* even size */ |
| 111 | mp_limb_t cy_limb; |
| 112 | |
| 113 | MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace); |
| 114 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]); |
| 115 | prodp[esize + esize] = cy_limb; |
| 116 | cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]); |
| 117 | |
| 118 | prodp[esize + size] = cy_limb; |
| 119 | } |
| 120 | else |
| 121 | { |
| 122 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. |
| 123 | |
| 124 | Split U in two pieces, U1 and U0, such that |
| 125 | U = U0 + U1*(B**n), |
| 126 | and V in V1 and V0, such that |
| 127 | V = V0 + V1*(B**n). |
| 128 | |
| 129 | UV is then computed recursively using the identity |
| 130 | |
| 131 | 2n n n n |
| 132 | UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V |
| 133 | 1 1 1 0 0 1 0 0 |
| 134 | |
| 135 | Where B = 2**BITS_PER_MP_LIMB. */ |
| 136 | |
| 137 | mp_size_t hsize = size >> 1; |
| 138 | mp_limb_t cy; |
| 139 | int negflg; |
| 140 | |
| 141 | /*** Product H. ________________ ________________ |
| 142 | |_____U1 x V1____||____U0 x V0_____| */ |
| 143 | /* Put result in upper part of PROD and pass low part of TSPACE |
| 144 | as new TSPACE. */ |
| 145 | MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace); |
| 146 | |
| 147 | /*** Product M. ________________ |
| 148 | |_(U1-U0)(V0-V1)_| */ |
| 149 | if (mpn_cmp (up + hsize, up, hsize) >= 0) |
| 150 | { |
| 151 | mpn_sub_n (prodp, up + hsize, up, hsize); |
| 152 | negflg = 0; |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | mpn_sub_n (prodp, up, up + hsize, hsize); |
| 157 | negflg = 1; |
| 158 | } |
| 159 | if (mpn_cmp (vp + hsize, vp, hsize) >= 0) |
| 160 | { |
| 161 | mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize); |
| 162 | negflg ^= 1; |
| 163 | } |
| 164 | else |
| 165 | { |
| 166 | mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize); |
| 167 | /* No change of NEGFLG. */ |
| 168 | } |
| 169 | /* Read temporary operands from low part of PROD. |
| 170 | Put result in low part of TSPACE using upper part of TSPACE |
| 171 | as new TSPACE. */ |
| 172 | MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size); |
| 173 | |
| 174 | /*** Add/copy product H. */ |
| 175 | MPN_COPY (prodp + hsize, prodp + size, hsize); |
| 176 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); |
| 177 | |
| 178 | /*** Add product M (if NEGFLG M is a negative number). */ |
| 179 | if (negflg) |
| 180 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); |
| 181 | else |
| 182 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
| 183 | |
| 184 | /*** Product L. ________________ ________________ |
| 185 | |________________||____U0 x V0_____| */ |
| 186 | /* Read temporary operands from low part of PROD. |
| 187 | Put result in low part of TSPACE using upper part of TSPACE |
| 188 | as new TSPACE. */ |
| 189 | MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size); |
| 190 | |
| 191 | /*** Add/copy Product L (twice). */ |
| 192 | |
| 193 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
| 194 | if (cy) |
| 195 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); |
| 196 | |
| 197 | MPN_COPY (prodp, tspace, hsize); |
| 198 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
| 199 | if (cy) |
| 200 | mpn_add_1 (prodp + size, prodp + size, size, 1); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | void |
| 205 | impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size) |
| 206 | { |
| 207 | mp_size_t i; |
| 208 | mp_limb_t cy_limb; |
| 209 | mp_limb_t v_limb; |
| 210 | |
| 211 | /* Multiply by the first limb in V separately, as the result can be |
| 212 | stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| 213 | v_limb = up[0]; |
| 214 | if (v_limb <= 1) |
| 215 | { |
| 216 | if (v_limb == 1) |
| 217 | MPN_COPY (prodp, up, size); |
| 218 | else |
| 219 | MPN_ZERO (prodp, size); |
| 220 | cy_limb = 0; |
| 221 | } |
| 222 | else |
| 223 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); |
| 224 | |
| 225 | prodp[size] = cy_limb; |
| 226 | prodp++; |
| 227 | |
| 228 | /* For each iteration in the outer loop, multiply one limb from |
| 229 | U with one limb from V, and add it to PROD. */ |
| 230 | for (i = 1; i < size; i++) |
| 231 | { |
| 232 | v_limb = up[i]; |
| 233 | if (v_limb <= 1) |
| 234 | { |
| 235 | cy_limb = 0; |
| 236 | if (v_limb == 1) |
| 237 | cy_limb = mpn_add_n (prodp, prodp, up, size); |
| 238 | } |
| 239 | else |
| 240 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); |
| 241 | |
| 242 | prodp[size] = cy_limb; |
| 243 | prodp++; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | void |
| 248 | impn_sqr_n (mp_ptr prodp, |
| 249 | mp_srcptr up, mp_size_t size, mp_ptr tspace) |
| 250 | { |
| 251 | if ((size & 1) != 0) |
| 252 | { |
| 253 | /* The size is odd, the code code below doesn't handle that. |
| 254 | Multiply the least significant (size - 1) limbs with a recursive |
| 255 | call, and handle the most significant limb of S1 and S2 |
| 256 | separately. */ |
| 257 | /* A slightly faster way to do this would be to make the Karatsuba |
| 258 | code below behave as if the size were even, and let it check for |
| 259 | odd size in the end. I.e., in essence move this code to the end. |
| 260 | Doing so would save us a recursive call, and potentially make the |
| 261 | stack grow a lot less. */ |
| 262 | |
| 263 | mp_size_t esize = size - 1; /* even size */ |
| 264 | mp_limb_t cy_limb; |
| 265 | |
| 266 | MPN_SQR_N_RECURSE (prodp, up, esize, tspace); |
| 267 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]); |
| 268 | prodp[esize + esize] = cy_limb; |
| 269 | cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]); |
| 270 | |
| 271 | prodp[esize + size] = cy_limb; |
| 272 | } |
| 273 | else |
| 274 | { |
| 275 | mp_size_t hsize = size >> 1; |
| 276 | mp_limb_t cy; |
| 277 | |
| 278 | /*** Product H. ________________ ________________ |
| 279 | |_____U1 x U1____||____U0 x U0_____| */ |
| 280 | /* Put result in upper part of PROD and pass low part of TSPACE |
| 281 | as new TSPACE. */ |
| 282 | MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace); |
| 283 | |
| 284 | /*** Product M. ________________ |
| 285 | |_(U1-U0)(U0-U1)_| */ |
| 286 | if (mpn_cmp (up + hsize, up, hsize) >= 0) |
| 287 | { |
| 288 | mpn_sub_n (prodp, up + hsize, up, hsize); |
| 289 | } |
| 290 | else |
| 291 | { |
| 292 | mpn_sub_n (prodp, up, up + hsize, hsize); |
| 293 | } |
| 294 | |
| 295 | /* Read temporary operands from low part of PROD. |
| 296 | Put result in low part of TSPACE using upper part of TSPACE |
| 297 | as new TSPACE. */ |
| 298 | MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size); |
| 299 | |
| 300 | /*** Add/copy product H. */ |
| 301 | MPN_COPY (prodp + hsize, prodp + size, hsize); |
| 302 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); |
| 303 | |
| 304 | /*** Add product M (if NEGFLG M is a negative number). */ |
| 305 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); |
| 306 | |
| 307 | /*** Product L. ________________ ________________ |
| 308 | |________________||____U0 x U0_____| */ |
| 309 | /* Read temporary operands from low part of PROD. |
| 310 | Put result in low part of TSPACE using upper part of TSPACE |
| 311 | as new TSPACE. */ |
| 312 | MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); |
| 313 | |
| 314 | /*** Add/copy Product L (twice). */ |
| 315 | |
| 316 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
| 317 | if (cy) |
| 318 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); |
| 319 | |
| 320 | MPN_COPY (prodp, tspace, hsize); |
| 321 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
| 322 | if (cy) |
| 323 | mpn_add_1 (prodp + size, prodp + size, size, 1); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | /* This should be made into an inline function in gmp.h. */ |
| 328 | void |
| 329 | mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) |
| 330 | { |
| 331 | TMP_DECL (marker); |
| 332 | TMP_MARK (marker); |
| 333 | if (up == vp) |
| 334 | { |
| 335 | if (size < KARATSUBA_THRESHOLD) |
| 336 | { |
| 337 | impn_sqr_n_basecase (prodp, up, size); |
| 338 | } |
| 339 | else |
| 340 | { |
| 341 | mp_ptr tspace; |
| 342 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); |
| 343 | impn_sqr_n (prodp, up, size, tspace); |
| 344 | } |
| 345 | } |
| 346 | else |
| 347 | { |
| 348 | if (size < KARATSUBA_THRESHOLD) |
| 349 | { |
| 350 | impn_mul_n_basecase (prodp, up, vp, size); |
| 351 | } |
| 352 | else |
| 353 | { |
| 354 | mp_ptr tspace; |
| 355 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); |
| 356 | impn_mul_n (prodp, up, vp, size, tspace); |
| 357 | } |
| 358 | } |
| 359 | TMP_FREE (marker); |
| 360 | } |