xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* Byte-wise substring search, using the Two-Way algorithm. |
| 2 | Copyright (C) 2008-2016 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Written by Eric Blake <ebb9@byu.net>, 2008. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | /* Before including this file, you need to include <string.h> (and |
| 21 | <config.h> before that, if not part of libc), and define: |
| 22 | RETURN_TYPE A macro that expands to the return type. |
| 23 | AVAILABLE(h, h_l, j, n_l) |
| 24 | A macro that returns nonzero if there are |
| 25 | at least N_L bytes left starting at H[J]. |
| 26 | H is 'unsigned char *', H_L, J, and N_L |
| 27 | are 'size_t'; H_L is an lvalue. For |
| 28 | NUL-terminated searches, H_L can be |
| 29 | modified each iteration to avoid having |
| 30 | to compute the end of H up front. |
| 31 | |
| 32 | For case-insensitivity, you may optionally define: |
| 33 | CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L |
| 34 | characters of P1 and P2 are equal. |
| 35 | CANON_ELEMENT(c) A macro that canonicalizes an element right after |
| 36 | it has been fetched from one of the two strings. |
| 37 | The argument is an 'unsigned char'; the result |
| 38 | must be an 'unsigned char' as well. |
| 39 | |
| 40 | Other macros you may optionally define: |
| 41 | RET0_IF_0(a) Documented below at default definition. |
| 42 | CHECK_EOL Same. |
| 43 | |
| 44 | This file undefines the macros listed above, and defines |
| 45 | LONG_NEEDLE_THRESHOLD. |
| 46 | */ |
| 47 | |
| 48 | #include <limits.h> |
| 49 | #include <stdint.h> |
| 50 | #include <sys/param.h> /* Defines MAX. */ |
| 51 | |
| 52 | /* We use the Two-Way string matching algorithm, which guarantees |
| 53 | linear complexity with constant space. Additionally, for long |
| 54 | needles, we also use a bad character shift table similar to the |
| 55 | Boyer-Moore algorithm to achieve improved (potentially sub-linear) |
| 56 | performance. |
| 57 | |
| 58 | See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260 |
| 59 | and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm |
| 60 | */ |
| 61 | |
| 62 | /* Point at which computing a bad-byte shift table is likely to be |
| 63 | worthwhile. Small needles should not compute a table, since it |
| 64 | adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a |
| 65 | speedup no greater than a factor of NEEDLE_LEN. The larger the |
| 66 | needle, the better the potential performance gain. On the other |
| 67 | hand, on non-POSIX systems with CHAR_BIT larger than eight, the |
| 68 | memory required for the table is prohibitive. */ |
| 69 | #if CHAR_BIT < 10 |
| 70 | # define LONG_NEEDLE_THRESHOLD 32U |
| 71 | #else |
| 72 | # define LONG_NEEDLE_THRESHOLD SIZE_MAX |
| 73 | #endif |
| 74 | |
| 75 | #ifndef CANON_ELEMENT |
| 76 | # define CANON_ELEMENT(c) c |
| 77 | #endif |
| 78 | #ifndef CMP_FUNC |
| 79 | # define CMP_FUNC memcmp |
| 80 | #endif |
| 81 | |
| 82 | /* Check for end-of-line in strstr and strcasestr routines. |
| 83 | We piggy-back matching procedure for detecting EOL where possible, |
| 84 | and use AVAILABLE macro otherwise. */ |
| 85 | #ifndef CHECK_EOL |
| 86 | # define CHECK_EOL (0) |
| 87 | #endif |
| 88 | |
| 89 | /* Return NULL if argument is '\0'. */ |
| 90 | #ifndef RET0_IF_0 |
| 91 | # define RET0_IF_0(a) /* nothing */ |
| 92 | #endif |
| 93 | |
| 94 | /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN. |
| 95 | Return the index of the first byte in the right half, and set |
| 96 | *PERIOD to the global period of the right half. |
| 97 | |
| 98 | The global period of a string is the smallest index (possibly its |
| 99 | length) at which all remaining bytes in the string are repetitions |
| 100 | of the prefix (the last repetition may be a subset of the prefix). |
| 101 | |
| 102 | When NEEDLE is factored into two halves, a local period is the |
| 103 | length of the smallest word that shares a suffix with the left half |
| 104 | and shares a prefix with the right half. All factorizations of a |
| 105 | non-empty NEEDLE have a local period of at least 1 and no greater |
| 106 | than NEEDLE_LEN. |
| 107 | |
| 108 | A critical factorization has the property that the local period |
| 109 | equals the global period. All strings have at least one critical |
| 110 | factorization with the left half smaller than the global period. |
| 111 | |
| 112 | Given an ordered alphabet, a critical factorization can be computed |
| 113 | in linear time, with 2 * NEEDLE_LEN comparisons, by computing the |
| 114 | larger of two ordered maximal suffixes. The ordered maximal |
| 115 | suffixes are determined by lexicographic comparison of |
| 116 | periodicity. */ |
| 117 | static size_t |
| 118 | critical_factorization (const unsigned char *needle, size_t needle_len, |
| 119 | size_t *period) |
| 120 | { |
| 121 | /* Index of last byte of left half, or SIZE_MAX. */ |
| 122 | size_t max_suffix, max_suffix_rev; |
| 123 | size_t j; /* Index into NEEDLE for current candidate suffix. */ |
| 124 | size_t k; /* Offset into current period. */ |
| 125 | size_t p; /* Intermediate period. */ |
| 126 | unsigned char a, b; /* Current comparison bytes. */ |
| 127 | |
| 128 | /* Invariants: |
| 129 | 0 <= j < NEEDLE_LEN - 1 |
| 130 | -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed) |
| 131 | min(max_suffix, max_suffix_rev) < global period of NEEDLE |
| 132 | 1 <= p <= global period of NEEDLE |
| 133 | p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j] |
| 134 | 1 <= k <= p |
| 135 | */ |
| 136 | |
| 137 | /* Perform lexicographic search. */ |
| 138 | max_suffix = SIZE_MAX; |
| 139 | j = 0; |
| 140 | k = p = 1; |
| 141 | while (j + k < needle_len) |
| 142 | { |
| 143 | a = CANON_ELEMENT (needle[j + k]); |
| 144 | b = CANON_ELEMENT (needle[max_suffix + k]); |
| 145 | if (a < b) |
| 146 | { |
| 147 | /* Suffix is smaller, period is entire prefix so far. */ |
| 148 | j += k; |
| 149 | k = 1; |
| 150 | p = j - max_suffix; |
| 151 | } |
| 152 | else if (a == b) |
| 153 | { |
| 154 | /* Advance through repetition of the current period. */ |
| 155 | if (k != p) |
| 156 | ++k; |
| 157 | else |
| 158 | { |
| 159 | j += p; |
| 160 | k = 1; |
| 161 | } |
| 162 | } |
| 163 | else /* b < a */ |
| 164 | { |
| 165 | /* Suffix is larger, start over from current location. */ |
| 166 | max_suffix = j++; |
| 167 | k = p = 1; |
| 168 | } |
| 169 | } |
| 170 | *period = p; |
| 171 | |
| 172 | /* Perform reverse lexicographic search. */ |
| 173 | max_suffix_rev = SIZE_MAX; |
| 174 | j = 0; |
| 175 | k = p = 1; |
| 176 | while (j + k < needle_len) |
| 177 | { |
| 178 | a = CANON_ELEMENT (needle[j + k]); |
| 179 | b = CANON_ELEMENT (needle[max_suffix_rev + k]); |
| 180 | if (b < a) |
| 181 | { |
| 182 | /* Suffix is smaller, period is entire prefix so far. */ |
| 183 | j += k; |
| 184 | k = 1; |
| 185 | p = j - max_suffix_rev; |
| 186 | } |
| 187 | else if (a == b) |
| 188 | { |
| 189 | /* Advance through repetition of the current period. */ |
| 190 | if (k != p) |
| 191 | ++k; |
| 192 | else |
| 193 | { |
| 194 | j += p; |
| 195 | k = 1; |
| 196 | } |
| 197 | } |
| 198 | else /* a < b */ |
| 199 | { |
| 200 | /* Suffix is larger, start over from current location. */ |
| 201 | max_suffix_rev = j++; |
| 202 | k = p = 1; |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | /* Choose the longer suffix. Return the first byte of the right |
| 207 | half, rather than the last byte of the left half. */ |
| 208 | if (max_suffix_rev + 1 < max_suffix + 1) |
| 209 | return max_suffix + 1; |
| 210 | *period = p; |
| 211 | return max_suffix_rev + 1; |
| 212 | } |
| 213 | |
| 214 | /* Return the first location of non-empty NEEDLE within HAYSTACK, or |
| 215 | NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This |
| 216 | method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD. |
| 217 | Performance is guaranteed to be linear, with an initialization cost |
| 218 | of 2 * NEEDLE_LEN comparisons. |
| 219 | |
| 220 | If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at |
| 221 | most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. |
| 222 | If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 * |
| 223 | HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */ |
| 224 | static RETURN_TYPE |
| 225 | two_way_short_needle (const unsigned char *haystack, size_t haystack_len, |
| 226 | const unsigned char *needle, size_t needle_len) |
| 227 | { |
| 228 | size_t i; /* Index into current byte of NEEDLE. */ |
| 229 | size_t j; /* Index into current window of HAYSTACK. */ |
| 230 | size_t period; /* The period of the right half of needle. */ |
| 231 | size_t suffix; /* The index of the right half of needle. */ |
| 232 | |
| 233 | /* Factor the needle into two halves, such that the left half is |
| 234 | smaller than the global period, and the right half is |
| 235 | periodic (with a period as large as NEEDLE_LEN - suffix). */ |
| 236 | suffix = critical_factorization (needle, needle_len, &period); |
| 237 | |
| 238 | /* Perform the search. Each iteration compares the right half |
| 239 | first. */ |
| 240 | if (CMP_FUNC (needle, needle + period, suffix) == 0) |
| 241 | { |
| 242 | /* Entire needle is periodic; a mismatch can only advance by the |
| 243 | period, so use memory to avoid rescanning known occurrences |
| 244 | of the period. */ |
| 245 | size_t memory = 0; |
| 246 | j = 0; |
| 247 | while (AVAILABLE (haystack, haystack_len, j, needle_len)) |
| 248 | { |
| 249 | const unsigned char *pneedle; |
| 250 | const unsigned char *phaystack; |
| 251 | |
| 252 | /* Scan for matches in right half. */ |
| 253 | i = MAX (suffix, memory); |
| 254 | pneedle = &needle[i]; |
| 255 | phaystack = &haystack[i + j]; |
| 256 | while (i < needle_len && (CANON_ELEMENT (*pneedle++) |
| 257 | == CANON_ELEMENT (*phaystack++))) |
| 258 | ++i; |
| 259 | if (needle_len <= i) |
| 260 | { |
| 261 | /* Scan for matches in left half. */ |
| 262 | i = suffix - 1; |
| 263 | pneedle = &needle[i]; |
| 264 | phaystack = &haystack[i + j]; |
| 265 | while (memory < i + 1 && (CANON_ELEMENT (*pneedle--) |
| 266 | == CANON_ELEMENT (*phaystack--))) |
| 267 | --i; |
| 268 | if (i + 1 < memory + 1) |
| 269 | return (RETURN_TYPE) (haystack + j); |
| 270 | /* No match, so remember how many repetitions of period |
| 271 | on the right half were scanned. */ |
| 272 | j += period; |
| 273 | memory = needle_len - period; |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | j += i - suffix + 1; |
| 278 | memory = 0; |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | else |
| 283 | { |
| 284 | const unsigned char *phaystack = &haystack[suffix]; |
| 285 | /* The comparison always starts from needle[suffix], so cache it |
| 286 | and use an optimized first-character loop. */ |
| 287 | unsigned char needle_suffix = CANON_ELEMENT (needle[suffix]); |
| 288 | |
| 289 | #if CHECK_EOL |
| 290 | /* We start matching from the SUFFIX'th element, so make sure we |
| 291 | don't hit '\0' before that. */ |
| 292 | if (haystack_len < suffix + 1 |
| 293 | && !AVAILABLE (haystack, haystack_len, 0, suffix + 1)) |
| 294 | return NULL; |
| 295 | #endif |
| 296 | |
| 297 | /* The two halves of needle are distinct; no extra memory is |
| 298 | required, and any mismatch results in a maximal shift. */ |
| 299 | period = MAX (suffix, needle_len - suffix) + 1; |
| 300 | j = 0; |
| 301 | while (1 |
| 302 | #if !CHECK_EOL |
| 303 | && AVAILABLE (haystack, haystack_len, j, needle_len) |
| 304 | #endif |
| 305 | ) |
| 306 | { |
| 307 | unsigned char haystack_char; |
| 308 | const unsigned char *pneedle; |
| 309 | |
| 310 | /* TODO: The first-character loop can be sped up by adapting |
| 311 | longword-at-a-time implementation of memchr/strchr. */ |
| 312 | if (needle_suffix |
| 313 | != (haystack_char = CANON_ELEMENT (*phaystack++))) |
| 314 | { |
| 315 | RET0_IF_0 (haystack_char); |
| 316 | #if !CHECK_EOL |
| 317 | ++j; |
| 318 | #endif |
| 319 | continue; |
| 320 | } |
| 321 | |
| 322 | #if CHECK_EOL |
| 323 | /* Calculate J if it wasn't kept up-to-date in the first-character |
| 324 | loop. */ |
| 325 | j = phaystack - &haystack[suffix] - 1; |
| 326 | #endif |
| 327 | |
| 328 | /* Scan for matches in right half. */ |
| 329 | i = suffix + 1; |
| 330 | pneedle = &needle[i]; |
| 331 | while (i < needle_len) |
| 332 | { |
| 333 | if (CANON_ELEMENT (*pneedle++) |
| 334 | != (haystack_char = CANON_ELEMENT (*phaystack++))) |
| 335 | { |
| 336 | RET0_IF_0 (haystack_char); |
| 337 | break; |
| 338 | } |
| 339 | ++i; |
| 340 | } |
| 341 | if (needle_len <= i) |
| 342 | { |
| 343 | /* Scan for matches in left half. */ |
| 344 | i = suffix - 1; |
| 345 | pneedle = &needle[i]; |
| 346 | phaystack = &haystack[i + j]; |
| 347 | while (i != SIZE_MAX) |
| 348 | { |
| 349 | if (CANON_ELEMENT (*pneedle--) |
| 350 | != (haystack_char = CANON_ELEMENT (*phaystack--))) |
| 351 | { |
| 352 | RET0_IF_0 (haystack_char); |
| 353 | break; |
| 354 | } |
| 355 | --i; |
| 356 | } |
| 357 | if (i == SIZE_MAX) |
| 358 | return (RETURN_TYPE) (haystack + j); |
| 359 | j += period; |
| 360 | } |
| 361 | else |
| 362 | j += i - suffix + 1; |
| 363 | |
| 364 | #if CHECK_EOL |
| 365 | if (!AVAILABLE (haystack, haystack_len, j, needle_len)) |
| 366 | break; |
| 367 | #endif |
| 368 | |
| 369 | phaystack = &haystack[suffix + j]; |
| 370 | } |
| 371 | } |
| 372 | ret0: __attribute__ ((unused)) |
| 373 | return NULL; |
| 374 | } |
| 375 | |
| 376 | /* Return the first location of non-empty NEEDLE within HAYSTACK, or |
| 377 | NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This |
| 378 | method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN. |
| 379 | Performance is guaranteed to be linear, with an initialization cost |
| 380 | of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations. |
| 381 | |
| 382 | If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at |
| 383 | most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, |
| 384 | and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible. |
| 385 | If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 * |
| 386 | HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and |
| 387 | sublinear performance is not possible. */ |
| 388 | static RETURN_TYPE |
| 389 | two_way_long_needle (const unsigned char *haystack, size_t haystack_len, |
| 390 | const unsigned char *needle, size_t needle_len) |
| 391 | { |
| 392 | size_t i; /* Index into current byte of NEEDLE. */ |
| 393 | size_t j; /* Index into current window of HAYSTACK. */ |
| 394 | size_t period; /* The period of the right half of needle. */ |
| 395 | size_t suffix; /* The index of the right half of needle. */ |
| 396 | size_t shift_table[1U << CHAR_BIT]; /* See below. */ |
| 397 | |
| 398 | /* Factor the needle into two halves, such that the left half is |
| 399 | smaller than the global period, and the right half is |
| 400 | periodic (with a period as large as NEEDLE_LEN - suffix). */ |
| 401 | suffix = critical_factorization (needle, needle_len, &period); |
| 402 | |
| 403 | /* Populate shift_table. For each possible byte value c, |
| 404 | shift_table[c] is the distance from the last occurrence of c to |
| 405 | the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE. |
| 406 | shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */ |
| 407 | for (i = 0; i < 1U << CHAR_BIT; i++) |
| 408 | shift_table[i] = needle_len; |
| 409 | for (i = 0; i < needle_len; i++) |
| 410 | shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1; |
| 411 | |
| 412 | /* Perform the search. Each iteration compares the right half |
| 413 | first. */ |
| 414 | if (CMP_FUNC (needle, needle + period, suffix) == 0) |
| 415 | { |
| 416 | /* Entire needle is periodic; a mismatch can only advance by the |
| 417 | period, so use memory to avoid rescanning known occurrences |
| 418 | of the period. */ |
| 419 | size_t memory = 0; |
| 420 | size_t shift; |
| 421 | j = 0; |
| 422 | while (AVAILABLE (haystack, haystack_len, j, needle_len)) |
| 423 | { |
| 424 | const unsigned char *pneedle; |
| 425 | const unsigned char *phaystack; |
| 426 | |
| 427 | /* Check the last byte first; if it does not match, then |
| 428 | shift to the next possible match location. */ |
| 429 | shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])]; |
| 430 | if (0 < shift) |
| 431 | { |
| 432 | if (memory && shift < period) |
| 433 | { |
| 434 | /* Since needle is periodic, but the last period has |
| 435 | a byte out of place, there can be no match until |
| 436 | after the mismatch. */ |
| 437 | shift = needle_len - period; |
| 438 | } |
| 439 | memory = 0; |
| 440 | j += shift; |
| 441 | continue; |
| 442 | } |
| 443 | /* Scan for matches in right half. The last byte has |
| 444 | already been matched, by virtue of the shift table. */ |
| 445 | i = MAX (suffix, memory); |
| 446 | pneedle = &needle[i]; |
| 447 | phaystack = &haystack[i + j]; |
| 448 | while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++) |
| 449 | == CANON_ELEMENT (*phaystack++))) |
| 450 | ++i; |
| 451 | if (needle_len - 1 <= i) |
| 452 | { |
| 453 | /* Scan for matches in left half. */ |
| 454 | i = suffix - 1; |
| 455 | pneedle = &needle[i]; |
| 456 | phaystack = &haystack[i + j]; |
| 457 | while (memory < i + 1 && (CANON_ELEMENT (*pneedle--) |
| 458 | == CANON_ELEMENT (*phaystack--))) |
| 459 | --i; |
| 460 | if (i + 1 < memory + 1) |
| 461 | return (RETURN_TYPE) (haystack + j); |
| 462 | /* No match, so remember how many repetitions of period |
| 463 | on the right half were scanned. */ |
| 464 | j += period; |
| 465 | memory = needle_len - period; |
| 466 | } |
| 467 | else |
| 468 | { |
| 469 | j += i - suffix + 1; |
| 470 | memory = 0; |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | else |
| 475 | { |
| 476 | /* The two halves of needle are distinct; no extra memory is |
| 477 | required, and any mismatch results in a maximal shift. */ |
| 478 | size_t shift; |
| 479 | period = MAX (suffix, needle_len - suffix) + 1; |
| 480 | j = 0; |
| 481 | while (AVAILABLE (haystack, haystack_len, j, needle_len)) |
| 482 | { |
| 483 | const unsigned char *pneedle; |
| 484 | const unsigned char *phaystack; |
| 485 | |
| 486 | /* Check the last byte first; if it does not match, then |
| 487 | shift to the next possible match location. */ |
| 488 | shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])]; |
| 489 | if (0 < shift) |
| 490 | { |
| 491 | j += shift; |
| 492 | continue; |
| 493 | } |
| 494 | /* Scan for matches in right half. The last byte has |
| 495 | already been matched, by virtue of the shift table. */ |
| 496 | i = suffix; |
| 497 | pneedle = &needle[i]; |
| 498 | phaystack = &haystack[i + j]; |
| 499 | while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++) |
| 500 | == CANON_ELEMENT (*phaystack++))) |
| 501 | ++i; |
| 502 | if (needle_len - 1 <= i) |
| 503 | { |
| 504 | /* Scan for matches in left half. */ |
| 505 | i = suffix - 1; |
| 506 | pneedle = &needle[i]; |
| 507 | phaystack = &haystack[i + j]; |
| 508 | while (i != SIZE_MAX && (CANON_ELEMENT (*pneedle--) |
| 509 | == CANON_ELEMENT (*phaystack--))) |
| 510 | --i; |
| 511 | if (i == SIZE_MAX) |
| 512 | return (RETURN_TYPE) (haystack + j); |
| 513 | j += period; |
| 514 | } |
| 515 | else |
| 516 | j += i - suffix + 1; |
| 517 | } |
| 518 | } |
| 519 | return NULL; |
| 520 | } |
| 521 | |
| 522 | #undef AVAILABLE |
| 523 | #undef CANON_ELEMENT |
| 524 | #undef CMP_FUNC |
| 525 | #undef RET0_IF_0 |
| 526 | #undef RETURN_TYPE |
| 527 | #undef CHECK_EOL |