lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * NSA Security-Enhanced Linux (SELinux) security module |
| 3 | * |
| 4 | * This file contains the SELinux XFRM hook function implementations. |
| 5 | * |
| 6 | * Authors: Serge Hallyn <sergeh@us.ibm.com> |
| 7 | * Trent Jaeger <jaegert@us.ibm.com> |
| 8 | * |
| 9 | * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com> |
| 10 | * |
| 11 | * Granular IPSec Associations for use in MLS environments. |
| 12 | * |
| 13 | * Copyright (C) 2005 International Business Machines Corporation |
| 14 | * Copyright (C) 2006 Trusted Computer Solutions, Inc. |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or modify |
| 17 | * it under the terms of the GNU General Public License version 2, |
| 18 | * as published by the Free Software Foundation. |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * USAGE: |
| 23 | * NOTES: |
| 24 | * 1. Make sure to enable the following options in your kernel config: |
| 25 | * CONFIG_SECURITY=y |
| 26 | * CONFIG_SECURITY_NETWORK=y |
| 27 | * CONFIG_SECURITY_NETWORK_XFRM=y |
| 28 | * CONFIG_SECURITY_SELINUX=m/y |
| 29 | * ISSUES: |
| 30 | * 1. Caching packets, so they are not dropped during negotiation |
| 31 | * 2. Emulating a reasonable SO_PEERSEC across machines |
| 32 | * 3. Testing addition of sk_policy's with security context via setsockopt |
| 33 | */ |
| 34 | #include <linux/kernel.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/security.h> |
| 37 | #include <linux/types.h> |
| 38 | #include <linux/netfilter.h> |
| 39 | #include <linux/netfilter_ipv4.h> |
| 40 | #include <linux/netfilter_ipv6.h> |
| 41 | #include <linux/slab.h> |
| 42 | #include <linux/ip.h> |
| 43 | #include <linux/tcp.h> |
| 44 | #include <linux/skbuff.h> |
| 45 | #include <linux/xfrm.h> |
| 46 | #include <net/xfrm.h> |
| 47 | #include <net/checksum.h> |
| 48 | #include <net/udp.h> |
| 49 | #include <linux/atomic.h> |
| 50 | |
| 51 | #include "avc.h" |
| 52 | #include "objsec.h" |
| 53 | #include "xfrm.h" |
| 54 | |
| 55 | /* Labeled XFRM instance counter */ |
| 56 | atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0); |
| 57 | |
| 58 | /* |
| 59 | * Returns true if an LSM/SELinux context |
| 60 | */ |
| 61 | static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx) |
| 62 | { |
| 63 | return (ctx && |
| 64 | (ctx->ctx_doi == XFRM_SC_DOI_LSM) && |
| 65 | (ctx->ctx_alg == XFRM_SC_ALG_SELINUX)); |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * Returns true if the xfrm contains a security blob for SELinux |
| 70 | */ |
| 71 | static inline int selinux_authorizable_xfrm(struct xfrm_state *x) |
| 72 | { |
| 73 | return selinux_authorizable_ctx(x->security); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * LSM hook implementation that authorizes that a flow can use |
| 78 | * a xfrm policy rule. |
| 79 | */ |
| 80 | int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) |
| 81 | { |
| 82 | int rc; |
| 83 | u32 sel_sid; |
| 84 | |
| 85 | /* Context sid is either set to label or ANY_ASSOC */ |
| 86 | if (ctx) { |
| 87 | if (!selinux_authorizable_ctx(ctx)) |
| 88 | return -EINVAL; |
| 89 | |
| 90 | sel_sid = ctx->ctx_sid; |
| 91 | } else |
| 92 | /* |
| 93 | * All flows should be treated as polmatch'ing an |
| 94 | * otherwise applicable "non-labeled" policy. This |
| 95 | * would prevent inadvertent "leaks". |
| 96 | */ |
| 97 | return 0; |
| 98 | |
| 99 | rc = avc_has_perm(fl_secid, sel_sid, SECCLASS_ASSOCIATION, |
| 100 | ASSOCIATION__POLMATCH, |
| 101 | NULL); |
| 102 | |
| 103 | if (rc == -EACCES) |
| 104 | return -ESRCH; |
| 105 | |
| 106 | return rc; |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * LSM hook implementation that authorizes that a state matches |
| 111 | * the given policy, flow combo. |
| 112 | */ |
| 113 | |
| 114 | int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, |
| 115 | const struct flowi *fl) |
| 116 | { |
| 117 | u32 state_sid; |
| 118 | int rc; |
| 119 | |
| 120 | if (!xp->security) |
| 121 | if (x->security) |
| 122 | /* unlabeled policy and labeled SA can't match */ |
| 123 | return 0; |
| 124 | else |
| 125 | /* unlabeled policy and unlabeled SA match all flows */ |
| 126 | return 1; |
| 127 | else |
| 128 | if (!x->security) |
| 129 | /* unlabeled SA and labeled policy can't match */ |
| 130 | return 0; |
| 131 | else |
| 132 | if (!selinux_authorizable_xfrm(x)) |
| 133 | /* Not a SELinux-labeled SA */ |
| 134 | return 0; |
| 135 | |
| 136 | state_sid = x->security->ctx_sid; |
| 137 | |
| 138 | if (fl->flowi_secid != state_sid) |
| 139 | return 0; |
| 140 | |
| 141 | rc = avc_has_perm(fl->flowi_secid, state_sid, SECCLASS_ASSOCIATION, |
| 142 | ASSOCIATION__SENDTO, |
| 143 | NULL)? 0:1; |
| 144 | |
| 145 | /* |
| 146 | * We don't need a separate SA Vs. policy polmatch check |
| 147 | * since the SA is now of the same label as the flow and |
| 148 | * a flow Vs. policy polmatch check had already happened |
| 149 | * in selinux_xfrm_policy_lookup() above. |
| 150 | */ |
| 151 | |
| 152 | return rc; |
| 153 | } |
| 154 | |
| 155 | static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb, |
| 156 | u32 *sid, int ckall) |
| 157 | { |
| 158 | struct sec_path *sp = skb->sp; |
| 159 | |
| 160 | *sid = SECSID_NULL; |
| 161 | |
| 162 | if (sp) { |
| 163 | int i, sid_set = 0; |
| 164 | |
| 165 | for (i = sp->len-1; i >= 0; i--) { |
| 166 | struct xfrm_state *x = sp->xvec[i]; |
| 167 | if (selinux_authorizable_xfrm(x)) { |
| 168 | struct xfrm_sec_ctx *ctx = x->security; |
| 169 | |
| 170 | if (!sid_set) { |
| 171 | *sid = ctx->ctx_sid; |
| 172 | sid_set = 1; |
| 173 | |
| 174 | if (!ckall) |
| 175 | break; |
| 176 | } else if (*sid != ctx->ctx_sid) |
| 177 | return -EINVAL; |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb) |
| 186 | { |
| 187 | struct dst_entry *dst = skb_dst(skb); |
| 188 | struct xfrm_state *x; |
| 189 | |
| 190 | if (dst == NULL) |
| 191 | return SECSID_NULL; |
| 192 | x = dst->xfrm; |
| 193 | if (x == NULL || !selinux_authorizable_xfrm(x)) |
| 194 | return SECSID_NULL; |
| 195 | |
| 196 | return x->security->ctx_sid; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * LSM hook implementation that checks and/or returns the xfrm sid for the |
| 201 | * incoming packet. |
| 202 | */ |
| 203 | |
| 204 | int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall) |
| 205 | { |
| 206 | if (skb == NULL) { |
| 207 | *sid = SECSID_NULL; |
| 208 | return 0; |
| 209 | } |
| 210 | return selinux_xfrm_skb_sid_ingress(skb, sid, ckall); |
| 211 | } |
| 212 | |
| 213 | int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid) |
| 214 | { |
| 215 | int rc; |
| 216 | |
| 217 | rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0); |
| 218 | if (rc == 0 && *sid == SECSID_NULL) |
| 219 | *sid = selinux_xfrm_skb_sid_egress(skb); |
| 220 | |
| 221 | return rc; |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Security blob allocation for xfrm_policy and xfrm_state |
| 226 | * CTX does not have a meaningful value on input |
| 227 | */ |
| 228 | static int selinux_xfrm_sec_ctx_alloc(struct xfrm_sec_ctx **ctxp, |
| 229 | struct xfrm_user_sec_ctx *uctx, u32 sid) |
| 230 | { |
| 231 | int rc = 0; |
| 232 | const struct task_security_struct *tsec = current_security(); |
| 233 | struct xfrm_sec_ctx *ctx = NULL; |
| 234 | char *ctx_str = NULL; |
| 235 | u32 str_len; |
| 236 | |
| 237 | BUG_ON(uctx && sid); |
| 238 | |
| 239 | if (!uctx) |
| 240 | goto not_from_user; |
| 241 | |
| 242 | if (uctx->ctx_alg != XFRM_SC_ALG_SELINUX) |
| 243 | return -EINVAL; |
| 244 | |
| 245 | str_len = uctx->ctx_len; |
| 246 | if (str_len >= PAGE_SIZE) |
| 247 | return -ENOMEM; |
| 248 | |
| 249 | *ctxp = ctx = kmalloc(sizeof(*ctx) + |
| 250 | str_len + 1, |
| 251 | GFP_KERNEL); |
| 252 | |
| 253 | if (!ctx) |
| 254 | return -ENOMEM; |
| 255 | |
| 256 | ctx->ctx_doi = uctx->ctx_doi; |
| 257 | ctx->ctx_len = str_len; |
| 258 | ctx->ctx_alg = uctx->ctx_alg; |
| 259 | |
| 260 | memcpy(ctx->ctx_str, |
| 261 | uctx+1, |
| 262 | str_len); |
| 263 | ctx->ctx_str[str_len] = 0; |
| 264 | rc = security_context_to_sid(ctx->ctx_str, |
| 265 | str_len, |
| 266 | &ctx->ctx_sid); |
| 267 | |
| 268 | if (rc) |
| 269 | goto out; |
| 270 | |
| 271 | /* |
| 272 | * Does the subject have permission to set security context? |
| 273 | */ |
| 274 | rc = avc_has_perm(tsec->sid, ctx->ctx_sid, |
| 275 | SECCLASS_ASSOCIATION, |
| 276 | ASSOCIATION__SETCONTEXT, NULL); |
| 277 | if (rc) |
| 278 | goto out; |
| 279 | |
| 280 | return rc; |
| 281 | |
| 282 | not_from_user: |
| 283 | rc = security_sid_to_context(sid, &ctx_str, &str_len); |
| 284 | if (rc) |
| 285 | goto out; |
| 286 | |
| 287 | *ctxp = ctx = kmalloc(sizeof(*ctx) + |
| 288 | str_len, |
| 289 | GFP_ATOMIC); |
| 290 | |
| 291 | if (!ctx) { |
| 292 | rc = -ENOMEM; |
| 293 | goto out; |
| 294 | } |
| 295 | |
| 296 | ctx->ctx_doi = XFRM_SC_DOI_LSM; |
| 297 | ctx->ctx_alg = XFRM_SC_ALG_SELINUX; |
| 298 | ctx->ctx_sid = sid; |
| 299 | ctx->ctx_len = str_len; |
| 300 | memcpy(ctx->ctx_str, |
| 301 | ctx_str, |
| 302 | str_len); |
| 303 | |
| 304 | goto out2; |
| 305 | |
| 306 | out: |
| 307 | *ctxp = NULL; |
| 308 | kfree(ctx); |
| 309 | out2: |
| 310 | kfree(ctx_str); |
| 311 | return rc; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * LSM hook implementation that allocs and transfers uctx spec to |
| 316 | * xfrm_policy. |
| 317 | */ |
| 318 | int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, |
| 319 | struct xfrm_user_sec_ctx *uctx) |
| 320 | { |
| 321 | int err; |
| 322 | |
| 323 | BUG_ON(!uctx); |
| 324 | |
| 325 | err = selinux_xfrm_sec_ctx_alloc(ctxp, uctx, 0); |
| 326 | if (err == 0) |
| 327 | atomic_inc(&selinux_xfrm_refcount); |
| 328 | |
| 329 | return err; |
| 330 | } |
| 331 | |
| 332 | |
| 333 | /* |
| 334 | * LSM hook implementation that copies security data structure from old to |
| 335 | * new for policy cloning. |
| 336 | */ |
| 337 | int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, |
| 338 | struct xfrm_sec_ctx **new_ctxp) |
| 339 | { |
| 340 | struct xfrm_sec_ctx *new_ctx; |
| 341 | |
| 342 | if (old_ctx) { |
| 343 | new_ctx = kmalloc(sizeof(*old_ctx) + old_ctx->ctx_len, |
| 344 | GFP_ATOMIC); |
| 345 | if (!new_ctx) |
| 346 | return -ENOMEM; |
| 347 | |
| 348 | memcpy(new_ctx, old_ctx, sizeof(*new_ctx)); |
| 349 | memcpy(new_ctx->ctx_str, old_ctx->ctx_str, new_ctx->ctx_len); |
| 350 | *new_ctxp = new_ctx; |
| 351 | } |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * LSM hook implementation that frees xfrm_sec_ctx security information. |
| 357 | */ |
| 358 | void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx) |
| 359 | { |
| 360 | kfree(ctx); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * LSM hook implementation that authorizes deletion of labeled policies. |
| 365 | */ |
| 366 | int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) |
| 367 | { |
| 368 | const struct task_security_struct *tsec = current_security(); |
| 369 | int rc = 0; |
| 370 | |
| 371 | if (ctx) { |
| 372 | rc = avc_has_perm(tsec->sid, ctx->ctx_sid, |
| 373 | SECCLASS_ASSOCIATION, |
| 374 | ASSOCIATION__SETCONTEXT, NULL); |
| 375 | if (rc == 0) |
| 376 | atomic_dec(&selinux_xfrm_refcount); |
| 377 | } |
| 378 | |
| 379 | return rc; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * LSM hook implementation that allocs and transfers sec_ctx spec to |
| 384 | * xfrm_state. |
| 385 | */ |
| 386 | int selinux_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *uctx, |
| 387 | u32 secid) |
| 388 | { |
| 389 | int err; |
| 390 | |
| 391 | BUG_ON(!x); |
| 392 | |
| 393 | err = selinux_xfrm_sec_ctx_alloc(&x->security, uctx, secid); |
| 394 | if (err == 0) |
| 395 | atomic_inc(&selinux_xfrm_refcount); |
| 396 | return err; |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * LSM hook implementation that frees xfrm_state security information. |
| 401 | */ |
| 402 | void selinux_xfrm_state_free(struct xfrm_state *x) |
| 403 | { |
| 404 | struct xfrm_sec_ctx *ctx = x->security; |
| 405 | kfree(ctx); |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * LSM hook implementation that authorizes deletion of labeled SAs. |
| 410 | */ |
| 411 | int selinux_xfrm_state_delete(struct xfrm_state *x) |
| 412 | { |
| 413 | const struct task_security_struct *tsec = current_security(); |
| 414 | struct xfrm_sec_ctx *ctx = x->security; |
| 415 | int rc = 0; |
| 416 | |
| 417 | if (ctx) { |
| 418 | rc = avc_has_perm(tsec->sid, ctx->ctx_sid, |
| 419 | SECCLASS_ASSOCIATION, |
| 420 | ASSOCIATION__SETCONTEXT, NULL); |
| 421 | if (rc == 0) |
| 422 | atomic_dec(&selinux_xfrm_refcount); |
| 423 | } |
| 424 | |
| 425 | return rc; |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * LSM hook that controls access to unlabelled packets. If |
| 430 | * a xfrm_state is authorizable (defined by macro) then it was |
| 431 | * already authorized by the IPSec process. If not, then |
| 432 | * we need to check for unlabelled access since this may not have |
| 433 | * gone thru the IPSec process. |
| 434 | */ |
| 435 | int selinux_xfrm_sock_rcv_skb(u32 isec_sid, struct sk_buff *skb, |
| 436 | struct common_audit_data *ad) |
| 437 | { |
| 438 | int i, rc = 0; |
| 439 | struct sec_path *sp; |
| 440 | u32 sel_sid = SECINITSID_UNLABELED; |
| 441 | |
| 442 | sp = skb->sp; |
| 443 | |
| 444 | if (sp) { |
| 445 | for (i = 0; i < sp->len; i++) { |
| 446 | struct xfrm_state *x = sp->xvec[i]; |
| 447 | |
| 448 | if (x && selinux_authorizable_xfrm(x)) { |
| 449 | struct xfrm_sec_ctx *ctx = x->security; |
| 450 | sel_sid = ctx->ctx_sid; |
| 451 | break; |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * This check even when there's no association involved is |
| 458 | * intended, according to Trent Jaeger, to make sure a |
| 459 | * process can't engage in non-ipsec communication unless |
| 460 | * explicitly allowed by policy. |
| 461 | */ |
| 462 | |
| 463 | rc = avc_has_perm(isec_sid, sel_sid, SECCLASS_ASSOCIATION, |
| 464 | ASSOCIATION__RECVFROM, ad); |
| 465 | |
| 466 | return rc; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * POSTROUTE_LAST hook's XFRM processing: |
| 471 | * If we have no security association, then we need to determine |
| 472 | * whether the socket is allowed to send to an unlabelled destination. |
| 473 | * If we do have a authorizable security association, then it has already been |
| 474 | * checked in the selinux_xfrm_state_pol_flow_match hook above. |
| 475 | */ |
| 476 | int selinux_xfrm_postroute_last(u32 isec_sid, struct sk_buff *skb, |
| 477 | struct common_audit_data *ad, u8 proto) |
| 478 | { |
| 479 | struct dst_entry *dst; |
| 480 | int rc = 0; |
| 481 | |
| 482 | dst = skb_dst(skb); |
| 483 | |
| 484 | if (dst) { |
| 485 | struct dst_entry *dst_test; |
| 486 | |
| 487 | for (dst_test = dst; dst_test != NULL; |
| 488 | dst_test = dst_test->child) { |
| 489 | struct xfrm_state *x = dst_test->xfrm; |
| 490 | |
| 491 | if (x && selinux_authorizable_xfrm(x)) |
| 492 | goto out; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | switch (proto) { |
| 497 | case IPPROTO_AH: |
| 498 | case IPPROTO_ESP: |
| 499 | case IPPROTO_COMP: |
| 500 | /* |
| 501 | * We should have already seen this packet once before |
| 502 | * it underwent xfrm(s). No need to subject it to the |
| 503 | * unlabeled check. |
| 504 | */ |
| 505 | goto out; |
| 506 | default: |
| 507 | break; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * This check even when there's no association involved is |
| 512 | * intended, according to Trent Jaeger, to make sure a |
| 513 | * process can't engage in non-ipsec communication unless |
| 514 | * explicitly allowed by policy. |
| 515 | */ |
| 516 | |
| 517 | rc = avc_has_perm(isec_sid, SECINITSID_UNLABELED, SECCLASS_ASSOCIATION, |
| 518 | ASSOCIATION__SENDTO, ad); |
| 519 | out: |
| 520 | return rc; |
| 521 | } |