| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * i8253 PIT clocksource | 
|  | 3 | */ | 
|  | 4 | #include <linux/clockchips.h> | 
|  | 5 | #include <linux/init.h> | 
|  | 6 | #include <linux/io.h> | 
|  | 7 | #include <linux/spinlock.h> | 
|  | 8 | #include <linux/timex.h> | 
|  | 9 | #include <linux/module.h> | 
|  | 10 | #include <linux/i8253.h> | 
|  | 11 | #include <linux/smp.h> | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * Protects access to I/O ports | 
|  | 15 | * | 
|  | 16 | * 0040-0043 : timer0, i8253 / i8254 | 
|  | 17 | * 0061-0061 : NMI Control Register which contains two speaker control bits. | 
|  | 18 | */ | 
|  | 19 | DEFINE_RAW_SPINLOCK(i8253_lock); | 
|  | 20 | EXPORT_SYMBOL(i8253_lock); | 
|  | 21 |  | 
|  | 22 | #ifdef CONFIG_CLKSRC_I8253 | 
|  | 23 | /* | 
|  | 24 | * Since the PIT overflows every tick, its not very useful | 
|  | 25 | * to just read by itself. So use jiffies to emulate a free | 
|  | 26 | * running counter: | 
|  | 27 | */ | 
|  | 28 | static cycle_t i8253_read(struct clocksource *cs) | 
|  | 29 | { | 
|  | 30 | static int old_count; | 
|  | 31 | static u32 old_jifs; | 
|  | 32 | unsigned long flags; | 
|  | 33 | int count; | 
|  | 34 | u32 jifs; | 
|  | 35 |  | 
|  | 36 | raw_spin_lock_irqsave(&i8253_lock, flags); | 
|  | 37 | /* | 
|  | 38 | * Although our caller may have the read side of xtime_lock, | 
|  | 39 | * this is now a seqlock, and we are cheating in this routine | 
|  | 40 | * by having side effects on state that we cannot undo if | 
|  | 41 | * there is a collision on the seqlock and our caller has to | 
|  | 42 | * retry.  (Namely, old_jifs and old_count.)  So we must treat | 
|  | 43 | * jiffies as volatile despite the lock.  We read jiffies | 
|  | 44 | * before latching the timer count to guarantee that although | 
|  | 45 | * the jiffies value might be older than the count (that is, | 
|  | 46 | * the counter may underflow between the last point where | 
|  | 47 | * jiffies was incremented and the point where we latch the | 
|  | 48 | * count), it cannot be newer. | 
|  | 49 | */ | 
|  | 50 | jifs = jiffies; | 
|  | 51 | outb_p(0x00, PIT_MODE);	/* latch the count ASAP */ | 
|  | 52 | count = inb_p(PIT_CH0);	/* read the latched count */ | 
|  | 53 | count |= inb_p(PIT_CH0) << 8; | 
|  | 54 |  | 
|  | 55 | /* VIA686a test code... reset the latch if count > max + 1 */ | 
|  | 56 | if (count > PIT_LATCH) { | 
|  | 57 | outb_p(0x34, PIT_MODE); | 
|  | 58 | outb_p(PIT_LATCH & 0xff, PIT_CH0); | 
|  | 59 | outb_p(PIT_LATCH >> 8, PIT_CH0); | 
|  | 60 | count = PIT_LATCH - 1; | 
|  | 61 | } | 
|  | 62 |  | 
|  | 63 | /* | 
|  | 64 | * It's possible for count to appear to go the wrong way for a | 
|  | 65 | * couple of reasons: | 
|  | 66 | * | 
|  | 67 | *  1. The timer counter underflows, but we haven't handled the | 
|  | 68 | *     resulting interrupt and incremented jiffies yet. | 
|  | 69 | *  2. Hardware problem with the timer, not giving us continuous time, | 
|  | 70 | *     the counter does small "jumps" upwards on some Pentium systems, | 
|  | 71 | *     (see c't 95/10 page 335 for Neptun bug.) | 
|  | 72 | * | 
|  | 73 | * Previous attempts to handle these cases intelligently were | 
|  | 74 | * buggy, so we just do the simple thing now. | 
|  | 75 | */ | 
|  | 76 | if (count > old_count && jifs == old_jifs) | 
|  | 77 | count = old_count; | 
|  | 78 |  | 
|  | 79 | old_count = count; | 
|  | 80 | old_jifs = jifs; | 
|  | 81 |  | 
|  | 82 | raw_spin_unlock_irqrestore(&i8253_lock, flags); | 
|  | 83 |  | 
|  | 84 | count = (PIT_LATCH - 1) - count; | 
|  | 85 |  | 
|  | 86 | return (cycle_t)(jifs * PIT_LATCH) + count; | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | static struct clocksource i8253_cs = { | 
|  | 90 | .name		= "pit", | 
|  | 91 | .rating		= 110, | 
|  | 92 | .read		= i8253_read, | 
|  | 93 | .mask		= CLOCKSOURCE_MASK(32), | 
|  | 94 | }; | 
|  | 95 |  | 
|  | 96 | int __init clocksource_i8253_init(void) | 
|  | 97 | { | 
|  | 98 | return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); | 
|  | 99 | } | 
|  | 100 | #endif | 
|  | 101 |  | 
|  | 102 | #ifdef CONFIG_CLKEVT_I8253 | 
|  | 103 | /* | 
|  | 104 | * Initialize the PIT timer. | 
|  | 105 | * | 
|  | 106 | * This is also called after resume to bring the PIT into operation again. | 
|  | 107 | */ | 
|  | 108 | static void init_pit_timer(enum clock_event_mode mode, | 
|  | 109 | struct clock_event_device *evt) | 
|  | 110 | { | 
|  | 111 | raw_spin_lock(&i8253_lock); | 
|  | 112 |  | 
|  | 113 | switch (mode) { | 
|  | 114 | case CLOCK_EVT_MODE_PERIODIC: | 
|  | 115 | /* binary, mode 2, LSB/MSB, ch 0 */ | 
|  | 116 | outb_p(0x34, PIT_MODE); | 
|  | 117 | outb_p(PIT_LATCH & 0xff , PIT_CH0);	/* LSB */ | 
|  | 118 | outb_p(PIT_LATCH >> 8 , PIT_CH0);		/* MSB */ | 
|  | 119 | break; | 
|  | 120 |  | 
|  | 121 | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | 122 | case CLOCK_EVT_MODE_UNUSED: | 
|  | 123 | if (evt->mode == CLOCK_EVT_MODE_PERIODIC || | 
|  | 124 | evt->mode == CLOCK_EVT_MODE_ONESHOT) { | 
|  | 125 | outb_p(0x30, PIT_MODE); | 
|  | 126 | outb_p(0, PIT_CH0); | 
|  | 127 | outb_p(0, PIT_CH0); | 
|  | 128 | } | 
|  | 129 | break; | 
|  | 130 |  | 
|  | 131 | case CLOCK_EVT_MODE_ONESHOT: | 
|  | 132 | /* One shot setup */ | 
|  | 133 | outb_p(0x38, PIT_MODE); | 
|  | 134 | break; | 
|  | 135 |  | 
|  | 136 | case CLOCK_EVT_MODE_RESUME: | 
|  | 137 | /* Nothing to do here */ | 
|  | 138 | break; | 
|  | 139 | } | 
|  | 140 | raw_spin_unlock(&i8253_lock); | 
|  | 141 | } | 
|  | 142 |  | 
|  | 143 | /* | 
|  | 144 | * Program the next event in oneshot mode | 
|  | 145 | * | 
|  | 146 | * Delta is given in PIT ticks | 
|  | 147 | */ | 
|  | 148 | static int pit_next_event(unsigned long delta, struct clock_event_device *evt) | 
|  | 149 | { | 
|  | 150 | raw_spin_lock(&i8253_lock); | 
|  | 151 | outb_p(delta & 0xff , PIT_CH0);	/* LSB */ | 
|  | 152 | outb_p(delta >> 8 , PIT_CH0);		/* MSB */ | 
|  | 153 | raw_spin_unlock(&i8253_lock); | 
|  | 154 |  | 
|  | 155 | return 0; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * On UP the PIT can serve all of the possible timer functions. On SMP systems | 
|  | 160 | * it can be solely used for the global tick. | 
|  | 161 | */ | 
|  | 162 | struct clock_event_device i8253_clockevent = { | 
|  | 163 | .name		= "pit", | 
|  | 164 | .features	= CLOCK_EVT_FEAT_PERIODIC, | 
|  | 165 | .set_mode	= init_pit_timer, | 
|  | 166 | .set_next_event = pit_next_event, | 
|  | 167 | }; | 
|  | 168 |  | 
|  | 169 | /* | 
|  | 170 | * Initialize the conversion factor and the min/max deltas of the clock event | 
|  | 171 | * structure and register the clock event source with the framework. | 
|  | 172 | */ | 
|  | 173 | void __init clockevent_i8253_init(bool oneshot) | 
|  | 174 | { | 
|  | 175 | if (oneshot) | 
|  | 176 | i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; | 
|  | 177 | /* | 
|  | 178 | * Start pit with the boot cpu mask. x86 might make it global | 
|  | 179 | * when it is used as broadcast device later. | 
|  | 180 | */ | 
|  | 181 | i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); | 
|  | 182 |  | 
|  | 183 | clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, | 
|  | 184 | 0xF, 0x7FFF); | 
|  | 185 | } | 
|  | 186 | #endif |