| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Prototype declarations for complex math functions; | 
|  | 2 | helper file for <complex.h>. | 
|  | 3 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 4 | This file is part of the GNU C Library. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | /* NOTE: Because of the special way this file is used by <complex.h>, this | 
|  | 21 | file must NOT be protected from multiple inclusion as header files | 
|  | 22 | usually are. | 
|  | 23 |  | 
|  | 24 | This file provides prototype declarations for the math functions. | 
|  | 25 | Most functions are declared using the macro: | 
|  | 26 |  | 
|  | 27 | __MATHCALL (NAME, (ARGS...)); | 
|  | 28 |  | 
|  | 29 | This means there is a function `NAME' returning `double' and a function | 
|  | 30 | `NAMEf' returning `float'.  Each place `_Mdouble_' appears in the | 
|  | 31 | prototype, that is actually `double' in the prototype for `NAME' and | 
|  | 32 | `float' in the prototype for `NAMEf'.  Reentrant variant functions are | 
|  | 33 | called `NAME_r' and `NAMEf_r'. | 
|  | 34 |  | 
|  | 35 | Functions returning other types like `int' are declared using the macro: | 
|  | 36 |  | 
|  | 37 | __MATHDECL (TYPE, NAME, (ARGS...)); | 
|  | 38 |  | 
|  | 39 | This is just like __MATHCALL but for a function returning `TYPE' | 
|  | 40 | instead of `_Mdouble_'.  In all of these cases, there is still | 
|  | 41 | both a `NAME' and a `NAMEf' that takes `float' arguments.  */ | 
|  | 42 |  | 
|  | 43 | #ifndef _COMPLEX_H | 
|  | 44 | #error "Never use <bits/cmathcalls.h> directly; include <complex.h> instead." | 
|  | 45 | #endif | 
|  | 46 |  | 
|  | 47 | #define _Mdouble_complex_ _Mdouble_ _Complex | 
|  | 48 |  | 
|  | 49 |  | 
|  | 50 | /* Trigonometric functions.  */ | 
|  | 51 |  | 
|  | 52 | /* Arc cosine of Z.  */ | 
|  | 53 | __MATHCALL (cacos, (_Mdouble_complex_ __z)); | 
|  | 54 | /* Arc sine of Z.  */ | 
|  | 55 | __MATHCALL (casin, (_Mdouble_complex_ __z)); | 
|  | 56 | /* Arc tangent of Z.  */ | 
|  | 57 | __MATHCALL (catan, (_Mdouble_complex_ __z)); | 
|  | 58 |  | 
|  | 59 | /* Cosine of Z.  */ | 
|  | 60 | __MATHCALL (ccos, (_Mdouble_complex_ __z)); | 
|  | 61 | /* Sine of Z.  */ | 
|  | 62 | __MATHCALL (csin, (_Mdouble_complex_ __z)); | 
|  | 63 | /* Tangent of Z.  */ | 
|  | 64 | __MATHCALL (ctan, (_Mdouble_complex_ __z)); | 
|  | 65 |  | 
|  | 66 |  | 
|  | 67 | /* Hyperbolic functions.  */ | 
|  | 68 |  | 
|  | 69 | /* Hyperbolic arc cosine of Z.  */ | 
|  | 70 | __MATHCALL (cacosh, (_Mdouble_complex_ __z)); | 
|  | 71 | /* Hyperbolic arc sine of Z.  */ | 
|  | 72 | __MATHCALL (casinh, (_Mdouble_complex_ __z)); | 
|  | 73 | /* Hyperbolic arc tangent of Z.  */ | 
|  | 74 | __MATHCALL (catanh, (_Mdouble_complex_ __z)); | 
|  | 75 |  | 
|  | 76 | /* Hyperbolic cosine of Z.  */ | 
|  | 77 | __MATHCALL (ccosh, (_Mdouble_complex_ __z)); | 
|  | 78 | /* Hyperbolic sine of Z.  */ | 
|  | 79 | __MATHCALL (csinh, (_Mdouble_complex_ __z)); | 
|  | 80 | /* Hyperbolic tangent of Z.  */ | 
|  | 81 | __MATHCALL (ctanh, (_Mdouble_complex_ __z)); | 
|  | 82 |  | 
|  | 83 |  | 
|  | 84 | /* Exponential and logarithmic functions.  */ | 
|  | 85 |  | 
|  | 86 | /* Exponential function of Z.  */ | 
|  | 87 | __MATHCALL (cexp, (_Mdouble_complex_ __z)); | 
|  | 88 |  | 
|  | 89 | /* Natural logarithm of Z.  */ | 
|  | 90 | __MATHCALL (clog, (_Mdouble_complex_ __z)); | 
|  | 91 |  | 
|  | 92 | #ifdef __USE_GNU | 
|  | 93 | /* The base 10 logarithm is not defined by the standard but to implement | 
|  | 94 | the standard C++ library it is handy.  */ | 
|  | 95 | __MATHCALL (clog10, (_Mdouble_complex_ __z)); | 
|  | 96 | #endif | 
|  | 97 |  | 
|  | 98 | /* Power functions.  */ | 
|  | 99 |  | 
|  | 100 | /* Return X to the Y power.  */ | 
|  | 101 | __MATHCALL (cpow, (_Mdouble_complex_ __x, _Mdouble_complex_ __y)); | 
|  | 102 |  | 
|  | 103 | /* Return the square root of Z.  */ | 
|  | 104 | __MATHCALL (csqrt, (_Mdouble_complex_ __z)); | 
|  | 105 |  | 
|  | 106 |  | 
|  | 107 | /* Absolute value, conjugates, and projection.  */ | 
|  | 108 |  | 
|  | 109 | /* Absolute value of Z.  */ | 
|  | 110 | __MATHDECL (_Mdouble_,cabs, (_Mdouble_complex_ __z)); | 
|  | 111 |  | 
|  | 112 | /* Argument value of Z.  */ | 
|  | 113 | __MATHDECL (_Mdouble_,carg, (_Mdouble_complex_ __z)); | 
|  | 114 |  | 
|  | 115 | /* Complex conjugate of Z.  */ | 
|  | 116 | __MATHCALL (conj, (_Mdouble_complex_ __z)); | 
|  | 117 |  | 
|  | 118 | /* Projection of Z onto the Riemann sphere.  */ | 
|  | 119 | __MATHCALL (cproj, (_Mdouble_complex_ __z)); | 
|  | 120 |  | 
|  | 121 |  | 
|  | 122 | /* Decomposing complex values.  */ | 
|  | 123 |  | 
|  | 124 | /* Imaginary part of Z.  */ | 
|  | 125 | __MATHDECL (_Mdouble_,cimag, (_Mdouble_complex_ __z)); | 
|  | 126 |  | 
|  | 127 | /* Real part of Z.  */ | 
|  | 128 | __MATHDECL (_Mdouble_,creal, (_Mdouble_complex_ __z)); | 
|  | 129 |  | 
|  | 130 |  | 
|  | 131 | /* Now some optimized versions.  GCC has handy notations for these | 
|  | 132 | functions.  Recent GCC handles these as builtin functions so does | 
|  | 133 | not need inlines.  */ | 
|  | 134 | #if defined __GNUC__ && !__GNUC_PREREQ (2, 97) && defined __OPTIMIZE__ \ | 
|  | 135 | && defined __extern_inline | 
|  | 136 |  | 
|  | 137 | /* Imaginary part of Z.  */ | 
|  | 138 | __extern_inline _Mdouble_ | 
|  | 139 | __MATH_PRECNAME(cimag) (_Mdouble_complex_ __z) __THROW | 
|  | 140 | { | 
|  | 141 | return __imag__ __z; | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | /* Real part of Z.  */ | 
|  | 145 | __extern_inline _Mdouble_ | 
|  | 146 | __MATH_PRECNAME(creal) (_Mdouble_complex_ __z) __THROW | 
|  | 147 | { | 
|  | 148 | return __real__ __z; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | /* Complex conjugate of Z.  */ | 
|  | 152 | __extern_inline _Mdouble_complex_ | 
|  | 153 | __MATH_PRECNAME(conj) (_Mdouble_complex_ __z) __THROW | 
|  | 154 | { | 
|  | 155 | return __extension__ ~__z; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | #endif |