| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Subroutines needed for unwinding stack frames for exception handling.  */ | 
|  | 2 | /* Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | Contributed by Jason Merrill <jason@cygnus.com>. | 
|  | 4 |  | 
|  | 5 | This file is part of the GNU C Library. | 
|  | 6 |  | 
|  | 7 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 8 | modify it under the terms of the GNU Lesser General Public | 
|  | 9 | License as published by the Free Software Foundation; either | 
|  | 10 | version 2.1 of the License, or (at your option) any later version. | 
|  | 11 |  | 
|  | 12 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 15 | Lesser General Public License for more details. | 
|  | 16 |  | 
|  | 17 | You should have received a copy of the GNU Lesser General Public | 
|  | 18 | License along with the GNU C Library; if not, see | 
|  | 19 | <http://www.gnu.org/licenses/>.  */ | 
|  | 20 |  | 
|  | 21 | #ifdef _LIBC | 
|  | 22 | # include <shlib-compat.h> | 
|  | 23 | #endif | 
|  | 24 |  | 
|  | 25 | #if !defined _LIBC || SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_2_5) | 
|  | 26 |  | 
|  | 27 | #ifdef _LIBC | 
|  | 28 | #include <stdlib.h> | 
|  | 29 | #include <string.h> | 
|  | 30 | #include <libc-lock.h> | 
|  | 31 | #include <dwarf2.h> | 
|  | 32 | #include <unwind.h> | 
|  | 33 | #define NO_BASE_OF_ENCODED_VALUE | 
|  | 34 | #include <unwind-pe.h> | 
|  | 35 | #include <unwind-dw2-fde.h> | 
|  | 36 | #else | 
|  | 37 | #ifndef _Unwind_Find_FDE | 
|  | 38 | #include "tconfig.h" | 
|  | 39 | #include "tsystem.h" | 
|  | 40 | #include "dwarf2.h" | 
|  | 41 | #include "unwind.h" | 
|  | 42 | #define NO_BASE_OF_ENCODED_VALUE | 
|  | 43 | #include "unwind-pe.h" | 
|  | 44 | #include "unwind-dw2-fde.h" | 
|  | 45 | #include "gthr.h" | 
|  | 46 | #endif | 
|  | 47 | #endif | 
|  | 48 |  | 
|  | 49 | /* The unseen_objects list contains objects that have been registered | 
|  | 50 | but not yet categorized in any way.  The seen_objects list has had | 
|  | 51 | it's pc_begin and count fields initialized at minimum, and is sorted | 
|  | 52 | by decreasing value of pc_begin.  */ | 
|  | 53 | static struct object *unseen_objects; | 
|  | 54 | static struct object *seen_objects; | 
|  | 55 |  | 
|  | 56 | #ifdef _LIBC | 
|  | 57 |  | 
|  | 58 | __libc_lock_define_initialized (static, object_mutex) | 
|  | 59 | #define init_object_mutex_once() | 
|  | 60 | #define __gthread_mutex_lock(m) __libc_lock_lock (*(m)) | 
|  | 61 | #define __gthread_mutex_unlock(m) __libc_lock_unlock (*(m)) | 
|  | 62 |  | 
|  | 63 | void __register_frame_info_bases (void *begin, struct object *ob, | 
|  | 64 | void *tbase, void *dbase); | 
|  | 65 | hidden_proto (__register_frame_info_bases) | 
|  | 66 | void __register_frame_info_table_bases (void *begin, | 
|  | 67 | struct object *ob, | 
|  | 68 | void *tbase, void *dbase); | 
|  | 69 | hidden_proto (__register_frame_info_table_bases) | 
|  | 70 | void *__deregister_frame_info_bases (void *begin); | 
|  | 71 | hidden_proto (__deregister_frame_info_bases) | 
|  | 72 |  | 
|  | 73 | #else | 
|  | 74 |  | 
|  | 75 | #ifdef __GTHREAD_MUTEX_INIT | 
|  | 76 | static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT; | 
|  | 77 | #else | 
|  | 78 | static __gthread_mutex_t object_mutex; | 
|  | 79 | #endif | 
|  | 80 |  | 
|  | 81 | #ifdef __GTHREAD_MUTEX_INIT_FUNCTION | 
|  | 82 | static void | 
|  | 83 | init_object_mutex (void) | 
|  | 84 | { | 
|  | 85 | __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex); | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | static void | 
|  | 89 | init_object_mutex_once (void) | 
|  | 90 | { | 
|  | 91 | static __gthread_once_t once = __GTHREAD_ONCE_INIT; | 
|  | 92 | __gthread_once (&once, init_object_mutex); | 
|  | 93 | } | 
|  | 94 | #else | 
|  | 95 | #define init_object_mutex_once() | 
|  | 96 | #endif | 
|  | 97 |  | 
|  | 98 | #endif /* _LIBC */ | 
|  | 99 |  | 
|  | 100 | /* Called from crtbegin.o to register the unwind info for an object.  */ | 
|  | 101 |  | 
|  | 102 | void | 
|  | 103 | __register_frame_info_bases (void *begin, struct object *ob, | 
|  | 104 | void *tbase, void *dbase) | 
|  | 105 | { | 
|  | 106 | /* If .eh_frame is empty, don't register at all.  */ | 
|  | 107 | if (*(uword *) begin == 0) | 
|  | 108 | return; | 
|  | 109 |  | 
|  | 110 | ob->pc_begin = (void *)-1; | 
|  | 111 | ob->tbase = tbase; | 
|  | 112 | ob->dbase = dbase; | 
|  | 113 | ob->u.single = begin; | 
|  | 114 | ob->s.i = 0; | 
|  | 115 | ob->s.b.encoding = DW_EH_PE_omit; | 
|  | 116 | #ifdef DWARF2_OBJECT_END_PTR_EXTENSION | 
|  | 117 | ob->fde_end = NULL; | 
|  | 118 | #endif | 
|  | 119 |  | 
|  | 120 | init_object_mutex_once (); | 
|  | 121 | __gthread_mutex_lock (&object_mutex); | 
|  | 122 |  | 
|  | 123 | ob->next = unseen_objects; | 
|  | 124 | unseen_objects = ob; | 
|  | 125 |  | 
|  | 126 | __gthread_mutex_unlock (&object_mutex); | 
|  | 127 | } | 
|  | 128 | hidden_def (__register_frame_info_bases) | 
|  | 129 |  | 
|  | 130 | void | 
|  | 131 | __register_frame_info (void *begin, struct object *ob) | 
|  | 132 | { | 
|  | 133 | __register_frame_info_bases (begin, ob, 0, 0); | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | void | 
|  | 137 | __register_frame (void *begin) | 
|  | 138 | { | 
|  | 139 | struct object *ob; | 
|  | 140 |  | 
|  | 141 | /* If .eh_frame is empty, don't register at all.  */ | 
|  | 142 | if (*(uword *) begin == 0) | 
|  | 143 | return; | 
|  | 144 |  | 
|  | 145 | ob = (struct object *) malloc (sizeof (struct object)); | 
|  | 146 | __register_frame_info_bases (begin, ob, 0, 0); | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | /* Similar, but BEGIN is actually a pointer to a table of unwind entries | 
|  | 150 | for different translation units.  Called from the file generated by | 
|  | 151 | collect2.  */ | 
|  | 152 |  | 
|  | 153 | void | 
|  | 154 | __register_frame_info_table_bases (void *begin, struct object *ob, | 
|  | 155 | void *tbase, void *dbase) | 
|  | 156 | { | 
|  | 157 | ob->pc_begin = (void *)-1; | 
|  | 158 | ob->tbase = tbase; | 
|  | 159 | ob->dbase = dbase; | 
|  | 160 | ob->u.array = begin; | 
|  | 161 | ob->s.i = 0; | 
|  | 162 | ob->s.b.from_array = 1; | 
|  | 163 | ob->s.b.encoding = DW_EH_PE_omit; | 
|  | 164 |  | 
|  | 165 | init_object_mutex_once (); | 
|  | 166 | __gthread_mutex_lock (&object_mutex); | 
|  | 167 |  | 
|  | 168 | ob->next = unseen_objects; | 
|  | 169 | unseen_objects = ob; | 
|  | 170 |  | 
|  | 171 | __gthread_mutex_unlock (&object_mutex); | 
|  | 172 | } | 
|  | 173 | hidden_def (__register_frame_info_table_bases) | 
|  | 174 |  | 
|  | 175 | void | 
|  | 176 | __register_frame_info_table (void *begin, struct object *ob) | 
|  | 177 | { | 
|  | 178 | __register_frame_info_table_bases (begin, ob, 0, 0); | 
|  | 179 | } | 
|  | 180 |  | 
|  | 181 | void | 
|  | 182 | __register_frame_table (void *begin) | 
|  | 183 | { | 
|  | 184 | struct object *ob = (struct object *) malloc (sizeof (struct object)); | 
|  | 185 | __register_frame_info_table_bases (begin, ob, 0, 0); | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | /* Called from crtbegin.o to deregister the unwind info for an object.  */ | 
|  | 189 | /* ??? Glibc has for a while now exported __register_frame_info and | 
|  | 190 | __deregister_frame_info.  If we call __register_frame_info_bases | 
|  | 191 | from crtbegin (wherein it is declared weak), and this object does | 
|  | 192 | not get pulled from libgcc.a for other reasons, then the | 
|  | 193 | invocation of __deregister_frame_info will be resolved from glibc. | 
|  | 194 | Since the registration did not happen there, we'll abort. | 
|  | 195 |  | 
|  | 196 | Therefore, declare a new deregistration entry point that does the | 
|  | 197 | exact same thing, but will resolve to the same library as | 
|  | 198 | implements __register_frame_info_bases.  */ | 
|  | 199 |  | 
|  | 200 | void * | 
|  | 201 | __deregister_frame_info_bases (void *begin) | 
|  | 202 | { | 
|  | 203 | struct object **p; | 
|  | 204 | struct object *ob = 0; | 
|  | 205 |  | 
|  | 206 | /* If .eh_frame is empty, we haven't registered.  */ | 
|  | 207 | if (*(uword *) begin == 0) | 
|  | 208 | return ob; | 
|  | 209 |  | 
|  | 210 | init_object_mutex_once (); | 
|  | 211 | __gthread_mutex_lock (&object_mutex); | 
|  | 212 |  | 
|  | 213 | for (p = &unseen_objects; *p ; p = &(*p)->next) | 
|  | 214 | if ((*p)->u.single == begin) | 
|  | 215 | { | 
|  | 216 | ob = *p; | 
|  | 217 | *p = ob->next; | 
|  | 218 | goto out; | 
|  | 219 | } | 
|  | 220 |  | 
|  | 221 | for (p = &seen_objects; *p ; p = &(*p)->next) | 
|  | 222 | if ((*p)->s.b.sorted) | 
|  | 223 | { | 
|  | 224 | if ((*p)->u.sort->orig_data == begin) | 
|  | 225 | { | 
|  | 226 | ob = *p; | 
|  | 227 | *p = ob->next; | 
|  | 228 | free (ob->u.sort); | 
|  | 229 | goto out; | 
|  | 230 | } | 
|  | 231 | } | 
|  | 232 | else | 
|  | 233 | { | 
|  | 234 | if ((*p)->u.single == begin) | 
|  | 235 | { | 
|  | 236 | ob = *p; | 
|  | 237 | *p = ob->next; | 
|  | 238 | goto out; | 
|  | 239 | } | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | __gthread_mutex_unlock (&object_mutex); | 
|  | 243 | abort (); | 
|  | 244 |  | 
|  | 245 | out: | 
|  | 246 | __gthread_mutex_unlock (&object_mutex); | 
|  | 247 | return (void *) ob; | 
|  | 248 | } | 
|  | 249 | hidden_def (__deregister_frame_info_bases) | 
|  | 250 |  | 
|  | 251 | void * | 
|  | 252 | __deregister_frame_info (void *begin) | 
|  | 253 | { | 
|  | 254 | return __deregister_frame_info_bases (begin); | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | void | 
|  | 258 | __deregister_frame (void *begin) | 
|  | 259 | { | 
|  | 260 | /* If .eh_frame is empty, we haven't registered.  */ | 
|  | 261 | if (*(uword *) begin != 0) | 
|  | 262 | free (__deregister_frame_info_bases (begin)); | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 |  | 
|  | 266 | /* Like base_of_encoded_value, but take the base from a struct object | 
|  | 267 | instead of an _Unwind_Context.  */ | 
|  | 268 |  | 
|  | 269 | static _Unwind_Ptr | 
|  | 270 | base_from_object (unsigned char encoding, struct object *ob) | 
|  | 271 | { | 
|  | 272 | if (encoding == DW_EH_PE_omit) | 
|  | 273 | return 0; | 
|  | 274 |  | 
|  | 275 | switch (encoding & 0x70) | 
|  | 276 | { | 
|  | 277 | case DW_EH_PE_absptr: | 
|  | 278 | case DW_EH_PE_pcrel: | 
|  | 279 | case DW_EH_PE_aligned: | 
|  | 280 | return 0; | 
|  | 281 |  | 
|  | 282 | case DW_EH_PE_textrel: | 
|  | 283 | return (_Unwind_Ptr) ob->tbase; | 
|  | 284 | case DW_EH_PE_datarel: | 
|  | 285 | return (_Unwind_Ptr) ob->dbase; | 
|  | 286 | } | 
|  | 287 | abort (); | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | /* Return the FDE pointer encoding from the CIE.  */ | 
|  | 291 | /* ??? This is a subset of extract_cie_info from unwind-dw2.c.  */ | 
|  | 292 |  | 
|  | 293 | static int | 
|  | 294 | get_cie_encoding (struct dwarf_cie *cie) | 
|  | 295 | { | 
|  | 296 | const unsigned char *aug, *p; | 
|  | 297 | _Unwind_Ptr dummy; | 
|  | 298 | _Unwind_Word utmp; | 
|  | 299 | _Unwind_Sword stmp; | 
|  | 300 |  | 
|  | 301 | aug = cie->augmentation; | 
|  | 302 | if (aug[0] != 'z') | 
|  | 303 | return DW_EH_PE_absptr; | 
|  | 304 |  | 
|  | 305 | /* Skip the augmentation string.  */ | 
|  | 306 | p = aug + strlen ((const char *) aug) + 1; | 
|  | 307 | p = read_uleb128 (p, &utmp);		/* Skip code alignment.  */ | 
|  | 308 | p = read_sleb128 (p, &stmp);		/* Skip data alignment.  */ | 
|  | 309 | p++;					/* Skip return address column.  */ | 
|  | 310 |  | 
|  | 311 | aug++;				/* Skip 'z' */ | 
|  | 312 | p = read_uleb128 (p, &utmp);		/* Skip augmentation length.  */ | 
|  | 313 | while (1) | 
|  | 314 | { | 
|  | 315 | /* This is what we're looking for.  */ | 
|  | 316 | if (*aug == 'R') | 
|  | 317 | return *p; | 
|  | 318 | /* Personality encoding and pointer.  */ | 
|  | 319 | else if (*aug == 'P') | 
|  | 320 | { | 
|  | 321 | /* ??? Avoid dereferencing indirect pointers, since we're | 
|  | 322 | faking the base address.  Gotta keep DW_EH_PE_aligned | 
|  | 323 | intact, however.  */ | 
|  | 324 | p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy); | 
|  | 325 | } | 
|  | 326 | /* LSDA encoding.  */ | 
|  | 327 | else if (*aug == 'L') | 
|  | 328 | p++; | 
|  | 329 | /* Otherwise end of string, or unknown augmentation.  */ | 
|  | 330 | else | 
|  | 331 | return DW_EH_PE_absptr; | 
|  | 332 | aug++; | 
|  | 333 | } | 
|  | 334 | } | 
|  | 335 |  | 
|  | 336 | static inline int | 
|  | 337 | get_fde_encoding (struct dwarf_fde *f) | 
|  | 338 | { | 
|  | 339 | return get_cie_encoding (get_cie (f)); | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 |  | 
|  | 343 | /* Sorting an array of FDEs by address. | 
|  | 344 | (Ideally we would have the linker sort the FDEs so we don't have to do | 
|  | 345 | it at run time. But the linkers are not yet prepared for this.)  */ | 
|  | 346 |  | 
|  | 347 | /* Return the Nth pc_begin value from FDE x.  */ | 
|  | 348 |  | 
|  | 349 | static inline _Unwind_Ptr | 
|  | 350 | get_pc_begin (fde *x, size_t n) | 
|  | 351 | { | 
|  | 352 | _Unwind_Ptr p; | 
|  | 353 | memcpy (&p, x->pc_begin + n * sizeof (_Unwind_Ptr), sizeof (_Unwind_Ptr)); | 
|  | 354 | return p; | 
|  | 355 | } | 
|  | 356 |  | 
|  | 357 | /* Comparison routines.  Three variants of increasing complexity.  */ | 
|  | 358 |  | 
|  | 359 | static int | 
|  | 360 | fde_unencoded_compare (struct object *ob __attribute__((unused)), | 
|  | 361 | fde *x, fde *y) | 
|  | 362 | { | 
|  | 363 | _Unwind_Ptr x_ptr = get_pc_begin (x, 0); | 
|  | 364 | _Unwind_Ptr y_ptr = get_pc_begin (y, 0); | 
|  | 365 |  | 
|  | 366 | if (x_ptr > y_ptr) | 
|  | 367 | return 1; | 
|  | 368 | if (x_ptr < y_ptr) | 
|  | 369 | return -1; | 
|  | 370 | return 0; | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | static int | 
|  | 374 | fde_single_encoding_compare (struct object *ob, fde *x, fde *y) | 
|  | 375 | { | 
|  | 376 | _Unwind_Ptr base, x_ptr, y_ptr; | 
|  | 377 |  | 
|  | 378 | base = base_from_object (ob->s.b.encoding, ob); | 
|  | 379 | read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr); | 
|  | 380 | read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr); | 
|  | 381 |  | 
|  | 382 | if (x_ptr > y_ptr) | 
|  | 383 | return 1; | 
|  | 384 | if (x_ptr < y_ptr) | 
|  | 385 | return -1; | 
|  | 386 | return 0; | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | static int | 
|  | 390 | fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y) | 
|  | 391 | { | 
|  | 392 | int x_encoding, y_encoding; | 
|  | 393 | _Unwind_Ptr x_ptr, y_ptr; | 
|  | 394 |  | 
|  | 395 | x_encoding = get_fde_encoding (x); | 
|  | 396 | read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob), | 
|  | 397 | x->pc_begin, &x_ptr); | 
|  | 398 |  | 
|  | 399 | y_encoding = get_fde_encoding (y); | 
|  | 400 | read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob), | 
|  | 401 | y->pc_begin, &y_ptr); | 
|  | 402 |  | 
|  | 403 | if (x_ptr > y_ptr) | 
|  | 404 | return 1; | 
|  | 405 | if (x_ptr < y_ptr) | 
|  | 406 | return -1; | 
|  | 407 | return 0; | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | typedef int (*fde_compare_t) (struct object *, fde *, fde *); | 
|  | 411 |  | 
|  | 412 |  | 
|  | 413 | /* This is a special mix of insertion sort and heap sort, optimized for | 
|  | 414 | the data sets that actually occur. They look like | 
|  | 415 | 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130. | 
|  | 416 | I.e. a linearly increasing sequence (coming from functions in the text | 
|  | 417 | section), with additionally a few unordered elements (coming from functions | 
|  | 418 | in gnu_linkonce sections) whose values are higher than the values in the | 
|  | 419 | surrounding linear sequence (but not necessarily higher than the values | 
|  | 420 | at the end of the linear sequence!). | 
|  | 421 | The worst-case total run time is O(N) + O(n log (n)), where N is the | 
|  | 422 | total number of FDEs and n is the number of erratic ones.  */ | 
|  | 423 |  | 
|  | 424 | struct fde_accumulator | 
|  | 425 | { | 
|  | 426 | struct fde_vector *linear; | 
|  | 427 | struct fde_vector *erratic; | 
|  | 428 | }; | 
|  | 429 |  | 
|  | 430 | static int | 
|  | 431 | start_fde_sort (struct fde_accumulator *accu, size_t count) | 
|  | 432 | { | 
|  | 433 | size_t size; | 
|  | 434 | if (! count) | 
|  | 435 | return 0; | 
|  | 436 |  | 
|  | 437 | size = sizeof (struct fde_vector) + sizeof (fde *) * count; | 
|  | 438 | if ((accu->linear = (struct fde_vector *) malloc (size))) | 
|  | 439 | { | 
|  | 440 | accu->linear->count = 0; | 
|  | 441 | if ((accu->erratic = (struct fde_vector *) malloc (size))) | 
|  | 442 | accu->erratic->count = 0; | 
|  | 443 | return 1; | 
|  | 444 | } | 
|  | 445 | else | 
|  | 446 | return 0; | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | static inline void | 
|  | 450 | fde_insert (struct fde_accumulator *accu, fde *this_fde) | 
|  | 451 | { | 
|  | 452 | if (accu->linear) | 
|  | 453 | accu->linear->array[accu->linear->count++] = this_fde; | 
|  | 454 | } | 
|  | 455 |  | 
|  | 456 | /* Split LINEAR into a linear sequence with low values and an erratic | 
|  | 457 | sequence with high values, put the linear one (of longest possible | 
|  | 458 | length) into LINEAR and the erratic one into ERRATIC. This is O(N). | 
|  | 459 |  | 
|  | 460 | Because the longest linear sequence we are trying to locate within the | 
|  | 461 | incoming LINEAR array can be interspersed with (high valued) erratic | 
|  | 462 | entries.  We construct a chain indicating the sequenced entries. | 
|  | 463 | To avoid having to allocate this chain, we overlay it onto the space of | 
|  | 464 | the ERRATIC array during construction.  A final pass iterates over the | 
|  | 465 | chain to determine what should be placed in the ERRATIC array, and | 
|  | 466 | what is the linear sequence.  This overlay is safe from aliasing.  */ | 
|  | 467 |  | 
|  | 468 | static void | 
|  | 469 | fde_split (struct object *ob, fde_compare_t fde_compare, | 
|  | 470 | struct fde_vector *linear, struct fde_vector *erratic) | 
|  | 471 | { | 
|  | 472 | static fde *marker; | 
|  | 473 | size_t count = linear->count; | 
|  | 474 | fde **chain_end = ▮ | 
|  | 475 | size_t i, j, k; | 
|  | 476 |  | 
|  | 477 | /* This should optimize out, but it is wise to make sure this assumption | 
|  | 478 | is correct. Should these have different sizes, we cannot cast between | 
|  | 479 | them and the overlaying onto ERRATIC will not work.  */ | 
|  | 480 | if (sizeof (fde *) != sizeof (fde **)) | 
|  | 481 | abort (); | 
|  | 482 |  | 
|  | 483 | for (i = 0; i < count; i++) | 
|  | 484 | { | 
|  | 485 | fde **probe; | 
|  | 486 |  | 
|  | 487 | for (probe = chain_end; | 
|  | 488 | probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0; | 
|  | 489 | probe = chain_end) | 
|  | 490 | { | 
|  | 491 | chain_end = (fde **) erratic->array[probe - linear->array]; | 
|  | 492 | erratic->array[probe - linear->array] = NULL; | 
|  | 493 | } | 
|  | 494 | erratic->array[i] = (fde *) chain_end; | 
|  | 495 | chain_end = &linear->array[i]; | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | /* Each entry in LINEAR which is part of the linear sequence we have | 
|  | 499 | discovered will correspond to a non-NULL entry in the chain we built in | 
|  | 500 | the ERRATIC array.  */ | 
|  | 501 | for (i = j = k = 0; i < count; i++) | 
|  | 502 | if (erratic->array[i]) | 
|  | 503 | linear->array[j++] = linear->array[i]; | 
|  | 504 | else | 
|  | 505 | erratic->array[k++] = linear->array[i]; | 
|  | 506 | linear->count = j; | 
|  | 507 | erratic->count = k; | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | /* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must | 
|  | 511 | use a name that does not conflict.  */ | 
|  | 512 |  | 
|  | 513 | static void | 
|  | 514 | frame_heapsort (struct object *ob, fde_compare_t fde_compare, | 
|  | 515 | struct fde_vector *erratic) | 
|  | 516 | { | 
|  | 517 | /* For a description of this algorithm, see: | 
|  | 518 | Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed., | 
|  | 519 | p. 60-61.  */ | 
|  | 520 | fde ** a = erratic->array; | 
|  | 521 | /* A portion of the array is called a "heap" if for all i>=0: | 
|  | 522 | If i and 2i+1 are valid indices, then a[i] >= a[2i+1]. | 
|  | 523 | If i and 2i+2 are valid indices, then a[i] >= a[2i+2].  */ | 
|  | 524 | #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0) | 
|  | 525 | size_t n = erratic->count; | 
|  | 526 | size_t m = n; | 
|  | 527 | size_t i; | 
|  | 528 |  | 
|  | 529 | while (m > 0) | 
|  | 530 | { | 
|  | 531 | /* Invariant: a[m..n-1] is a heap.  */ | 
|  | 532 | m--; | 
|  | 533 | for (i = m; 2*i+1 < n; ) | 
|  | 534 | { | 
|  | 535 | if (2*i+2 < n | 
|  | 536 | && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0 | 
|  | 537 | && fde_compare (ob, a[2*i+2], a[i]) > 0) | 
|  | 538 | { | 
|  | 539 | SWAP (a[i], a[2*i+2]); | 
|  | 540 | i = 2*i+2; | 
|  | 541 | } | 
|  | 542 | else if (fde_compare (ob, a[2*i+1], a[i]) > 0) | 
|  | 543 | { | 
|  | 544 | SWAP (a[i], a[2*i+1]); | 
|  | 545 | i = 2*i+1; | 
|  | 546 | } | 
|  | 547 | else | 
|  | 548 | break; | 
|  | 549 | } | 
|  | 550 | } | 
|  | 551 | while (n > 1) | 
|  | 552 | { | 
|  | 553 | /* Invariant: a[0..n-1] is a heap.  */ | 
|  | 554 | n--; | 
|  | 555 | SWAP (a[0], a[n]); | 
|  | 556 | for (i = 0; 2*i+1 < n; ) | 
|  | 557 | { | 
|  | 558 | if (2*i+2 < n | 
|  | 559 | && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0 | 
|  | 560 | && fde_compare (ob, a[2*i+2], a[i]) > 0) | 
|  | 561 | { | 
|  | 562 | SWAP (a[i], a[2*i+2]); | 
|  | 563 | i = 2*i+2; | 
|  | 564 | } | 
|  | 565 | else if (fde_compare (ob, a[2*i+1], a[i]) > 0) | 
|  | 566 | { | 
|  | 567 | SWAP (a[i], a[2*i+1]); | 
|  | 568 | i = 2*i+1; | 
|  | 569 | } | 
|  | 570 | else | 
|  | 571 | break; | 
|  | 572 | } | 
|  | 573 | } | 
|  | 574 | #undef SWAP | 
|  | 575 | } | 
|  | 576 |  | 
|  | 577 | /* Merge V1 and V2, both sorted, and put the result into V1.  */ | 
|  | 578 | static void | 
|  | 579 | fde_merge (struct object *ob, fde_compare_t fde_compare, | 
|  | 580 | struct fde_vector *v1, struct fde_vector *v2) | 
|  | 581 | { | 
|  | 582 | size_t i1, i2; | 
|  | 583 | fde * fde2; | 
|  | 584 |  | 
|  | 585 | i2 = v2->count; | 
|  | 586 | if (i2 > 0) | 
|  | 587 | { | 
|  | 588 | i1 = v1->count; | 
|  | 589 | do | 
|  | 590 | { | 
|  | 591 | i2--; | 
|  | 592 | fde2 = v2->array[i2]; | 
|  | 593 | while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0) | 
|  | 594 | { | 
|  | 595 | v1->array[i1+i2] = v1->array[i1-1]; | 
|  | 596 | i1--; | 
|  | 597 | } | 
|  | 598 | v1->array[i1+i2] = fde2; | 
|  | 599 | } | 
|  | 600 | while (i2 > 0); | 
|  | 601 | v1->count += v2->count; | 
|  | 602 | } | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | static void | 
|  | 606 | end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count) | 
|  | 607 | { | 
|  | 608 | fde_compare_t fde_compare; | 
|  | 609 |  | 
|  | 610 | if (accu->linear->count != count) | 
|  | 611 | abort (); | 
|  | 612 |  | 
|  | 613 | if (ob->s.b.mixed_encoding) | 
|  | 614 | fde_compare = fde_mixed_encoding_compare; | 
|  | 615 | else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
|  | 616 | fde_compare = fde_unencoded_compare; | 
|  | 617 | else | 
|  | 618 | fde_compare = fde_single_encoding_compare; | 
|  | 619 |  | 
|  | 620 | if (accu->erratic) | 
|  | 621 | { | 
|  | 622 | fde_split (ob, fde_compare, accu->linear, accu->erratic); | 
|  | 623 | if (accu->linear->count + accu->erratic->count != count) | 
|  | 624 | abort (); | 
|  | 625 | frame_heapsort (ob, fde_compare, accu->erratic); | 
|  | 626 | fde_merge (ob, fde_compare, accu->linear, accu->erratic); | 
|  | 627 | free (accu->erratic); | 
|  | 628 | } | 
|  | 629 | else | 
|  | 630 | { | 
|  | 631 | /* We've not managed to malloc an erratic array, | 
|  | 632 | so heap sort in the linear one.  */ | 
|  | 633 | frame_heapsort (ob, fde_compare, accu->linear); | 
|  | 634 | } | 
|  | 635 | } | 
|  | 636 |  | 
|  | 637 |  | 
|  | 638 | /* Update encoding, mixed_encoding, and pc_begin for OB for the | 
|  | 639 | fde array beginning at THIS_FDE.  Return the number of fdes | 
|  | 640 | encountered along the way.  */ | 
|  | 641 |  | 
|  | 642 | static size_t | 
|  | 643 | classify_object_over_fdes (struct object *ob, fde *this_fde) | 
|  | 644 | { | 
|  | 645 | struct dwarf_cie *last_cie = 0; | 
|  | 646 | size_t count = 0; | 
|  | 647 | int encoding = DW_EH_PE_absptr; | 
|  | 648 | _Unwind_Ptr base = 0; | 
|  | 649 |  | 
|  | 650 | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | 651 | { | 
|  | 652 | struct dwarf_cie *this_cie; | 
|  | 653 | _Unwind_Ptr mask, pc_begin; | 
|  | 654 |  | 
|  | 655 | /* Skip CIEs.  */ | 
|  | 656 | if (this_fde->CIE_delta == 0) | 
|  | 657 | continue; | 
|  | 658 |  | 
|  | 659 | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | 660 | objects for later.  */ | 
|  | 661 | this_cie = get_cie (this_fde); | 
|  | 662 | if (this_cie != last_cie) | 
|  | 663 | { | 
|  | 664 | last_cie = this_cie; | 
|  | 665 | encoding = get_cie_encoding (this_cie); | 
|  | 666 | base = base_from_object (encoding, ob); | 
|  | 667 | if (ob->s.b.encoding == DW_EH_PE_omit) | 
|  | 668 | ob->s.b.encoding = encoding; | 
|  | 669 | else if (ob->s.b.encoding != encoding) | 
|  | 670 | ob->s.b.mixed_encoding = 1; | 
|  | 671 | } | 
|  | 672 |  | 
|  | 673 | read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
|  | 674 | &pc_begin); | 
|  | 675 |  | 
|  | 676 | /* Take care to ignore link-once functions that were removed. | 
|  | 677 | In these cases, the function address will be NULL, but if | 
|  | 678 | the encoding is smaller than a pointer a true NULL may not | 
|  | 679 | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | 680 | mask = size_of_encoded_value (encoding); | 
|  | 681 | if (mask < sizeof (void *)) | 
|  | 682 | mask = (1L << (mask << 3)) - 1; | 
|  | 683 | else | 
|  | 684 | mask = -1; | 
|  | 685 |  | 
|  | 686 | if ((pc_begin & mask) == 0) | 
|  | 687 | continue; | 
|  | 688 |  | 
|  | 689 | count += 1; | 
|  | 690 | if ((void *) pc_begin < ob->pc_begin) | 
|  | 691 | ob->pc_begin = (void *) pc_begin; | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | return count; | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | static void | 
|  | 698 | add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde) | 
|  | 699 | { | 
|  | 700 | struct dwarf_cie *last_cie = 0; | 
|  | 701 | int encoding = ob->s.b.encoding; | 
|  | 702 | _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
|  | 703 |  | 
|  | 704 | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | 705 | { | 
|  | 706 | struct dwarf_cie *this_cie; | 
|  | 707 |  | 
|  | 708 | /* Skip CIEs.  */ | 
|  | 709 | if (this_fde->CIE_delta == 0) | 
|  | 710 | continue; | 
|  | 711 |  | 
|  | 712 | if (ob->s.b.mixed_encoding) | 
|  | 713 | { | 
|  | 714 | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | 715 | objects for later.  */ | 
|  | 716 | this_cie = get_cie (this_fde); | 
|  | 717 | if (this_cie != last_cie) | 
|  | 718 | { | 
|  | 719 | last_cie = this_cie; | 
|  | 720 | encoding = get_cie_encoding (this_cie); | 
|  | 721 | base = base_from_object (encoding, ob); | 
|  | 722 | } | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | if (encoding == DW_EH_PE_absptr) | 
|  | 726 | { | 
|  | 727 | if (get_pc_begin (this_fde, 0) == 0) | 
|  | 728 | continue; | 
|  | 729 | } | 
|  | 730 | else | 
|  | 731 | { | 
|  | 732 | _Unwind_Ptr pc_begin, mask; | 
|  | 733 |  | 
|  | 734 | read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
|  | 735 | &pc_begin); | 
|  | 736 |  | 
|  | 737 | /* Take care to ignore link-once functions that were removed. | 
|  | 738 | In these cases, the function address will be NULL, but if | 
|  | 739 | the encoding is smaller than a pointer a true NULL may not | 
|  | 740 | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | 741 | mask = size_of_encoded_value (encoding); | 
|  | 742 | if (mask < sizeof (void *)) | 
|  | 743 | mask = (1L << (mask << 3)) - 1; | 
|  | 744 | else | 
|  | 745 | mask = -1; | 
|  | 746 |  | 
|  | 747 | if ((pc_begin & mask) == 0) | 
|  | 748 | continue; | 
|  | 749 | } | 
|  | 750 |  | 
|  | 751 | fde_insert (accu, this_fde); | 
|  | 752 | } | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | /* Set up a sorted array of pointers to FDEs for a loaded object.  We | 
|  | 756 | count up the entries before allocating the array because it's likely to | 
|  | 757 | be faster.  We can be called multiple times, should we have failed to | 
|  | 758 | allocate a sorted fde array on a previous occasion.  */ | 
|  | 759 |  | 
|  | 760 | static void | 
|  | 761 | init_object (struct object* ob) | 
|  | 762 | { | 
|  | 763 | struct fde_accumulator accu; | 
|  | 764 | size_t count; | 
|  | 765 |  | 
|  | 766 | count = ob->s.b.count; | 
|  | 767 | if (count == 0) | 
|  | 768 | { | 
|  | 769 | if (ob->s.b.from_array) | 
|  | 770 | { | 
|  | 771 | fde **p = ob->u.array; | 
|  | 772 | for (count = 0; *p; ++p) | 
|  | 773 | count += classify_object_over_fdes (ob, *p); | 
|  | 774 | } | 
|  | 775 | else | 
|  | 776 | count = classify_object_over_fdes (ob, ob->u.single); | 
|  | 777 |  | 
|  | 778 | /* The count field we have in the main struct object is somewhat | 
|  | 779 | limited, but should suffice for virtually all cases.  If the | 
|  | 780 | counted value doesn't fit, re-write a zero.  The worst that | 
|  | 781 | happens is that we re-count next time -- admittedly non-trivial | 
|  | 782 | in that this implies some 2M fdes, but at least we function.  */ | 
|  | 783 | ob->s.b.count = count; | 
|  | 784 | if (ob->s.b.count != count) | 
|  | 785 | ob->s.b.count = 0; | 
|  | 786 | } | 
|  | 787 |  | 
|  | 788 | if (!start_fde_sort (&accu, count)) | 
|  | 789 | return; | 
|  | 790 |  | 
|  | 791 | if (ob->s.b.from_array) | 
|  | 792 | { | 
|  | 793 | fde **p; | 
|  | 794 | for (p = ob->u.array; *p; ++p) | 
|  | 795 | add_fdes (ob, &accu, *p); | 
|  | 796 | } | 
|  | 797 | else | 
|  | 798 | add_fdes (ob, &accu, ob->u.single); | 
|  | 799 |  | 
|  | 800 | end_fde_sort (ob, &accu, count); | 
|  | 801 |  | 
|  | 802 | /* Save the original fde pointer, since this is the key by which the | 
|  | 803 | DSO will deregister the object.  */ | 
|  | 804 | accu.linear->orig_data = ob->u.single; | 
|  | 805 | ob->u.sort = accu.linear; | 
|  | 806 |  | 
|  | 807 | ob->s.b.sorted = 1; | 
|  | 808 | } | 
|  | 809 |  | 
|  | 810 | /* A linear search through a set of FDEs for the given PC.  This is | 
|  | 811 | used when there was insufficient memory to allocate and sort an | 
|  | 812 | array.  */ | 
|  | 813 |  | 
|  | 814 | static fde * | 
|  | 815 | linear_search_fdes (struct object *ob, fde *this_fde, void *pc) | 
|  | 816 | { | 
|  | 817 | struct dwarf_cie *last_cie = 0; | 
|  | 818 | int encoding = ob->s.b.encoding; | 
|  | 819 | _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
|  | 820 |  | 
|  | 821 | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | 822 | { | 
|  | 823 | struct dwarf_cie *this_cie; | 
|  | 824 | _Unwind_Ptr pc_begin, pc_range; | 
|  | 825 |  | 
|  | 826 | /* Skip CIEs.  */ | 
|  | 827 | if (this_fde->CIE_delta == 0) | 
|  | 828 | continue; | 
|  | 829 |  | 
|  | 830 | if (ob->s.b.mixed_encoding) | 
|  | 831 | { | 
|  | 832 | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | 833 | objects for later.  */ | 
|  | 834 | this_cie = get_cie (this_fde); | 
|  | 835 | if (this_cie != last_cie) | 
|  | 836 | { | 
|  | 837 | last_cie = this_cie; | 
|  | 838 | encoding = get_cie_encoding (this_cie); | 
|  | 839 | base = base_from_object (encoding, ob); | 
|  | 840 | } | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | if (encoding == DW_EH_PE_absptr) | 
|  | 844 | { | 
|  | 845 | pc_begin = get_pc_begin (this_fde, 0); | 
|  | 846 | pc_range = get_pc_begin (this_fde, 1); | 
|  | 847 | if (pc_begin == 0) | 
|  | 848 | continue; | 
|  | 849 | } | 
|  | 850 | else | 
|  | 851 | { | 
|  | 852 | _Unwind_Ptr mask; | 
|  | 853 | const unsigned char *p; | 
|  | 854 |  | 
|  | 855 | p = read_encoded_value_with_base (encoding, base, | 
|  | 856 | this_fde->pc_begin, &pc_begin); | 
|  | 857 | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  | 858 |  | 
|  | 859 | /* Take care to ignore link-once functions that were removed. | 
|  | 860 | In these cases, the function address will be NULL, but if | 
|  | 861 | the encoding is smaller than a pointer a true NULL may not | 
|  | 862 | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | 863 | mask = size_of_encoded_value (encoding); | 
|  | 864 | if (mask < sizeof (void *)) | 
|  | 865 | mask = (1L << (mask << 3)) - 1; | 
|  | 866 | else | 
|  | 867 | mask = -1; | 
|  | 868 |  | 
|  | 869 | if ((pc_begin & mask) == 0) | 
|  | 870 | continue; | 
|  | 871 | } | 
|  | 872 |  | 
|  | 873 | if ((_Unwind_Ptr) pc - pc_begin < pc_range) | 
|  | 874 | return this_fde; | 
|  | 875 | } | 
|  | 876 |  | 
|  | 877 | return NULL; | 
|  | 878 | } | 
|  | 879 |  | 
|  | 880 | /* Binary search for an FDE containing the given PC.  Here are three | 
|  | 881 | implementations of increasing complexity.  */ | 
|  | 882 |  | 
|  | 883 | static fde * | 
|  | 884 | binary_search_unencoded_fdes (struct object *ob, void *pc) | 
|  | 885 | { | 
|  | 886 | struct fde_vector *vec = ob->u.sort; | 
|  | 887 | size_t lo, hi; | 
|  | 888 |  | 
|  | 889 | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | 890 | { | 
|  | 891 | size_t i = (lo + hi) / 2; | 
|  | 892 | fde *f = vec->array[i]; | 
|  | 893 | void *pc_begin; | 
|  | 894 | uaddr pc_range; | 
|  | 895 |  | 
|  | 896 | pc_begin = (void *) get_pc_begin (f, 0); | 
|  | 897 | pc_range = (uaddr) get_pc_begin (f, 1); | 
|  | 898 |  | 
|  | 899 | if (pc < pc_begin) | 
|  | 900 | hi = i; | 
|  | 901 | else if (pc >= pc_begin + pc_range) | 
|  | 902 | lo = i + 1; | 
|  | 903 | else | 
|  | 904 | return f; | 
|  | 905 | } | 
|  | 906 |  | 
|  | 907 | return NULL; | 
|  | 908 | } | 
|  | 909 |  | 
|  | 910 | static fde * | 
|  | 911 | binary_search_single_encoding_fdes (struct object *ob, void *pc) | 
|  | 912 | { | 
|  | 913 | struct fde_vector *vec = ob->u.sort; | 
|  | 914 | int encoding = ob->s.b.encoding; | 
|  | 915 | _Unwind_Ptr base = base_from_object (encoding, ob); | 
|  | 916 | size_t lo, hi; | 
|  | 917 |  | 
|  | 918 | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | 919 | { | 
|  | 920 | size_t i = (lo + hi) / 2; | 
|  | 921 | fde *f = vec->array[i]; | 
|  | 922 | _Unwind_Ptr pc_begin, pc_range; | 
|  | 923 | const unsigned char *p; | 
|  | 924 |  | 
|  | 925 | p = read_encoded_value_with_base (encoding, base, f->pc_begin, | 
|  | 926 | &pc_begin); | 
|  | 927 | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  | 928 |  | 
|  | 929 | if ((_Unwind_Ptr) pc < pc_begin) | 
|  | 930 | hi = i; | 
|  | 931 | else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
|  | 932 | lo = i + 1; | 
|  | 933 | else | 
|  | 934 | return f; | 
|  | 935 | } | 
|  | 936 |  | 
|  | 937 | return NULL; | 
|  | 938 | } | 
|  | 939 |  | 
|  | 940 | static fde * | 
|  | 941 | binary_search_mixed_encoding_fdes (struct object *ob, void *pc) | 
|  | 942 | { | 
|  | 943 | struct fde_vector *vec = ob->u.sort; | 
|  | 944 | size_t lo, hi; | 
|  | 945 |  | 
|  | 946 | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | 947 | { | 
|  | 948 | size_t i = (lo + hi) / 2; | 
|  | 949 | fde *f = vec->array[i]; | 
|  | 950 | _Unwind_Ptr pc_begin, pc_range; | 
|  | 951 | const unsigned char *p; | 
|  | 952 | int encoding; | 
|  | 953 |  | 
|  | 954 | encoding = get_fde_encoding (f); | 
|  | 955 | p = read_encoded_value_with_base (encoding, | 
|  | 956 | base_from_object (encoding, ob), | 
|  | 957 | f->pc_begin, &pc_begin); | 
|  | 958 | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  | 959 |  | 
|  | 960 | if ((_Unwind_Ptr) pc < pc_begin) | 
|  | 961 | hi = i; | 
|  | 962 | else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
|  | 963 | lo = i + 1; | 
|  | 964 | else | 
|  | 965 | return f; | 
|  | 966 | } | 
|  | 967 |  | 
|  | 968 | return NULL; | 
|  | 969 | } | 
|  | 970 |  | 
|  | 971 | static fde * | 
|  | 972 | search_object (struct object* ob, void *pc) | 
|  | 973 | { | 
|  | 974 | /* If the data hasn't been sorted, try to do this now.  We may have | 
|  | 975 | more memory available than last time we tried.  */ | 
|  | 976 | if (! ob->s.b.sorted) | 
|  | 977 | { | 
|  | 978 | init_object (ob); | 
|  | 979 |  | 
|  | 980 | /* Despite the above comment, the normal reason to get here is | 
|  | 981 | that we've not processed this object before.  A quick range | 
|  | 982 | check is in order.  */ | 
|  | 983 | if (pc < ob->pc_begin) | 
|  | 984 | return NULL; | 
|  | 985 | } | 
|  | 986 |  | 
|  | 987 | if (ob->s.b.sorted) | 
|  | 988 | { | 
|  | 989 | if (ob->s.b.mixed_encoding) | 
|  | 990 | return binary_search_mixed_encoding_fdes (ob, pc); | 
|  | 991 | else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
|  | 992 | return binary_search_unencoded_fdes (ob, pc); | 
|  | 993 | else | 
|  | 994 | return binary_search_single_encoding_fdes (ob, pc); | 
|  | 995 | } | 
|  | 996 | else | 
|  | 997 | { | 
|  | 998 | /* Long slow labourious linear search, cos we've no memory.  */ | 
|  | 999 | if (ob->s.b.from_array) | 
|  | 1000 | { | 
|  | 1001 | fde **p; | 
|  | 1002 | for (p = ob->u.array; *p ; p++) | 
|  | 1003 | { | 
|  | 1004 | fde *f = linear_search_fdes (ob, *p, pc); | 
|  | 1005 | if (f) | 
|  | 1006 | return f; | 
|  | 1007 | } | 
|  | 1008 | return NULL; | 
|  | 1009 | } | 
|  | 1010 | else | 
|  | 1011 | return linear_search_fdes (ob, ob->u.single, pc); | 
|  | 1012 | } | 
|  | 1013 | } | 
|  | 1014 |  | 
|  | 1015 | fde * | 
|  | 1016 | _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases) | 
|  | 1017 | { | 
|  | 1018 | struct object *ob; | 
|  | 1019 | fde *f = NULL; | 
|  | 1020 |  | 
|  | 1021 | init_object_mutex_once (); | 
|  | 1022 | __gthread_mutex_lock (&object_mutex); | 
|  | 1023 |  | 
|  | 1024 | /* Linear search through the classified objects, to find the one | 
|  | 1025 | containing the pc.  Note that pc_begin is sorted descending, and | 
|  | 1026 | we expect objects to be non-overlapping.  */ | 
|  | 1027 | for (ob = seen_objects; ob; ob = ob->next) | 
|  | 1028 | if (pc >= ob->pc_begin) | 
|  | 1029 | { | 
|  | 1030 | f = search_object (ob, pc); | 
|  | 1031 | if (f) | 
|  | 1032 | goto fini; | 
|  | 1033 | break; | 
|  | 1034 | } | 
|  | 1035 |  | 
|  | 1036 | /* Classify and search the objects we've not yet processed.  */ | 
|  | 1037 | while ((ob = unseen_objects)) | 
|  | 1038 | { | 
|  | 1039 | struct object **p; | 
|  | 1040 |  | 
|  | 1041 | unseen_objects = ob->next; | 
|  | 1042 | f = search_object (ob, pc); | 
|  | 1043 |  | 
|  | 1044 | /* Insert the object into the classified list.  */ | 
|  | 1045 | for (p = &seen_objects; *p ; p = &(*p)->next) | 
|  | 1046 | if ((*p)->pc_begin < ob->pc_begin) | 
|  | 1047 | break; | 
|  | 1048 | ob->next = *p; | 
|  | 1049 | *p = ob; | 
|  | 1050 |  | 
|  | 1051 | if (f) | 
|  | 1052 | goto fini; | 
|  | 1053 | } | 
|  | 1054 |  | 
|  | 1055 | fini: | 
|  | 1056 | __gthread_mutex_unlock (&object_mutex); | 
|  | 1057 |  | 
|  | 1058 | if (f) | 
|  | 1059 | { | 
|  | 1060 | int encoding; | 
|  | 1061 | _Unwind_Ptr func; | 
|  | 1062 |  | 
|  | 1063 | bases->tbase = ob->tbase; | 
|  | 1064 | bases->dbase = ob->dbase; | 
|  | 1065 |  | 
|  | 1066 | encoding = ob->s.b.encoding; | 
|  | 1067 | if (ob->s.b.mixed_encoding) | 
|  | 1068 | encoding = get_fde_encoding (f); | 
|  | 1069 | read_encoded_value_with_base (encoding, base_from_object (encoding, ob), | 
|  | 1070 | f->pc_begin, &func); | 
|  | 1071 | bases->func = (void *) func; | 
|  | 1072 | } | 
|  | 1073 |  | 
|  | 1074 | return f; | 
|  | 1075 | } | 
|  | 1076 |  | 
|  | 1077 | #endif |