| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* crc32.c -- compute the CRC-32 of a data stream | 
 | 2 |  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler | 
 | 3 |  * For conditions of distribution and use, see copyright notice in zlib.h | 
 | 4 |  * | 
 | 5 |  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | 
 | 6 |  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | 
 | 7 |  * tables for updating the shift register in one step with three exclusive-ors | 
 | 8 |  * instead of four steps with four exclusive-ors.  This results in about a | 
 | 9 |  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | /* @(#) $Id$ */ | 
 | 13 |  | 
 | 14 | /* | 
 | 15 |   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | 
 | 16 |   protection on the static variables used to control the first-use generation | 
 | 17 |   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should | 
 | 18 |   first call get_crc_table() to initialize the tables before allowing more than | 
 | 19 |   one thread to use crc32(). | 
 | 20 |  | 
 | 21 |   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | 
 | 22 |  */ | 
 | 23 |  | 
 | 24 | #ifdef MAKECRCH | 
 | 25 | #  include <stdio.h> | 
 | 26 | #  ifndef DYNAMIC_CRC_TABLE | 
 | 27 | #    define DYNAMIC_CRC_TABLE | 
 | 28 | #  endif /* !DYNAMIC_CRC_TABLE */ | 
 | 29 | #endif /* MAKECRCH */ | 
 | 30 |  | 
 | 31 | #include "zutil.h"      /* for STDC and FAR definitions */ | 
 | 32 |  | 
 | 33 | /* Definitions for doing the crc four data bytes at a time. */ | 
 | 34 | #if !defined(NOBYFOUR) && defined(Z_U4) | 
 | 35 | #  define BYFOUR | 
 | 36 | #endif | 
 | 37 | #ifdef BYFOUR | 
 | 38 |    local unsigned long crc32_little OF((unsigned long, | 
 | 39 |                         const unsigned char FAR *, z_size_t)); | 
 | 40 |    local unsigned long crc32_big OF((unsigned long, | 
 | 41 |                         const unsigned char FAR *, z_size_t)); | 
 | 42 | #  define TBLS 8 | 
 | 43 | #else | 
 | 44 | #  define TBLS 1 | 
 | 45 | #endif /* BYFOUR */ | 
 | 46 |  | 
 | 47 | /* Local functions for crc concatenation */ | 
 | 48 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | 
 | 49 |                                          unsigned long vec)); | 
 | 50 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | 
 | 51 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | 
 | 52 |  | 
 | 53 |  | 
 | 54 | #ifdef DYNAMIC_CRC_TABLE | 
 | 55 |  | 
 | 56 | local volatile int crc_table_empty = 1; | 
 | 57 | local z_crc_t FAR crc_table[TBLS][256]; | 
 | 58 | local void make_crc_table OF((void)); | 
 | 59 | #ifdef MAKECRCH | 
 | 60 |    local void write_table OF((FILE *, const z_crc_t FAR *)); | 
 | 61 | #endif /* MAKECRCH */ | 
 | 62 | /* | 
 | 63 |   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | 
 | 64 |   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | 
 | 65 |  | 
 | 66 |   Polynomials over GF(2) are represented in binary, one bit per coefficient, | 
 | 67 |   with the lowest powers in the most significant bit.  Then adding polynomials | 
 | 68 |   is just exclusive-or, and multiplying a polynomial by x is a right shift by | 
 | 69 |   one.  If we call the above polynomial p, and represent a byte as the | 
 | 70 |   polynomial q, also with the lowest power in the most significant bit (so the | 
 | 71 |   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | 
 | 72 |   where a mod b means the remainder after dividing a by b. | 
 | 73 |  | 
 | 74 |   This calculation is done using the shift-register method of multiplying and | 
 | 75 |   taking the remainder.  The register is initialized to zero, and for each | 
 | 76 |   incoming bit, x^32 is added mod p to the register if the bit is a one (where | 
 | 77 |   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | 
 | 78 |   x (which is shifting right by one and adding x^32 mod p if the bit shifted | 
 | 79 |   out is a one).  We start with the highest power (least significant bit) of | 
 | 80 |   q and repeat for all eight bits of q. | 
 | 81 |  | 
 | 82 |   The first table is simply the CRC of all possible eight bit values.  This is | 
 | 83 |   all the information needed to generate CRCs on data a byte at a time for all | 
 | 84 |   combinations of CRC register values and incoming bytes.  The remaining tables | 
 | 85 |   allow for word-at-a-time CRC calculation for both big-endian and little- | 
 | 86 |   endian machines, where a word is four bytes. | 
 | 87 | */ | 
 | 88 | local void make_crc_table() | 
 | 89 | { | 
 | 90 |     z_crc_t c; | 
 | 91 |     int n, k; | 
 | 92 |     z_crc_t poly;                       /* polynomial exclusive-or pattern */ | 
 | 93 |     /* terms of polynomial defining this crc (except x^32): */ | 
 | 94 |     static volatile int first = 1;      /* flag to limit concurrent making */ | 
 | 95 |     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | 
 | 96 |  | 
 | 97 |     /* See if another task is already doing this (not thread-safe, but better | 
 | 98 |        than nothing -- significantly reduces duration of vulnerability in | 
 | 99 |        case the advice about DYNAMIC_CRC_TABLE is ignored) */ | 
 | 100 |     if (first) { | 
 | 101 |         first = 0; | 
 | 102 |  | 
 | 103 |         /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | 
 | 104 |         poly = 0; | 
 | 105 |         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | 
 | 106 |             poly |= (z_crc_t)1 << (31 - p[n]); | 
 | 107 |  | 
 | 108 |         /* generate a crc for every 8-bit value */ | 
 | 109 |         for (n = 0; n < 256; n++) { | 
 | 110 |             c = (z_crc_t)n; | 
 | 111 |             for (k = 0; k < 8; k++) | 
 | 112 |                 c = c & 1 ? poly ^ (c >> 1) : c >> 1; | 
 | 113 |             crc_table[0][n] = c; | 
 | 114 |         } | 
 | 115 |  | 
 | 116 | #ifdef BYFOUR | 
 | 117 |         /* generate crc for each value followed by one, two, and three zeros, | 
 | 118 |            and then the byte reversal of those as well as the first table */ | 
 | 119 |         for (n = 0; n < 256; n++) { | 
 | 120 |             c = crc_table[0][n]; | 
 | 121 |             crc_table[4][n] = ZSWAP32(c); | 
 | 122 |             for (k = 1; k < 4; k++) { | 
 | 123 |                 c = crc_table[0][c & 0xff] ^ (c >> 8); | 
 | 124 |                 crc_table[k][n] = c; | 
 | 125 |                 crc_table[k + 4][n] = ZSWAP32(c); | 
 | 126 |             } | 
 | 127 |         } | 
 | 128 | #endif /* BYFOUR */ | 
 | 129 |  | 
 | 130 |         crc_table_empty = 0; | 
 | 131 |     } | 
 | 132 |     else {      /* not first */ | 
 | 133 |         /* wait for the other guy to finish (not efficient, but rare) */ | 
 | 134 |         while (crc_table_empty) | 
 | 135 |             ; | 
 | 136 |     } | 
 | 137 |  | 
 | 138 | #ifdef MAKECRCH | 
 | 139 |     /* write out CRC tables to crc32.h */ | 
 | 140 |     { | 
 | 141 |         FILE *out; | 
 | 142 |  | 
 | 143 |         out = fopen("crc32.h", "w"); | 
 | 144 |         if (out == NULL) return; | 
 | 145 |         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | 
 | 146 |         fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | 
 | 147 |         fprintf(out, "local const z_crc_t FAR "); | 
 | 148 |         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n"); | 
 | 149 |         write_table(out, crc_table[0]); | 
 | 150 | #  ifdef BYFOUR | 
 | 151 |         fprintf(out, "#ifdef BYFOUR\n"); | 
 | 152 |         for (k = 1; k < 8; k++) { | 
 | 153 |             fprintf(out, "  },\n  {\n"); | 
 | 154 |             write_table(out, crc_table[k]); | 
 | 155 |         } | 
 | 156 |         fprintf(out, "#endif\n"); | 
 | 157 | #  endif /* BYFOUR */ | 
 | 158 |         fprintf(out, "  }\n};\n"); | 
 | 159 |         fclose(out); | 
 | 160 |     } | 
 | 161 | #endif /* MAKECRCH */ | 
 | 162 | } | 
 | 163 |  | 
 | 164 | #ifdef MAKECRCH | 
 | 165 | local void write_table(out, table) | 
 | 166 |     FILE *out; | 
 | 167 |     const z_crc_t FAR *table; | 
 | 168 | { | 
 | 169 |     int n; | 
 | 170 |  | 
 | 171 |     for (n = 0; n < 256; n++) | 
 | 172 |         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ", | 
 | 173 |                 (unsigned long)(table[n]), | 
 | 174 |                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | 
 | 175 | } | 
 | 176 | #endif /* MAKECRCH */ | 
 | 177 |  | 
 | 178 | #else /* !DYNAMIC_CRC_TABLE */ | 
 | 179 | /* ======================================================================== | 
 | 180 |  * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | 
 | 181 |  */ | 
 | 182 | #include "crc32.h" | 
 | 183 | #endif /* DYNAMIC_CRC_TABLE */ | 
 | 184 |  | 
 | 185 | /* ========================================================================= | 
 | 186 |  * This function can be used by asm versions of crc32() | 
 | 187 |  */ | 
 | 188 | const z_crc_t FAR * ZEXPORT get_crc_table() | 
 | 189 | { | 
 | 190 | #ifdef DYNAMIC_CRC_TABLE | 
 | 191 |     if (crc_table_empty) | 
 | 192 |         make_crc_table(); | 
 | 193 | #endif /* DYNAMIC_CRC_TABLE */ | 
 | 194 |     return (const z_crc_t FAR *)crc_table; | 
 | 195 | } | 
 | 196 |  | 
 | 197 | /* ========================================================================= */ | 
 | 198 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | 
 | 199 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | 
 | 200 |  | 
 | 201 | /* ========================================================================= */ | 
 | 202 | unsigned long ZEXPORT crc32_z(crc, buf, len) | 
 | 203 |     unsigned long crc; | 
 | 204 |     const unsigned char FAR *buf; | 
 | 205 |     z_size_t len; | 
 | 206 | { | 
 | 207 |     if (buf == Z_NULL) return 0UL; | 
 | 208 |  | 
 | 209 | #ifdef DYNAMIC_CRC_TABLE | 
 | 210 |     if (crc_table_empty) | 
 | 211 |         make_crc_table(); | 
 | 212 | #endif /* DYNAMIC_CRC_TABLE */ | 
 | 213 |  | 
 | 214 | #ifdef BYFOUR | 
 | 215 |     if (sizeof(void *) == sizeof(ptrdiff_t)) { | 
 | 216 |         z_crc_t endian; | 
 | 217 |  | 
 | 218 |         endian = 1; | 
 | 219 |         if (*((unsigned char *)(&endian))) | 
 | 220 |             return crc32_little(crc, buf, len); | 
 | 221 |         else | 
 | 222 |             return crc32_big(crc, buf, len); | 
 | 223 |     } | 
 | 224 | #endif /* BYFOUR */ | 
 | 225 |     crc = crc ^ 0xffffffffUL; | 
 | 226 |     while (len >= 8) { | 
 | 227 |         DO8; | 
 | 228 |         len -= 8; | 
 | 229 |     } | 
 | 230 |     if (len) do { | 
 | 231 |         DO1; | 
 | 232 |     } while (--len); | 
 | 233 |     return crc ^ 0xffffffffUL; | 
 | 234 | } | 
 | 235 |  | 
 | 236 | /* ========================================================================= */ | 
 | 237 | unsigned long ZEXPORT crc32(crc, buf, len) | 
 | 238 |     unsigned long crc; | 
 | 239 |     const unsigned char FAR *buf; | 
 | 240 |     uInt len; | 
 | 241 | { | 
 | 242 |     return crc32_z(crc, buf, len); | 
 | 243 | } | 
 | 244 |  | 
 | 245 | #ifdef BYFOUR | 
 | 246 |  | 
 | 247 | /* | 
 | 248 |    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit | 
 | 249 |    integer pointer type. This violates the strict aliasing rule, where a | 
 | 250 |    compiler can assume, for optimization purposes, that two pointers to | 
 | 251 |    fundamentally different types won't ever point to the same memory. This can | 
 | 252 |    manifest as a problem only if one of the pointers is written to. This code | 
 | 253 |    only reads from those pointers. So long as this code remains isolated in | 
 | 254 |    this compilation unit, there won't be a problem. For this reason, this code | 
 | 255 |    should not be copied and pasted into a compilation unit in which other code | 
 | 256 |    writes to the buffer that is passed to these routines. | 
 | 257 |  */ | 
 | 258 |  | 
 | 259 | /* ========================================================================= */ | 
 | 260 | #define DOLIT4 c ^= *buf4++; \ | 
 | 261 |         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | 
 | 262 |             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | 
 | 263 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | 
 | 264 |  | 
 | 265 | /* ========================================================================= */ | 
 | 266 | local unsigned long crc32_little(crc, buf, len) | 
 | 267 |     unsigned long crc; | 
 | 268 |     const unsigned char FAR *buf; | 
 | 269 |     z_size_t len; | 
 | 270 | { | 
 | 271 |     register z_crc_t c; | 
 | 272 |     register const z_crc_t FAR *buf4; | 
 | 273 |  | 
 | 274 |     c = (z_crc_t)crc; | 
 | 275 |     c = ~c; | 
 | 276 |     while (len && ((ptrdiff_t)buf & 3)) { | 
 | 277 |         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | 
 | 278 |         len--; | 
 | 279 |     } | 
 | 280 |  | 
 | 281 |     buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | 
 | 282 |     while (len >= 32) { | 
 | 283 |         DOLIT32; | 
 | 284 |         len -= 32; | 
 | 285 |     } | 
 | 286 |     while (len >= 4) { | 
 | 287 |         DOLIT4; | 
 | 288 |         len -= 4; | 
 | 289 |     } | 
 | 290 |     buf = (const unsigned char FAR *)buf4; | 
 | 291 |  | 
 | 292 |     if (len) do { | 
 | 293 |         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | 
 | 294 |     } while (--len); | 
 | 295 |     c = ~c; | 
 | 296 |     return (unsigned long)c; | 
 | 297 | } | 
 | 298 |  | 
 | 299 | /* ========================================================================= */ | 
 | 300 | #define DOBIG4 c ^= *buf4++; \ | 
 | 301 |         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | 
 | 302 |             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | 
 | 303 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | 
 | 304 |  | 
 | 305 | /* ========================================================================= */ | 
 | 306 | local unsigned long crc32_big(crc, buf, len) | 
 | 307 |     unsigned long crc; | 
 | 308 |     const unsigned char FAR *buf; | 
 | 309 |     z_size_t len; | 
 | 310 | { | 
 | 311 |     register z_crc_t c; | 
 | 312 |     register const z_crc_t FAR *buf4; | 
 | 313 |  | 
 | 314 |     c = ZSWAP32((z_crc_t)crc); | 
 | 315 |     c = ~c; | 
 | 316 |     while (len && ((ptrdiff_t)buf & 3)) { | 
 | 317 |         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | 
 | 318 |         len--; | 
 | 319 |     } | 
 | 320 |  | 
 | 321 |     buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | 
 | 322 |     while (len >= 32) { | 
 | 323 |         DOBIG32; | 
 | 324 |         len -= 32; | 
 | 325 |     } | 
 | 326 |     while (len >= 4) { | 
 | 327 |         DOBIG4; | 
 | 328 |         len -= 4; | 
 | 329 |     } | 
 | 330 |     buf = (const unsigned char FAR *)buf4; | 
 | 331 |  | 
 | 332 |     if (len) do { | 
 | 333 |         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | 
 | 334 |     } while (--len); | 
 | 335 |     c = ~c; | 
 | 336 |     return (unsigned long)(ZSWAP32(c)); | 
 | 337 | } | 
 | 338 |  | 
 | 339 | #endif /* BYFOUR */ | 
 | 340 |  | 
 | 341 | #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */ | 
 | 342 |  | 
 | 343 | /* ========================================================================= */ | 
 | 344 | local unsigned long gf2_matrix_times(mat, vec) | 
 | 345 |     unsigned long *mat; | 
 | 346 |     unsigned long vec; | 
 | 347 | { | 
 | 348 |     unsigned long sum; | 
 | 349 |  | 
 | 350 |     sum = 0; | 
 | 351 |     while (vec) { | 
 | 352 |         if (vec & 1) | 
 | 353 |             sum ^= *mat; | 
 | 354 |         vec >>= 1; | 
 | 355 |         mat++; | 
 | 356 |     } | 
 | 357 |     return sum; | 
 | 358 | } | 
 | 359 |  | 
 | 360 | /* ========================================================================= */ | 
 | 361 | local void gf2_matrix_square(square, mat) | 
 | 362 |     unsigned long *square; | 
 | 363 |     unsigned long *mat; | 
 | 364 | { | 
 | 365 |     int n; | 
 | 366 |  | 
 | 367 |     for (n = 0; n < GF2_DIM; n++) | 
 | 368 |         square[n] = gf2_matrix_times(mat, mat[n]); | 
 | 369 | } | 
 | 370 |  | 
 | 371 | /* ========================================================================= */ | 
 | 372 | local uLong crc32_combine_(crc1, crc2, len2) | 
 | 373 |     uLong crc1; | 
 | 374 |     uLong crc2; | 
 | 375 |     z_off64_t len2; | 
 | 376 | { | 
 | 377 |     int n; | 
 | 378 |     unsigned long row; | 
 | 379 |     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */ | 
 | 380 |     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */ | 
 | 381 |  | 
 | 382 |     /* degenerate case (also disallow negative lengths) */ | 
 | 383 |     if (len2 <= 0) | 
 | 384 |         return crc1; | 
 | 385 |  | 
 | 386 |     /* put operator for one zero bit in odd */ | 
 | 387 |     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */ | 
 | 388 |     row = 1; | 
 | 389 |     for (n = 1; n < GF2_DIM; n++) { | 
 | 390 |         odd[n] = row; | 
 | 391 |         row <<= 1; | 
 | 392 |     } | 
 | 393 |  | 
 | 394 |     /* put operator for two zero bits in even */ | 
 | 395 |     gf2_matrix_square(even, odd); | 
 | 396 |  | 
 | 397 |     /* put operator for four zero bits in odd */ | 
 | 398 |     gf2_matrix_square(odd, even); | 
 | 399 |  | 
 | 400 |     /* apply len2 zeros to crc1 (first square will put the operator for one | 
 | 401 |        zero byte, eight zero bits, in even) */ | 
 | 402 |     do { | 
 | 403 |         /* apply zeros operator for this bit of len2 */ | 
 | 404 |         gf2_matrix_square(even, odd); | 
 | 405 |         if (len2 & 1) | 
 | 406 |             crc1 = gf2_matrix_times(even, crc1); | 
 | 407 |         len2 >>= 1; | 
 | 408 |  | 
 | 409 |         /* if no more bits set, then done */ | 
 | 410 |         if (len2 == 0) | 
 | 411 |             break; | 
 | 412 |  | 
 | 413 |         /* another iteration of the loop with odd and even swapped */ | 
 | 414 |         gf2_matrix_square(odd, even); | 
 | 415 |         if (len2 & 1) | 
 | 416 |             crc1 = gf2_matrix_times(odd, crc1); | 
 | 417 |         len2 >>= 1; | 
 | 418 |  | 
 | 419 |         /* if no more bits set, then done */ | 
 | 420 |     } while (len2 != 0); | 
 | 421 |  | 
 | 422 |     /* return combined crc */ | 
 | 423 |     crc1 ^= crc2; | 
 | 424 |     return crc1; | 
 | 425 | } | 
 | 426 |  | 
 | 427 | /* ========================================================================= */ | 
 | 428 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | 
 | 429 |     uLong crc1; | 
 | 430 |     uLong crc2; | 
 | 431 |     z_off_t len2; | 
 | 432 | { | 
 | 433 |     return crc32_combine_(crc1, crc2, len2); | 
 | 434 | } | 
 | 435 |  | 
 | 436 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | 
 | 437 |     uLong crc1; | 
 | 438 |     uLong crc2; | 
 | 439 |     z_off64_t len2; | 
 | 440 | { | 
 | 441 |     return crc32_combine_(crc1, crc2, len2); | 
 | 442 | } |