| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. | 
 | 3 |  * | 
 | 4 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 | 5 |  * this file except in compliance with the License.  You can obtain a copy | 
 | 6 |  * in the file LICENSE in the source distribution or at | 
 | 7 |  * https://www.openssl.org/source/license.html | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | #include <stdlib.h> | 
 | 11 | #include <string.h> | 
 | 12 | #include <openssl/crypto.h> | 
 | 13 |  | 
 | 14 | #include "crypto/poly1305.h" | 
 | 15 | #include "poly1305_local.h" | 
 | 16 |  | 
 | 17 | size_t Poly1305_ctx_size(void) | 
 | 18 | { | 
 | 19 |     return sizeof(struct poly1305_context); | 
 | 20 | } | 
 | 21 |  | 
 | 22 | /* pick 32-bit unsigned integer in little endian order */ | 
 | 23 | static unsigned int U8TOU32(const unsigned char *p) | 
 | 24 | { | 
 | 25 |     return (((unsigned int)(p[0] & 0xff)) | | 
 | 26 |             ((unsigned int)(p[1] & 0xff) << 8) | | 
 | 27 |             ((unsigned int)(p[2] & 0xff) << 16) | | 
 | 28 |             ((unsigned int)(p[3] & 0xff) << 24)); | 
 | 29 | } | 
 | 30 |  | 
 | 31 | /* | 
 | 32 |  * Implementations can be classified by amount of significant bits in | 
 | 33 |  * words making up the multi-precision value, or in other words radix | 
 | 34 |  * or base of numerical representation, e.g. base 2^64, base 2^32, | 
 | 35 |  * base 2^26. Complementary characteristic is how wide is the result of | 
 | 36 |  * multiplication of pair of digits, e.g. it would take 128 bits to | 
 | 37 |  * accommodate multiplication result in base 2^64 case. These are used | 
 | 38 |  * interchangeably. To describe implementation that is. But interface | 
 | 39 |  * is designed to isolate this so that low-level primitives implemented | 
 | 40 |  * in assembly can be self-contained/self-coherent. | 
 | 41 |  */ | 
 | 42 | #ifndef POLY1305_ASM | 
 | 43 | /* | 
 | 44 |  * Even though there is __int128 reference implementation targeting | 
 | 45 |  * 64-bit platforms provided below, it's not obvious that it's optimal | 
 | 46 |  * choice for every one of them. Depending on instruction set overall | 
 | 47 |  * amount of instructions can be comparable to one in __int64 | 
 | 48 |  * implementation. Amount of multiplication instructions would be lower, | 
 | 49 |  * but not necessarily overall. And in out-of-order execution context, | 
 | 50 |  * it is the latter that can be crucial... | 
 | 51 |  * | 
 | 52 |  * On related note. Poly1305 author, D. J. Bernstein, discusses and | 
 | 53 |  * provides floating-point implementations of the algorithm in question. | 
 | 54 |  * It made a lot of sense by the time of introduction, because most | 
 | 55 |  * then-modern processors didn't have pipelined integer multiplier. | 
 | 56 |  * [Not to mention that some had non-constant timing for integer | 
 | 57 |  * multiplications.] Floating-point instructions on the other hand could | 
 | 58 |  * be issued every cycle, which allowed to achieve better performance. | 
 | 59 |  * Nowadays, with SIMD and/or out-or-order execution, shared or | 
 | 60 |  * even emulated FPU, it's more complicated, and floating-point | 
 | 61 |  * implementation is not necessarily optimal choice in every situation, | 
 | 62 |  * rather contrary... | 
 | 63 |  * | 
 | 64 |  *                                              <appro@openssl.org> | 
 | 65 |  */ | 
 | 66 |  | 
 | 67 | typedef unsigned int u32; | 
 | 68 |  | 
 | 69 | /* | 
 | 70 |  * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks | 
 | 71 |  * of |inp| no longer than |len|. Behaviour for |len| not divisible by | 
 | 72 |  * block size is unspecified in general case, even though in reference | 
 | 73 |  * implementation the trailing chunk is simply ignored. Per algorithm | 
 | 74 |  * specification, every input block, complete or last partial, is to be | 
 | 75 |  * padded with a bit past most significant byte. The latter kind is then | 
 | 76 |  * padded with zeros till block size. This last partial block padding | 
 | 77 |  * is caller(*)'s responsibility, and because of this the last partial | 
 | 78 |  * block is always processed with separate call with |len| set to | 
 | 79 |  * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| | 
 | 80 |  * should be set to 1 to perform implicit padding with 128th bit. | 
 | 81 |  * poly1305_blocks does not actually check for this constraint though, | 
 | 82 |  * it's caller(*)'s responsibility to comply. | 
 | 83 |  * | 
 | 84 |  * (*)  In the context "caller" is not application code, but higher | 
 | 85 |  *      level Poly1305_* from this very module, so that quirks are | 
 | 86 |  *      handled locally. | 
 | 87 |  */ | 
 | 88 | static void | 
 | 89 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); | 
 | 90 |  | 
 | 91 | /* | 
 | 92 |  * Type-agnostic "rip-off" from constant_time.h | 
 | 93 |  */ | 
 | 94 | # define CONSTANT_TIME_CARRY(a,b) ( \ | 
 | 95 |          (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ | 
 | 96 |          ) | 
 | 97 |  | 
 | 98 | # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \ | 
 | 99 |      (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8) | 
 | 100 |  | 
 | 101 | typedef unsigned long u64; | 
 | 102 | typedef __uint128_t u128; | 
 | 103 |  | 
 | 104 | typedef struct { | 
 | 105 |     u64 h[3]; | 
 | 106 |     u64 r[2]; | 
 | 107 | } poly1305_internal; | 
 | 108 |  | 
 | 109 | /* pick 32-bit unsigned integer in little endian order */ | 
 | 110 | static u64 U8TOU64(const unsigned char *p) | 
 | 111 | { | 
 | 112 |     return (((u64)(p[0] & 0xff)) | | 
 | 113 |             ((u64)(p[1] & 0xff) << 8) | | 
 | 114 |             ((u64)(p[2] & 0xff) << 16) | | 
 | 115 |             ((u64)(p[3] & 0xff) << 24) | | 
 | 116 |             ((u64)(p[4] & 0xff) << 32) | | 
 | 117 |             ((u64)(p[5] & 0xff) << 40) | | 
 | 118 |             ((u64)(p[6] & 0xff) << 48) | | 
 | 119 |             ((u64)(p[7] & 0xff) << 56)); | 
 | 120 | } | 
 | 121 |  | 
 | 122 | /* store a 32-bit unsigned integer in little endian */ | 
 | 123 | static void U64TO8(unsigned char *p, u64 v) | 
 | 124 | { | 
 | 125 |     p[0] = (unsigned char)((v) & 0xff); | 
 | 126 |     p[1] = (unsigned char)((v >> 8) & 0xff); | 
 | 127 |     p[2] = (unsigned char)((v >> 16) & 0xff); | 
 | 128 |     p[3] = (unsigned char)((v >> 24) & 0xff); | 
 | 129 |     p[4] = (unsigned char)((v >> 32) & 0xff); | 
 | 130 |     p[5] = (unsigned char)((v >> 40) & 0xff); | 
 | 131 |     p[6] = (unsigned char)((v >> 48) & 0xff); | 
 | 132 |     p[7] = (unsigned char)((v >> 56) & 0xff); | 
 | 133 | } | 
 | 134 |  | 
 | 135 | static void poly1305_init(void *ctx, const unsigned char key[16]) | 
 | 136 | { | 
 | 137 |     poly1305_internal *st = (poly1305_internal *) ctx; | 
 | 138 |  | 
 | 139 |     /* h = 0 */ | 
 | 140 |     st->h[0] = 0; | 
 | 141 |     st->h[1] = 0; | 
 | 142 |     st->h[2] = 0; | 
 | 143 |  | 
 | 144 |     /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ | 
 | 145 |     st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; | 
 | 146 |     st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; | 
 | 147 | } | 
 | 148 |  | 
 | 149 | static void | 
 | 150 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) | 
 | 151 | { | 
 | 152 |     poly1305_internal *st = (poly1305_internal *)ctx; | 
 | 153 |     u64 r0, r1; | 
 | 154 |     u64 s1; | 
 | 155 |     u64 h0, h1, h2, c; | 
 | 156 |     u128 d0, d1; | 
 | 157 |  | 
 | 158 |     r0 = st->r[0]; | 
 | 159 |     r1 = st->r[1]; | 
 | 160 |  | 
 | 161 |     s1 = r1 + (r1 >> 2); | 
 | 162 |  | 
 | 163 |     h0 = st->h[0]; | 
 | 164 |     h1 = st->h[1]; | 
 | 165 |     h2 = st->h[2]; | 
 | 166 |  | 
 | 167 |     while (len >= POLY1305_BLOCK_SIZE) { | 
 | 168 |         /* h += m[i] */ | 
 | 169 |         h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); | 
 | 170 |         h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); | 
 | 171 |         /* | 
 | 172 |          * padbit can be zero only when original len was | 
 | 173 |          * POLY1306_BLOCK_SIZE, but we don't check | 
 | 174 |          */ | 
 | 175 |         h2 += (u64)(d1 >> 64) + padbit; | 
 | 176 |  | 
 | 177 |         /* h *= r "%" p, where "%" stands for "partial remainder" */ | 
 | 178 |         d0 = ((u128)h0 * r0) + | 
 | 179 |              ((u128)h1 * s1); | 
 | 180 |         d1 = ((u128)h0 * r1) + | 
 | 181 |              ((u128)h1 * r0) + | 
 | 182 |              (h2 * s1); | 
 | 183 |         h2 = (h2 * r0); | 
 | 184 |  | 
 | 185 |         /* last reduction step: */ | 
 | 186 |         /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ | 
 | 187 |         h0 = (u64)d0; | 
 | 188 |         h1 = (u64)(d1 += d0 >> 64); | 
 | 189 |         h2 += (u64)(d1 >> 64); | 
 | 190 |         /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ | 
 | 191 |         c = (h2 >> 2) + (h2 & ~3UL); | 
 | 192 |         h2 &= 3; | 
 | 193 |         h0 += c; | 
 | 194 |         h1 += (c = CONSTANT_TIME_CARRY(h0,c)); | 
 | 195 |         h2 += CONSTANT_TIME_CARRY(h1,c); | 
 | 196 |         /* | 
 | 197 |          * Occasional overflows to 3rd bit of h2 are taken care of | 
 | 198 |          * "naturally". If after this point we end up at the top of | 
 | 199 |          * this loop, then the overflow bit will be accounted for | 
 | 200 |          * in next iteration. If we end up in poly1305_emit, then | 
 | 201 |          * comparison to modulus below will still count as "carry | 
 | 202 |          * into 131st bit", so that properly reduced value will be | 
 | 203 |          * picked in conditional move. | 
 | 204 |          */ | 
 | 205 |  | 
 | 206 |         inp += POLY1305_BLOCK_SIZE; | 
 | 207 |         len -= POLY1305_BLOCK_SIZE; | 
 | 208 |     } | 
 | 209 |  | 
 | 210 |     st->h[0] = h0; | 
 | 211 |     st->h[1] = h1; | 
 | 212 |     st->h[2] = h2; | 
 | 213 | } | 
 | 214 |  | 
 | 215 | static void poly1305_emit(void *ctx, unsigned char mac[16], | 
 | 216 |                           const u32 nonce[4]) | 
 | 217 | { | 
 | 218 |     poly1305_internal *st = (poly1305_internal *) ctx; | 
 | 219 |     u64 h0, h1, h2; | 
 | 220 |     u64 g0, g1, g2; | 
 | 221 |     u128 t; | 
 | 222 |     u64 mask; | 
 | 223 |  | 
 | 224 |     h0 = st->h[0]; | 
 | 225 |     h1 = st->h[1]; | 
 | 226 |     h2 = st->h[2]; | 
 | 227 |  | 
 | 228 |     /* compare to modulus by computing h + -p */ | 
 | 229 |     g0 = (u64)(t = (u128)h0 + 5); | 
 | 230 |     g1 = (u64)(t = (u128)h1 + (t >> 64)); | 
 | 231 |     g2 = h2 + (u64)(t >> 64); | 
 | 232 |  | 
 | 233 |     /* if there was carry into 131st bit, h1:h0 = g1:g0 */ | 
 | 234 |     mask = 0 - (g2 >> 2); | 
 | 235 |     g0 &= mask; | 
 | 236 |     g1 &= mask; | 
 | 237 |     mask = ~mask; | 
 | 238 |     h0 = (h0 & mask) | g0; | 
 | 239 |     h1 = (h1 & mask) | g1; | 
 | 240 |  | 
 | 241 |     /* mac = (h + nonce) % (2^128) */ | 
 | 242 |     h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); | 
 | 243 |     h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); | 
 | 244 |  | 
 | 245 |     U64TO8(mac + 0, h0); | 
 | 246 |     U64TO8(mac + 8, h1); | 
 | 247 | } | 
 | 248 |  | 
 | 249 | # else | 
 | 250 |  | 
 | 251 | #  if defined(_WIN32) && !defined(__MINGW32__) | 
 | 252 | typedef unsigned __int64 u64; | 
 | 253 | #  elif defined(__arch64__) | 
 | 254 | typedef unsigned long u64; | 
 | 255 | #  else | 
 | 256 | typedef unsigned long long u64; | 
 | 257 | #  endif | 
 | 258 |  | 
 | 259 | typedef struct { | 
 | 260 |     u32 h[5]; | 
 | 261 |     u32 r[4]; | 
 | 262 | } poly1305_internal; | 
 | 263 |  | 
 | 264 | /* store a 32-bit unsigned integer in little endian */ | 
 | 265 | static void U32TO8(unsigned char *p, unsigned int v) | 
 | 266 | { | 
 | 267 |     p[0] = (unsigned char)((v) & 0xff); | 
 | 268 |     p[1] = (unsigned char)((v >> 8) & 0xff); | 
 | 269 |     p[2] = (unsigned char)((v >> 16) & 0xff); | 
 | 270 |     p[3] = (unsigned char)((v >> 24) & 0xff); | 
 | 271 | } | 
 | 272 |  | 
 | 273 | static void poly1305_init(void *ctx, const unsigned char key[16]) | 
 | 274 | { | 
 | 275 |     poly1305_internal *st = (poly1305_internal *) ctx; | 
 | 276 |  | 
 | 277 |     /* h = 0 */ | 
 | 278 |     st->h[0] = 0; | 
 | 279 |     st->h[1] = 0; | 
 | 280 |     st->h[2] = 0; | 
 | 281 |     st->h[3] = 0; | 
 | 282 |     st->h[4] = 0; | 
 | 283 |  | 
 | 284 |     /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ | 
 | 285 |     st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; | 
 | 286 |     st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; | 
 | 287 |     st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; | 
 | 288 |     st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; | 
 | 289 | } | 
 | 290 |  | 
 | 291 | static void | 
 | 292 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) | 
 | 293 | { | 
 | 294 |     poly1305_internal *st = (poly1305_internal *)ctx; | 
 | 295 |     u32 r0, r1, r2, r3; | 
 | 296 |     u32 s1, s2, s3; | 
 | 297 |     u32 h0, h1, h2, h3, h4, c; | 
 | 298 |     u64 d0, d1, d2, d3; | 
 | 299 |  | 
 | 300 |     r0 = st->r[0]; | 
 | 301 |     r1 = st->r[1]; | 
 | 302 |     r2 = st->r[2]; | 
 | 303 |     r3 = st->r[3]; | 
 | 304 |  | 
 | 305 |     s1 = r1 + (r1 >> 2); | 
 | 306 |     s2 = r2 + (r2 >> 2); | 
 | 307 |     s3 = r3 + (r3 >> 2); | 
 | 308 |  | 
 | 309 |     h0 = st->h[0]; | 
 | 310 |     h1 = st->h[1]; | 
 | 311 |     h2 = st->h[2]; | 
 | 312 |     h3 = st->h[3]; | 
 | 313 |     h4 = st->h[4]; | 
 | 314 |  | 
 | 315 |     while (len >= POLY1305_BLOCK_SIZE) { | 
 | 316 |         /* h += m[i] */ | 
 | 317 |         h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); | 
 | 318 |         h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); | 
 | 319 |         h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); | 
 | 320 |         h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); | 
 | 321 |         h4 += (u32)(d3 >> 32) + padbit; | 
 | 322 |  | 
 | 323 |         /* h *= r "%" p, where "%" stands for "partial remainder" */ | 
 | 324 |         d0 = ((u64)h0 * r0) + | 
 | 325 |              ((u64)h1 * s3) + | 
 | 326 |              ((u64)h2 * s2) + | 
 | 327 |              ((u64)h3 * s1); | 
 | 328 |         d1 = ((u64)h0 * r1) + | 
 | 329 |              ((u64)h1 * r0) + | 
 | 330 |              ((u64)h2 * s3) + | 
 | 331 |              ((u64)h3 * s2) + | 
 | 332 |              (h4 * s1); | 
 | 333 |         d2 = ((u64)h0 * r2) + | 
 | 334 |              ((u64)h1 * r1) + | 
 | 335 |              ((u64)h2 * r0) + | 
 | 336 |              ((u64)h3 * s3) + | 
 | 337 |              (h4 * s2); | 
 | 338 |         d3 = ((u64)h0 * r3) + | 
 | 339 |              ((u64)h1 * r2) + | 
 | 340 |              ((u64)h2 * r1) + | 
 | 341 |              ((u64)h3 * r0) + | 
 | 342 |              (h4 * s3); | 
 | 343 |         h4 = (h4 * r0); | 
 | 344 |  | 
 | 345 |         /* last reduction step: */ | 
 | 346 |         /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ | 
 | 347 |         h0 = (u32)d0; | 
 | 348 |         h1 = (u32)(d1 += d0 >> 32); | 
 | 349 |         h2 = (u32)(d2 += d1 >> 32); | 
 | 350 |         h3 = (u32)(d3 += d2 >> 32); | 
 | 351 |         h4 += (u32)(d3 >> 32); | 
 | 352 |         /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ | 
 | 353 |         c = (h4 >> 2) + (h4 & ~3U); | 
 | 354 |         h4 &= 3; | 
 | 355 |         h0 += c; | 
 | 356 |         h1 += (c = CONSTANT_TIME_CARRY(h0,c)); | 
 | 357 |         h2 += (c = CONSTANT_TIME_CARRY(h1,c)); | 
 | 358 |         h3 += (c = CONSTANT_TIME_CARRY(h2,c)); | 
 | 359 |         h4 += CONSTANT_TIME_CARRY(h3,c); | 
 | 360 |         /* | 
 | 361 |          * Occasional overflows to 3rd bit of h4 are taken care of | 
 | 362 |          * "naturally". If after this point we end up at the top of | 
 | 363 |          * this loop, then the overflow bit will be accounted for | 
 | 364 |          * in next iteration. If we end up in poly1305_emit, then | 
 | 365 |          * comparison to modulus below will still count as "carry | 
 | 366 |          * into 131st bit", so that properly reduced value will be | 
 | 367 |          * picked in conditional move. | 
 | 368 |          */ | 
 | 369 |  | 
 | 370 |         inp += POLY1305_BLOCK_SIZE; | 
 | 371 |         len -= POLY1305_BLOCK_SIZE; | 
 | 372 |     } | 
 | 373 |  | 
 | 374 |     st->h[0] = h0; | 
 | 375 |     st->h[1] = h1; | 
 | 376 |     st->h[2] = h2; | 
 | 377 |     st->h[3] = h3; | 
 | 378 |     st->h[4] = h4; | 
 | 379 | } | 
 | 380 |  | 
 | 381 | static void poly1305_emit(void *ctx, unsigned char mac[16], | 
 | 382 |                           const u32 nonce[4]) | 
 | 383 | { | 
 | 384 |     poly1305_internal *st = (poly1305_internal *) ctx; | 
 | 385 |     u32 h0, h1, h2, h3, h4; | 
 | 386 |     u32 g0, g1, g2, g3, g4; | 
 | 387 |     u64 t; | 
 | 388 |     u32 mask; | 
 | 389 |  | 
 | 390 |     h0 = st->h[0]; | 
 | 391 |     h1 = st->h[1]; | 
 | 392 |     h2 = st->h[2]; | 
 | 393 |     h3 = st->h[3]; | 
 | 394 |     h4 = st->h[4]; | 
 | 395 |  | 
 | 396 |     /* compare to modulus by computing h + -p */ | 
 | 397 |     g0 = (u32)(t = (u64)h0 + 5); | 
 | 398 |     g1 = (u32)(t = (u64)h1 + (t >> 32)); | 
 | 399 |     g2 = (u32)(t = (u64)h2 + (t >> 32)); | 
 | 400 |     g3 = (u32)(t = (u64)h3 + (t >> 32)); | 
 | 401 |     g4 = h4 + (u32)(t >> 32); | 
 | 402 |  | 
 | 403 |     /* if there was carry into 131st bit, h3:h0 = g3:g0 */ | 
 | 404 |     mask = 0 - (g4 >> 2); | 
 | 405 |     g0 &= mask; | 
 | 406 |     g1 &= mask; | 
 | 407 |     g2 &= mask; | 
 | 408 |     g3 &= mask; | 
 | 409 |     mask = ~mask; | 
 | 410 |     h0 = (h0 & mask) | g0; | 
 | 411 |     h1 = (h1 & mask) | g1; | 
 | 412 |     h2 = (h2 & mask) | g2; | 
 | 413 |     h3 = (h3 & mask) | g3; | 
 | 414 |  | 
 | 415 |     /* mac = (h + nonce) % (2^128) */ | 
 | 416 |     h0 = (u32)(t = (u64)h0 + nonce[0]); | 
 | 417 |     h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); | 
 | 418 |     h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); | 
 | 419 |     h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); | 
 | 420 |  | 
 | 421 |     U32TO8(mac + 0, h0); | 
 | 422 |     U32TO8(mac + 4, h1); | 
 | 423 |     U32TO8(mac + 8, h2); | 
 | 424 |     U32TO8(mac + 12, h3); | 
 | 425 | } | 
 | 426 | # endif | 
 | 427 | #else | 
 | 428 | int poly1305_init(void *ctx, const unsigned char key[16], void *func); | 
 | 429 | void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, | 
 | 430 |                      unsigned int padbit); | 
 | 431 | void poly1305_emit(void *ctx, unsigned char mac[16], | 
 | 432 |                    const unsigned int nonce[4]); | 
 | 433 | #endif | 
 | 434 |  | 
 | 435 | void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) | 
 | 436 | { | 
 | 437 |     ctx->nonce[0] = U8TOU32(&key[16]); | 
 | 438 |     ctx->nonce[1] = U8TOU32(&key[20]); | 
 | 439 |     ctx->nonce[2] = U8TOU32(&key[24]); | 
 | 440 |     ctx->nonce[3] = U8TOU32(&key[28]); | 
 | 441 |  | 
 | 442 | #ifndef POLY1305_ASM | 
 | 443 |     poly1305_init(ctx->opaque, key); | 
 | 444 | #else | 
 | 445 |     /* | 
 | 446 |      * Unlike reference poly1305_init assembly counterpart is expected | 
 | 447 |      * to return a value: non-zero if it initializes ctx->func, and zero | 
 | 448 |      * otherwise. Latter is to simplify assembly in cases when there no | 
 | 449 |      * multiple code paths to switch between. | 
 | 450 |      */ | 
 | 451 |     if (!poly1305_init(ctx->opaque, key, &ctx->func)) { | 
 | 452 |         ctx->func.blocks = poly1305_blocks; | 
 | 453 |         ctx->func.emit = poly1305_emit; | 
 | 454 |     } | 
 | 455 | #endif | 
 | 456 |  | 
 | 457 |     ctx->num = 0; | 
 | 458 |  | 
 | 459 | } | 
 | 460 |  | 
 | 461 | #ifdef POLY1305_ASM | 
 | 462 | /* | 
 | 463 |  * This "eclipses" poly1305_blocks and poly1305_emit, but it's | 
 | 464 |  * conscious choice imposed by -Wshadow compiler warnings. | 
 | 465 |  */ | 
 | 466 | # define poly1305_blocks (*poly1305_blocks_p) | 
 | 467 | # define poly1305_emit   (*poly1305_emit_p) | 
 | 468 | #endif | 
 | 469 |  | 
 | 470 | void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) | 
 | 471 | { | 
 | 472 | #ifdef POLY1305_ASM | 
 | 473 |     /* | 
 | 474 |      * As documented, poly1305_blocks is never called with input | 
 | 475 |      * longer than single block and padbit argument set to 0. This | 
 | 476 |      * property is fluently used in assembly modules to optimize | 
 | 477 |      * padbit handling on loop boundary. | 
 | 478 |      */ | 
 | 479 |     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; | 
 | 480 | #endif | 
 | 481 |     size_t rem, num; | 
 | 482 |  | 
 | 483 |     if ((num = ctx->num)) { | 
 | 484 |         rem = POLY1305_BLOCK_SIZE - num; | 
 | 485 |         if (len >= rem) { | 
 | 486 |             memcpy(ctx->data + num, inp, rem); | 
 | 487 |             poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); | 
 | 488 |             inp += rem; | 
 | 489 |             len -= rem; | 
 | 490 |         } else { | 
 | 491 |             /* Still not enough data to process a block. */ | 
 | 492 |             memcpy(ctx->data + num, inp, len); | 
 | 493 |             ctx->num = num + len; | 
 | 494 |             return; | 
 | 495 |         } | 
 | 496 |     } | 
 | 497 |  | 
 | 498 |     rem = len % POLY1305_BLOCK_SIZE; | 
 | 499 |     len -= rem; | 
 | 500 |  | 
 | 501 |     if (len >= POLY1305_BLOCK_SIZE) { | 
 | 502 |         poly1305_blocks(ctx->opaque, inp, len, 1); | 
 | 503 |         inp += len; | 
 | 504 |     } | 
 | 505 |  | 
 | 506 |     if (rem) | 
 | 507 |         memcpy(ctx->data, inp, rem); | 
 | 508 |  | 
 | 509 |     ctx->num = rem; | 
 | 510 | } | 
 | 511 |  | 
 | 512 | void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) | 
 | 513 | { | 
 | 514 | #ifdef POLY1305_ASM | 
 | 515 |     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; | 
 | 516 |     poly1305_emit_f poly1305_emit_p = ctx->func.emit; | 
 | 517 | #endif | 
 | 518 |     size_t num; | 
 | 519 |  | 
 | 520 |     if ((num = ctx->num)) { | 
 | 521 |         ctx->data[num++] = 1;   /* pad bit */ | 
 | 522 |         while (num < POLY1305_BLOCK_SIZE) | 
 | 523 |             ctx->data[num++] = 0; | 
 | 524 |         poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); | 
 | 525 |     } | 
 | 526 |  | 
 | 527 |     poly1305_emit(ctx->opaque, mac, ctx->nonce); | 
 | 528 |  | 
 | 529 |     /* zero out the state */ | 
 | 530 |     OPENSSL_cleanse(ctx, sizeof(*ctx)); | 
 | 531 | } |