| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* mpn_mod_1(dividend_ptr, dividend_size, divisor_limb) -- | 
|  | 2 | Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | 
|  | 3 | Return the single-limb remainder. | 
|  | 4 | There are no constraints on the value of the divisor. | 
|  | 5 |  | 
|  | 6 | Copyright (C) 1991-2016 Free Software Foundation, Inc. | 
|  | 7 |  | 
|  | 8 | This file is part of the GNU MP Library. | 
|  | 9 |  | 
|  | 10 | The GNU MP Library is free software; you can redistribute it and/or modify | 
|  | 11 | it under the terms of the GNU Lesser General Public License as published by | 
|  | 12 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
|  | 13 | option) any later version. | 
|  | 14 |  | 
|  | 15 | The GNU MP Library is distributed in the hope that it will be useful, but | 
|  | 16 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | 17 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
|  | 18 | License for more details. | 
|  | 19 |  | 
|  | 20 | You should have received a copy of the GNU Lesser General Public License | 
|  | 21 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
|  | 22 | <http://www.gnu.org/licenses/>.  */ | 
|  | 23 |  | 
|  | 24 | #include <gmp.h> | 
|  | 25 | #include "gmp-impl.h" | 
|  | 26 | #include "longlong.h" | 
|  | 27 |  | 
|  | 28 | #ifndef UMUL_TIME | 
|  | 29 | #define UMUL_TIME 1 | 
|  | 30 | #endif | 
|  | 31 |  | 
|  | 32 | #ifndef UDIV_TIME | 
|  | 33 | #define UDIV_TIME UMUL_TIME | 
|  | 34 | #endif | 
|  | 35 |  | 
|  | 36 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) | 
|  | 37 | here (not udiv_qrnnd).  */ | 
|  | 38 |  | 
|  | 39 | mp_limb_t | 
|  | 40 | mpn_mod_1 (mp_srcptr dividend_ptr, mp_size_t dividend_size, | 
|  | 41 | mp_limb_t divisor_limb) | 
|  | 42 | { | 
|  | 43 | mp_size_t i; | 
|  | 44 | mp_limb_t n1, n0, r; | 
|  | 45 | mp_limb_t dummy __attribute__ ((unused)); | 
|  | 46 |  | 
|  | 47 | /* Botch: Should this be handled at all?  Rely on callers?  */ | 
|  | 48 | if (dividend_size == 0) | 
|  | 49 | return 0; | 
|  | 50 |  | 
|  | 51 | /* If multiplication is much faster than division, and the | 
|  | 52 | dividend is large, pre-invert the divisor, and use | 
|  | 53 | only multiplications in the inner loop.  */ | 
|  | 54 |  | 
|  | 55 | /* This test should be read: | 
|  | 56 | Does it ever help to use udiv_qrnnd_preinv? | 
|  | 57 | && Does what we save compensate for the inversion overhead?  */ | 
|  | 58 | if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
|  | 59 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) | 
|  | 60 | { | 
|  | 61 | int normalization_steps; | 
|  | 62 |  | 
|  | 63 | count_leading_zeros (normalization_steps, divisor_limb); | 
|  | 64 | if (normalization_steps != 0) | 
|  | 65 | { | 
|  | 66 | mp_limb_t divisor_limb_inverted; | 
|  | 67 |  | 
|  | 68 | divisor_limb <<= normalization_steps; | 
|  | 69 |  | 
|  | 70 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | 71 | result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | 72 | most significant bit (with weight 2**N) implicit.  */ | 
|  | 73 |  | 
|  | 74 | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|  | 75 | if (divisor_limb << 1 == 0) | 
|  | 76 | divisor_limb_inverted = ~(mp_limb_t) 0; | 
|  | 77 | else | 
|  | 78 | udiv_qrnnd (divisor_limb_inverted, dummy, | 
|  | 79 | -divisor_limb, 0, divisor_limb); | 
|  | 80 |  | 
|  | 81 | n1 = dividend_ptr[dividend_size - 1]; | 
|  | 82 | r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); | 
|  | 83 |  | 
|  | 84 | /* Possible optimization: | 
|  | 85 | if (r == 0 | 
|  | 86 | && divisor_limb > ((n1 << normalization_steps) | 
|  | 87 | | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | 88 | ...one division less... */ | 
|  | 89 |  | 
|  | 90 | for (i = dividend_size - 2; i >= 0; i--) | 
|  | 91 | { | 
|  | 92 | n0 = dividend_ptr[i]; | 
|  | 93 | udiv_qrnnd_preinv (dummy, r, r, | 
|  | 94 | ((n1 << normalization_steps) | 
|  | 95 | | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), | 
|  | 96 | divisor_limb, divisor_limb_inverted); | 
|  | 97 | n1 = n0; | 
|  | 98 | } | 
|  | 99 | udiv_qrnnd_preinv (dummy, r, r, | 
|  | 100 | n1 << normalization_steps, | 
|  | 101 | divisor_limb, divisor_limb_inverted); | 
|  | 102 | return r >> normalization_steps; | 
|  | 103 | } | 
|  | 104 | else | 
|  | 105 | { | 
|  | 106 | mp_limb_t divisor_limb_inverted; | 
|  | 107 |  | 
|  | 108 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | 109 | result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | 110 | most significant bit (with weight 2**N) implicit.  */ | 
|  | 111 |  | 
|  | 112 | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|  | 113 | if (divisor_limb << 1 == 0) | 
|  | 114 | divisor_limb_inverted = ~(mp_limb_t) 0; | 
|  | 115 | else | 
|  | 116 | udiv_qrnnd (divisor_limb_inverted, dummy, | 
|  | 117 | -divisor_limb, 0, divisor_limb); | 
|  | 118 |  | 
|  | 119 | i = dividend_size - 1; | 
|  | 120 | r = dividend_ptr[i]; | 
|  | 121 |  | 
|  | 122 | if (r >= divisor_limb) | 
|  | 123 | r = 0; | 
|  | 124 | else | 
|  | 125 | i--; | 
|  | 126 |  | 
|  | 127 | for (; i >= 0; i--) | 
|  | 128 | { | 
|  | 129 | n0 = dividend_ptr[i]; | 
|  | 130 | udiv_qrnnd_preinv (dummy, r, r, | 
|  | 131 | n0, divisor_limb, divisor_limb_inverted); | 
|  | 132 | } | 
|  | 133 | return r; | 
|  | 134 | } | 
|  | 135 | } | 
|  | 136 | else | 
|  | 137 | { | 
|  | 138 | if (UDIV_NEEDS_NORMALIZATION) | 
|  | 139 | { | 
|  | 140 | int normalization_steps; | 
|  | 141 |  | 
|  | 142 | count_leading_zeros (normalization_steps, divisor_limb); | 
|  | 143 | if (normalization_steps != 0) | 
|  | 144 | { | 
|  | 145 | divisor_limb <<= normalization_steps; | 
|  | 146 |  | 
|  | 147 | n1 = dividend_ptr[dividend_size - 1]; | 
|  | 148 | r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); | 
|  | 149 |  | 
|  | 150 | /* Possible optimization: | 
|  | 151 | if (r == 0 | 
|  | 152 | && divisor_limb > ((n1 << normalization_steps) | 
|  | 153 | | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | 154 | ...one division less... */ | 
|  | 155 |  | 
|  | 156 | for (i = dividend_size - 2; i >= 0; i--) | 
|  | 157 | { | 
|  | 158 | n0 = dividend_ptr[i]; | 
|  | 159 | udiv_qrnnd (dummy, r, r, | 
|  | 160 | ((n1 << normalization_steps) | 
|  | 161 | | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), | 
|  | 162 | divisor_limb); | 
|  | 163 | n1 = n0; | 
|  | 164 | } | 
|  | 165 | udiv_qrnnd (dummy, r, r, | 
|  | 166 | n1 << normalization_steps, | 
|  | 167 | divisor_limb); | 
|  | 168 | return r >> normalization_steps; | 
|  | 169 | } | 
|  | 170 | } | 
|  | 171 | /* No normalization needed, either because udiv_qrnnd doesn't require | 
|  | 172 | it, or because DIVISOR_LIMB is already normalized.  */ | 
|  | 173 |  | 
|  | 174 | i = dividend_size - 1; | 
|  | 175 | r = dividend_ptr[i]; | 
|  | 176 |  | 
|  | 177 | if (r >= divisor_limb) | 
|  | 178 | r = 0; | 
|  | 179 | else | 
|  | 180 | i--; | 
|  | 181 |  | 
|  | 182 | for (; i >= 0; i--) | 
|  | 183 | { | 
|  | 184 | n0 = dividend_ptr[i]; | 
|  | 185 | udiv_qrnnd (dummy, r, r, n0, divisor_limb); | 
|  | 186 | } | 
|  | 187 | return r; | 
|  | 188 | } | 
|  | 189 | } |