| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Compute complex base 10 logarithm. | 
|  | 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | #include <complex.h> | 
|  | 21 | #include <math.h> | 
|  | 22 | #include <math_private.h> | 
|  | 23 | #include <float.h> | 
|  | 24 |  | 
|  | 25 | /* To avoid spurious underflows, use this definition to treat IBM long | 
|  | 26 | double as approximating an IEEE-style format.  */ | 
|  | 27 | #if LDBL_MANT_DIG == 106 | 
|  | 28 | # undef LDBL_EPSILON | 
|  | 29 | # define LDBL_EPSILON 0x1p-106L | 
|  | 30 | #endif | 
|  | 31 |  | 
|  | 32 | /* log_10 (2).  */ | 
|  | 33 | #define M_LOG10_2l 0.3010299956639811952137388947244930267682L | 
|  | 34 |  | 
|  | 35 | /* pi * log10 (e).  */ | 
|  | 36 | #define M_PI_LOG10El 1.364376353841841347485783625431355770210L | 
|  | 37 |  | 
|  | 38 | __complex__ long double | 
|  | 39 | __clog10l (__complex__ long double x) | 
|  | 40 | { | 
|  | 41 | __complex__ long double result; | 
|  | 42 | int rcls = fpclassify (__real__ x); | 
|  | 43 | int icls = fpclassify (__imag__ x); | 
|  | 44 |  | 
|  | 45 | if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) | 
|  | 46 | { | 
|  | 47 | /* Real and imaginary part are 0.0.  */ | 
|  | 48 | __imag__ result = signbit (__real__ x) ? M_PI_LOG10El : 0.0; | 
|  | 49 | __imag__ result = __copysignl (__imag__ result, __imag__ x); | 
|  | 50 | /* Yes, the following line raises an exception.  */ | 
|  | 51 | __real__ result = -1.0 / fabsl (__real__ x); | 
|  | 52 | } | 
|  | 53 | else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) | 
|  | 54 | { | 
|  | 55 | /* Neither real nor imaginary part is NaN.  */ | 
|  | 56 | long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x); | 
|  | 57 | int scale = 0; | 
|  | 58 |  | 
|  | 59 | if (absx < absy) | 
|  | 60 | { | 
|  | 61 | long double t = absx; | 
|  | 62 | absx = absy; | 
|  | 63 | absy = t; | 
|  | 64 | } | 
|  | 65 |  | 
|  | 66 | if (absx > LDBL_MAX / 2.0L) | 
|  | 67 | { | 
|  | 68 | scale = -1; | 
|  | 69 | absx = __scalbnl (absx, scale); | 
|  | 70 | absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L); | 
|  | 71 | } | 
|  | 72 | else if (absx < LDBL_MIN && absy < LDBL_MIN) | 
|  | 73 | { | 
|  | 74 | scale = LDBL_MANT_DIG; | 
|  | 75 | absx = __scalbnl (absx, scale); | 
|  | 76 | absy = __scalbnl (absy, scale); | 
|  | 77 | } | 
|  | 78 |  | 
|  | 79 | if (absx == 1.0L && scale == 0) | 
|  | 80 | { | 
|  | 81 | __real__ result = __log1pl (absy * absy) * (M_LOG10El / 2.0L); | 
|  | 82 | math_check_force_underflow_nonneg (__real__ result); | 
|  | 83 | } | 
|  | 84 | else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0) | 
|  | 85 | { | 
|  | 86 | long double d2m1 = (absx - 1.0L) * (absx + 1.0L); | 
|  | 87 | if (absy >= LDBL_EPSILON) | 
|  | 88 | d2m1 += absy * absy; | 
|  | 89 | __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); | 
|  | 90 | } | 
|  | 91 | else if (absx < 1.0L | 
|  | 92 | && absx >= 0.5L | 
|  | 93 | && absy < LDBL_EPSILON / 2.0L | 
|  | 94 | && scale == 0) | 
|  | 95 | { | 
|  | 96 | long double d2m1 = (absx - 1.0L) * (absx + 1.0L); | 
|  | 97 | __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); | 
|  | 98 | } | 
|  | 99 | else if (absx < 1.0L | 
|  | 100 | && absx >= 0.5L | 
|  | 101 | && scale == 0 | 
|  | 102 | && absx * absx + absy * absy >= 0.5L) | 
|  | 103 | { | 
|  | 104 | long double d2m1 = __x2y2m1l (absx, absy); | 
|  | 105 | __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); | 
|  | 106 | } | 
|  | 107 | else | 
|  | 108 | { | 
|  | 109 | long double d = __ieee754_hypotl (absx, absy); | 
|  | 110 | __real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l; | 
|  | 111 | } | 
|  | 112 |  | 
|  | 113 | __imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x); | 
|  | 114 | } | 
|  | 115 | else | 
|  | 116 | { | 
|  | 117 | __imag__ result = __nanl (""); | 
|  | 118 | if (rcls == FP_INFINITE || icls == FP_INFINITE) | 
|  | 119 | /* Real or imaginary part is infinite.  */ | 
|  | 120 | __real__ result = HUGE_VALL; | 
|  | 121 | else | 
|  | 122 | __real__ result = __nanl (""); | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | return result; | 
|  | 126 | } | 
|  | 127 | weak_alias (__clog10l, clog10l) |