blob: 80756e82be828ffbe38d3ddff372cc97fcd07f29 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
lh758261d2023-07-13 05:52:04 -07002 * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved.
lh9ed821d2023-04-07 01:36:19 -07003 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include <string.h>
12
13#include <openssl/opensslconf.h>
14#include <openssl/crypto.h>
15#include <openssl/engine.h>
16#include <openssl/evp.h>
17#include <openssl/aes.h>
18#include <openssl/rand.h>
19#include <openssl/err.h>
20#include <openssl/modes.h>
21
22#ifndef OPENSSL_NO_HW
23# ifndef OPENSSL_NO_HW_PADLOCK
24
25/* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */
26# if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
27# ifndef OPENSSL_NO_DYNAMIC_ENGINE
28# define DYNAMIC_ENGINE
29# endif
30# elif (OPENSSL_VERSION_NUMBER >= 0x00907000L)
31# ifdef ENGINE_DYNAMIC_SUPPORT
32# define DYNAMIC_ENGINE
33# endif
34# else
35# error "Only OpenSSL >= 0.9.7 is supported"
36# endif
37
38/*
39 * VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
40 * doesn't exist elsewhere, but it even can't be compiled on other platforms!
41 */
42
43# undef COMPILE_HW_PADLOCK
44# if defined(PADLOCK_ASM)
45# define COMPILE_HW_PADLOCK
46# ifdef OPENSSL_NO_DYNAMIC_ENGINE
47static ENGINE *ENGINE_padlock(void);
48# endif
49# endif
50
51# ifdef OPENSSL_NO_DYNAMIC_ENGINE
52void engine_load_padlock_int(void);
53void engine_load_padlock_int(void)
54{
55/* On non-x86 CPUs it just returns. */
56# ifdef COMPILE_HW_PADLOCK
57 ENGINE *toadd = ENGINE_padlock();
58 if (!toadd)
59 return;
60 ENGINE_add(toadd);
61 ENGINE_free(toadd);
62 ERR_clear_error();
63# endif
64}
65
66# endif
67
68# ifdef COMPILE_HW_PADLOCK
69
70/* Function for ENGINE detection and control */
71static int padlock_available(void);
72static int padlock_init(ENGINE *e);
73
74/* RNG Stuff */
75static RAND_METHOD padlock_rand;
76
77/* Cipher Stuff */
78static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
79 const int **nids, int nid);
80
81/* Engine names */
82static const char *padlock_id = "padlock";
83static char padlock_name[100];
84
85/* Available features */
86static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
87static int padlock_use_rng = 0; /* Random Number Generator */
88
89/* ===== Engine "management" functions ===== */
90
91/* Prepare the ENGINE structure for registration */
92static int padlock_bind_helper(ENGINE *e)
93{
94 /* Check available features */
95 padlock_available();
96
97 /*
98 * RNG is currently disabled for reasons discussed in commentary just
99 * before padlock_rand_bytes function.
100 */
101 padlock_use_rng = 0;
102
103 /* Generate a nice engine name with available features */
104 BIO_snprintf(padlock_name, sizeof(padlock_name),
105 "VIA PadLock (%s, %s)",
106 padlock_use_rng ? "RNG" : "no-RNG",
107 padlock_use_ace ? "ACE" : "no-ACE");
108
109 /* Register everything or return with an error */
110 if (!ENGINE_set_id(e, padlock_id) ||
111 !ENGINE_set_name(e, padlock_name) ||
112 !ENGINE_set_init_function(e, padlock_init) ||
113 (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) ||
114 (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
115 return 0;
116 }
117
118 /* Everything looks good */
119 return 1;
120}
121
122# ifdef OPENSSL_NO_DYNAMIC_ENGINE
123/* Constructor */
124static ENGINE *ENGINE_padlock(void)
125{
126 ENGINE *eng = ENGINE_new();
127
128 if (eng == NULL) {
129 return NULL;
130 }
131
132 if (!padlock_bind_helper(eng)) {
133 ENGINE_free(eng);
134 return NULL;
135 }
136
137 return eng;
138}
139# endif
140
141/* Check availability of the engine */
142static int padlock_init(ENGINE *e)
143{
144 return (padlock_use_rng || padlock_use_ace);
145}
146
lh758261d2023-07-13 05:52:04 -0700147# ifndef AES_ASM
148static int padlock_aes_set_encrypt_key(const unsigned char *userKey,
149 const int bits,
150 AES_KEY *key);
151static int padlock_aes_set_decrypt_key(const unsigned char *userKey,
152 const int bits,
153 AES_KEY *key);
154# define AES_ASM
155# define AES_set_encrypt_key padlock_aes_set_encrypt_key
156# define AES_set_decrypt_key padlock_aes_set_decrypt_key
157# include "../crypto/aes/aes_core.c"
158# endif
159
lh9ed821d2023-04-07 01:36:19 -0700160/*
161 * This stuff is needed if this ENGINE is being compiled into a
162 * self-contained shared-library.
163 */
164# ifndef OPENSSL_NO_DYNAMIC_ENGINE
165static int padlock_bind_fn(ENGINE *e, const char *id)
166{
167 if (id && (strcmp(id, padlock_id) != 0)) {
168 return 0;
169 }
170
171 if (!padlock_bind_helper(e)) {
172 return 0;
173 }
174
175 return 1;
176}
177
178IMPLEMENT_DYNAMIC_CHECK_FN()
179IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
180# endif /* !OPENSSL_NO_DYNAMIC_ENGINE */
181/* ===== Here comes the "real" engine ===== */
182
183/* Some AES-related constants */
184# define AES_BLOCK_SIZE 16
185# define AES_KEY_SIZE_128 16
186# define AES_KEY_SIZE_192 24
187# define AES_KEY_SIZE_256 32
188 /*
189 * Here we store the status information relevant to the current context.
190 */
191 /*
192 * BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
193 * the order of items in this structure. Don't blindly modify, reorder,
194 * etc!
195 */
196struct padlock_cipher_data {
197 unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
198 union {
199 unsigned int pad[4];
200 struct {
201 int rounds:4;
202 int dgst:1; /* n/a in C3 */
203 int align:1; /* n/a in C3 */
204 int ciphr:1; /* n/a in C3 */
205 unsigned int keygen:1;
206 int interm:1;
207 unsigned int encdec:1;
208 int ksize:2;
209 } b;
210 } cword; /* Control word */
211 AES_KEY ks; /* Encryption key */
212};
213
214/* Interface to assembler module */
215unsigned int padlock_capability(void);
216void padlock_key_bswap(AES_KEY *key);
217void padlock_verify_context(struct padlock_cipher_data *ctx);
218void padlock_reload_key(void);
219void padlock_aes_block(void *out, const void *inp,
220 struct padlock_cipher_data *ctx);
221int padlock_ecb_encrypt(void *out, const void *inp,
222 struct padlock_cipher_data *ctx, size_t len);
223int padlock_cbc_encrypt(void *out, const void *inp,
224 struct padlock_cipher_data *ctx, size_t len);
225int padlock_cfb_encrypt(void *out, const void *inp,
226 struct padlock_cipher_data *ctx, size_t len);
227int padlock_ofb_encrypt(void *out, const void *inp,
228 struct padlock_cipher_data *ctx, size_t len);
229int padlock_ctr32_encrypt(void *out, const void *inp,
230 struct padlock_cipher_data *ctx, size_t len);
231int padlock_xstore(void *out, int edx);
232void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
233void padlock_sha1(void *ctx, const void *inp, size_t len);
234void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
235void padlock_sha256(void *ctx, const void *inp, size_t len);
236
237/*
238 * Load supported features of the CPU to see if the PadLock is available.
239 */
240static int padlock_available(void)
241{
242 unsigned int edx = padlock_capability();
243
244 /* Fill up some flags */
245 padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
246 padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));
247
248 return padlock_use_ace + padlock_use_rng;
249}
250
251/* ===== AES encryption/decryption ===== */
252
253# if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
254# define NID_aes_128_cfb NID_aes_128_cfb128
255# endif
256
257# if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
258# define NID_aes_128_ofb NID_aes_128_ofb128
259# endif
260
261# if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
262# define NID_aes_192_cfb NID_aes_192_cfb128
263# endif
264
265# if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
266# define NID_aes_192_ofb NID_aes_192_ofb128
267# endif
268
269# if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
270# define NID_aes_256_cfb NID_aes_256_cfb128
271# endif
272
273# if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
274# define NID_aes_256_ofb NID_aes_256_ofb128
275# endif
276
277/* List of supported ciphers. */
278static const int padlock_cipher_nids[] = {
279 NID_aes_128_ecb,
280 NID_aes_128_cbc,
281 NID_aes_128_cfb,
282 NID_aes_128_ofb,
283 NID_aes_128_ctr,
284
285 NID_aes_192_ecb,
286 NID_aes_192_cbc,
287 NID_aes_192_cfb,
288 NID_aes_192_ofb,
289 NID_aes_192_ctr,
290
291 NID_aes_256_ecb,
292 NID_aes_256_cbc,
293 NID_aes_256_cfb,
294 NID_aes_256_ofb,
295 NID_aes_256_ctr
296};
297
298static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) /
299 sizeof(padlock_cipher_nids[0]));
300
301/* Function prototypes ... */
302static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
303 const unsigned char *iv, int enc);
304
305# define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \
306 ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) )
307# define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
308 NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))
309
310static int
311padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
312 const unsigned char *in_arg, size_t nbytes)
313{
314 return padlock_ecb_encrypt(out_arg, in_arg,
315 ALIGNED_CIPHER_DATA(ctx), nbytes);
316}
317
318static int
319padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
320 const unsigned char *in_arg, size_t nbytes)
321{
322 struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
323 int ret;
324
325 memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
326 if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
327 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
328 return ret;
329}
330
331static int
332padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
333 const unsigned char *in_arg, size_t nbytes)
334{
335 struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
336 size_t chunk;
337
338 if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
339 unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
340
341 if (chunk >= AES_BLOCK_SIZE)
342 return 0; /* bogus value */
343
344 if (EVP_CIPHER_CTX_encrypting(ctx))
345 while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
346 ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
347 chunk++, nbytes--;
348 } else
349 while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
350 unsigned char c = *(in_arg++);
351 *(out_arg++) = c ^ ivp[chunk];
352 ivp[chunk++] = c, nbytes--;
353 }
354
355 EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
356 }
357
358 if (nbytes == 0)
359 return 1;
360
361 memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
362
363 if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
364 if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
365 return 0;
366 nbytes -= chunk;
367 }
368
369 if (nbytes) {
370 unsigned char *ivp = cdata->iv;
371
372 out_arg += chunk;
373 in_arg += chunk;
374 EVP_CIPHER_CTX_set_num(ctx, nbytes);
375 if (cdata->cword.b.encdec) {
376 cdata->cword.b.encdec = 0;
377 padlock_reload_key();
378 padlock_aes_block(ivp, ivp, cdata);
379 cdata->cword.b.encdec = 1;
380 padlock_reload_key();
381 while (nbytes) {
382 unsigned char c = *(in_arg++);
383 *(out_arg++) = c ^ *ivp;
384 *(ivp++) = c, nbytes--;
385 }
386 } else {
387 padlock_reload_key();
388 padlock_aes_block(ivp, ivp, cdata);
389 padlock_reload_key();
390 while (nbytes) {
391 *ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
392 ivp++, nbytes--;
393 }
394 }
395 }
396
397 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
398
399 return 1;
400}
401
402static int
403padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
404 const unsigned char *in_arg, size_t nbytes)
405{
406 struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
407 size_t chunk;
408
409 /*
410 * ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
411 */
412 if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
413 unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
414
415 if (chunk >= AES_BLOCK_SIZE)
416 return 0; /* bogus value */
417
418 while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
419 *(out_arg++) = *(in_arg++) ^ ivp[chunk];
420 chunk++, nbytes--;
421 }
422
423 EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
424 }
425
426 if (nbytes == 0)
427 return 1;
428
429 memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
430
431 if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
432 if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
433 return 0;
434 nbytes -= chunk;
435 }
436
437 if (nbytes) {
438 unsigned char *ivp = cdata->iv;
439
440 out_arg += chunk;
441 in_arg += chunk;
442 EVP_CIPHER_CTX_set_num(ctx, nbytes);
443 padlock_reload_key(); /* empirically found */
444 padlock_aes_block(ivp, ivp, cdata);
445 padlock_reload_key(); /* empirically found */
446 while (nbytes) {
447 *(out_arg++) = *(in_arg++) ^ *ivp;
448 ivp++, nbytes--;
449 }
450 }
451
452 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
453
454 return 1;
455}
456
457static void padlock_ctr32_encrypt_glue(const unsigned char *in,
458 unsigned char *out, size_t blocks,
459 struct padlock_cipher_data *ctx,
460 const unsigned char *ivec)
461{
462 memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
463 padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
464}
465
466static int
467padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
468 const unsigned char *in_arg, size_t nbytes)
469{
470 struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
471 unsigned int num = EVP_CIPHER_CTX_num(ctx);
472
473 CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
474 cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
475 EVP_CIPHER_CTX_buf_noconst(ctx), &num,
476 (ctr128_f) padlock_ctr32_encrypt_glue);
477
478 EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
479 return 1;
480}
481
482# define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
483# define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
484# define EVP_CIPHER_block_size_OFB 1
485# define EVP_CIPHER_block_size_CFB 1
486# define EVP_CIPHER_block_size_CTR 1
487
488/*
489 * Declaring so many ciphers by hand would be a pain. Instead introduce a bit
490 * of preprocessor magic :-)
491 */
492# define DECLARE_AES_EVP(ksize,lmode,umode) \
493static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
494static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
495{ \
496 if (_hidden_aes_##ksize##_##lmode == NULL \
497 && ((_hidden_aes_##ksize##_##lmode = \
498 EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \
499 EVP_CIPHER_block_size_##umode, \
500 AES_KEY_SIZE_##ksize)) == NULL \
501 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
502 AES_BLOCK_SIZE) \
503 || !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
504 0 | EVP_CIPH_##umode##_MODE) \
505 || !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
506 padlock_aes_init_key) \
507 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
508 padlock_##lmode##_cipher) \
509 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
510 sizeof(struct padlock_cipher_data) + 16) \
511 || !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
512 EVP_CIPHER_set_asn1_iv) \
513 || !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
514 EVP_CIPHER_get_asn1_iv))) { \
515 EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \
516 _hidden_aes_##ksize##_##lmode = NULL; \
517 } \
518 return _hidden_aes_##ksize##_##lmode; \
519}
520
521DECLARE_AES_EVP(128, ecb, ECB)
522DECLARE_AES_EVP(128, cbc, CBC)
523DECLARE_AES_EVP(128, cfb, CFB)
524DECLARE_AES_EVP(128, ofb, OFB)
525DECLARE_AES_EVP(128, ctr, CTR)
526
527DECLARE_AES_EVP(192, ecb, ECB)
528DECLARE_AES_EVP(192, cbc, CBC)
529DECLARE_AES_EVP(192, cfb, CFB)
530DECLARE_AES_EVP(192, ofb, OFB)
531DECLARE_AES_EVP(192, ctr, CTR)
532
533DECLARE_AES_EVP(256, ecb, ECB)
534DECLARE_AES_EVP(256, cbc, CBC)
535DECLARE_AES_EVP(256, cfb, CFB)
536DECLARE_AES_EVP(256, ofb, OFB)
537DECLARE_AES_EVP(256, ctr, CTR)
538
539static int
540padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
541 int nid)
542{
543 /* No specific cipher => return a list of supported nids ... */
544 if (!cipher) {
545 *nids = padlock_cipher_nids;
546 return padlock_cipher_nids_num;
547 }
548
549 /* ... or the requested "cipher" otherwise */
550 switch (nid) {
551 case NID_aes_128_ecb:
552 *cipher = padlock_aes_128_ecb();
553 break;
554 case NID_aes_128_cbc:
555 *cipher = padlock_aes_128_cbc();
556 break;
557 case NID_aes_128_cfb:
558 *cipher = padlock_aes_128_cfb();
559 break;
560 case NID_aes_128_ofb:
561 *cipher = padlock_aes_128_ofb();
562 break;
563 case NID_aes_128_ctr:
564 *cipher = padlock_aes_128_ctr();
565 break;
566
567 case NID_aes_192_ecb:
568 *cipher = padlock_aes_192_ecb();
569 break;
570 case NID_aes_192_cbc:
571 *cipher = padlock_aes_192_cbc();
572 break;
573 case NID_aes_192_cfb:
574 *cipher = padlock_aes_192_cfb();
575 break;
576 case NID_aes_192_ofb:
577 *cipher = padlock_aes_192_ofb();
578 break;
579 case NID_aes_192_ctr:
580 *cipher = padlock_aes_192_ctr();
581 break;
582
583 case NID_aes_256_ecb:
584 *cipher = padlock_aes_256_ecb();
585 break;
586 case NID_aes_256_cbc:
587 *cipher = padlock_aes_256_cbc();
588 break;
589 case NID_aes_256_cfb:
590 *cipher = padlock_aes_256_cfb();
591 break;
592 case NID_aes_256_ofb:
593 *cipher = padlock_aes_256_ofb();
594 break;
595 case NID_aes_256_ctr:
596 *cipher = padlock_aes_256_ctr();
597 break;
598
599 default:
600 /* Sorry, we don't support this NID */
601 *cipher = NULL;
602 return 0;
603 }
604
605 return 1;
606}
607
608/* Prepare the encryption key for PadLock usage */
609static int
610padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
611 const unsigned char *iv, int enc)
612{
613 struct padlock_cipher_data *cdata;
614 int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8;
615 unsigned long mode = EVP_CIPHER_CTX_mode(ctx);
616
617 if (key == NULL)
618 return 0; /* ERROR */
619
620 cdata = ALIGNED_CIPHER_DATA(ctx);
621 memset(cdata, 0, sizeof(*cdata));
622
623 /* Prepare Control word. */
624 if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
625 cdata->cword.b.encdec = 0;
626 else
627 cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0);
628 cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
629 cdata->cword.b.ksize = (key_len - 128) / 64;
630
631 switch (key_len) {
632 case 128:
633 /*
634 * PadLock can generate an extended key for AES128 in hardware
635 */
636 memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
637 cdata->cword.b.keygen = 0;
638 break;
639
640 case 192:
641 case 256:
642 /*
643 * Generate an extended AES key in software. Needed for AES192/AES256
644 */
645 /*
646 * Well, the above applies to Stepping 8 CPUs and is listed as
647 * hardware errata. They most likely will fix it at some point and
648 * then a check for stepping would be due here.
649 */
650 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
651 && !enc)
652 AES_set_decrypt_key(key, key_len, &cdata->ks);
653 else
654 AES_set_encrypt_key(key, key_len, &cdata->ks);
lh9ed821d2023-04-07 01:36:19 -0700655 /*
656 * OpenSSL C functions use byte-swapped extended key.
657 */
658 padlock_key_bswap(&cdata->ks);
lh9ed821d2023-04-07 01:36:19 -0700659 cdata->cword.b.keygen = 1;
660 break;
661
662 default:
663 /* ERROR */
664 return 0;
665 }
666
667 /*
668 * This is done to cover for cases when user reuses the
669 * context for new key. The catch is that if we don't do
670 * this, padlock_eas_cipher might proceed with old key...
671 */
672 padlock_reload_key();
673
674 return 1;
675}
676
677/* ===== Random Number Generator ===== */
678/*
679 * This code is not engaged. The reason is that it does not comply
680 * with recommendations for VIA RNG usage for secure applications
681 * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
682 * provide meaningful error control...
683 */
684/*
685 * Wrapper that provides an interface between the API and the raw PadLock
686 * RNG
687 */
688static int padlock_rand_bytes(unsigned char *output, int count)
689{
690 unsigned int eax, buf;
691
692 while (count >= 8) {
693 eax = padlock_xstore(output, 0);
694 if (!(eax & (1 << 6)))
695 return 0; /* RNG disabled */
696 /* this ---vv--- covers DC bias, Raw Bits and String Filter */
697 if (eax & (0x1F << 10))
698 return 0;
699 if ((eax & 0x1F) == 0)
700 continue; /* no data, retry... */
701 if ((eax & 0x1F) != 8)
702 return 0; /* fatal failure... */
703 output += 8;
704 count -= 8;
705 }
706 while (count > 0) {
707 eax = padlock_xstore(&buf, 3);
708 if (!(eax & (1 << 6)))
709 return 0; /* RNG disabled */
710 /* this ---vv--- covers DC bias, Raw Bits and String Filter */
711 if (eax & (0x1F << 10))
712 return 0;
713 if ((eax & 0x1F) == 0)
714 continue; /* no data, retry... */
715 if ((eax & 0x1F) != 1)
716 return 0; /* fatal failure... */
717 *output++ = (unsigned char)buf;
718 count--;
719 }
720 OPENSSL_cleanse(&buf, sizeof(buf));
721
722 return 1;
723}
724
725/* Dummy but necessary function */
726static int padlock_rand_status(void)
727{
728 return 1;
729}
730
731/* Prepare structure for registration */
732static RAND_METHOD padlock_rand = {
733 NULL, /* seed */
734 padlock_rand_bytes, /* bytes */
735 NULL, /* cleanup */
736 NULL, /* add */
737 padlock_rand_bytes, /* pseudorand */
738 padlock_rand_status, /* rand status */
739};
740
741# endif /* COMPILE_HW_PADLOCK */
742# endif /* !OPENSSL_NO_HW_PADLOCK */
743#endif /* !OPENSSL_NO_HW */
744
745#if defined(OPENSSL_NO_HW) || defined(OPENSSL_NO_HW_PADLOCK) \
746 || !defined(COMPILE_HW_PADLOCK)
747# ifndef OPENSSL_NO_DYNAMIC_ENGINE
748OPENSSL_EXPORT
749 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
750OPENSSL_EXPORT
751 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
752{
753 return 0;
754}
755
756IMPLEMENT_DYNAMIC_CHECK_FN()
757# endif
758#endif