lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* From the Intel IA-64 Optimization Guide, choose the minimum latency |
| 2 | alternative. */ |
| 3 | |
| 4 | #include <sysdep.h> |
| 5 | #undef ret |
| 6 | |
| 7 | #include <shlib-compat.h> |
| 8 | |
| 9 | #if SHLIB_COMPAT(libc, GLIBC_2_2, GLIBC_2_2_6) |
| 10 | |
| 11 | /* __divtf3 |
| 12 | Compute a 80-bit IEEE double-extended quotient. |
| 13 | farg0 holds the dividend. farg1 holds the divisor. */ |
| 14 | |
| 15 | ENTRY(___divtf3) |
| 16 | cmp.eq p7, p0 = r0, r0 |
| 17 | frcpa.s0 f10, p6 = farg0, farg1 |
| 18 | ;; |
| 19 | (p6) cmp.ne p7, p0 = r0, r0 |
| 20 | .pred.rel.mutex p6, p7 |
| 21 | (p6) fnma.s1 f11 = farg1, f10, f1 |
| 22 | (p6) fma.s1 f12 = farg0, f10, f0 |
| 23 | ;; |
| 24 | (p6) fma.s1 f13 = f11, f11, f0 |
| 25 | (p6) fma.s1 f14 = f11, f11, f11 |
| 26 | ;; |
| 27 | (p6) fma.s1 f11 = f13, f13, f11 |
| 28 | (p6) fma.s1 f13 = f14, f10, f10 |
| 29 | ;; |
| 30 | (p6) fma.s1 f10 = f13, f11, f10 |
| 31 | (p6) fnma.s1 f11 = farg1, f12, farg0 |
| 32 | ;; |
| 33 | (p6) fma.s1 f11 = f11, f10, f12 |
| 34 | (p6) fnma.s1 f12 = farg1, f10, f1 |
| 35 | ;; |
| 36 | (p6) fma.s1 f10 = f12, f10, f10 |
| 37 | (p6) fnma.s1 f12 = farg1, f11, farg0 |
| 38 | ;; |
| 39 | (p6) fma.s0 fret0 = f12, f10, f11 |
| 40 | (p7) mov fret0 = f10 |
| 41 | br.ret.sptk rp |
| 42 | END(___divtf3) |
| 43 | .symver ___divtf3, __divtf3@GLIBC_2.2 |
| 44 | |
| 45 | /* __divdf3 |
| 46 | Compute a 64-bit IEEE double quotient. |
| 47 | farg0 holds the dividend. farg1 holds the divisor. */ |
| 48 | |
| 49 | ENTRY(___divdf3) |
| 50 | cmp.eq p7, p0 = r0, r0 |
| 51 | frcpa.s0 f10, p6 = farg0, farg1 |
| 52 | ;; |
| 53 | (p6) cmp.ne p7, p0 = r0, r0 |
| 54 | .pred.rel.mutex p6, p7 |
| 55 | (p6) fmpy.s1 f11 = farg0, f10 |
| 56 | (p6) fnma.s1 f12 = farg1, f10, f1 |
| 57 | ;; |
| 58 | (p6) fma.s1 f11 = f12, f11, f11 |
| 59 | (p6) fmpy.s1 f13 = f12, f12 |
| 60 | ;; |
| 61 | (p6) fma.s1 f10 = f12, f10, f10 |
| 62 | (p6) fma.s1 f11 = f13, f11, f11 |
| 63 | ;; |
| 64 | (p6) fmpy.s1 f12 = f13, f13 |
| 65 | (p6) fma.s1 f10 = f13, f10, f10 |
| 66 | ;; |
| 67 | (p6) fma.d.s1 f11 = f12, f11, f11 |
| 68 | (p6) fma.s1 f10 = f12, f10, f10 |
| 69 | ;; |
| 70 | (p6) fnma.d.s1 f8 = farg1, f11, farg0 |
| 71 | ;; |
| 72 | (p6) fma.d fret0 = f8, f10, f11 |
| 73 | (p7) mov fret0 = f10 |
| 74 | br.ret.sptk rp |
| 75 | ;; |
| 76 | END(___divdf3) |
| 77 | .symver ___divdf3, __divdf3@GLIBC_2.2 |
| 78 | |
| 79 | /* __divsf3 |
| 80 | Compute a 32-bit IEEE float quotient. |
| 81 | farg0 holds the dividend. farg1 holds the divisor. */ |
| 82 | |
| 83 | ENTRY(___divsf3) |
| 84 | cmp.eq p7, p0 = r0, r0 |
| 85 | frcpa.s0 f10, p6 = farg0, farg1 |
| 86 | ;; |
| 87 | (p6) cmp.ne p7, p0 = r0, r0 |
| 88 | .pred.rel.mutex p6, p7 |
| 89 | (p6) fmpy.s1 f8 = farg0, f10 |
| 90 | (p6) fnma.s1 f9 = farg1, f10, f1 |
| 91 | ;; |
| 92 | (p6) fma.s1 f8 = f9, f8, f8 |
| 93 | (p6) fmpy.s1 f9 = f9, f9 |
| 94 | ;; |
| 95 | (p6) fma.s1 f8 = f9, f8, f8 |
| 96 | (p6) fmpy.s1 f9 = f9, f9 |
| 97 | ;; |
| 98 | (p6) fma.d.s1 f10 = f9, f8, f8 |
| 99 | ;; |
| 100 | (p6) fnorm.s.s0 fret0 = f10 |
| 101 | (p7) mov fret0 = f10 |
| 102 | br.ret.sptk rp |
| 103 | ;; |
| 104 | END(___divsf3) |
| 105 | .symver ___divsf3, __divsf3@GLIBC_2.2 |
| 106 | |
| 107 | /* __divdi3 |
| 108 | Compute a 64-bit integer quotient. |
| 109 | in0 holds the dividend. in1 holds the divisor. */ |
| 110 | |
| 111 | ENTRY(___divdi3) |
| 112 | .regstk 2,0,0,0 |
| 113 | /* Transfer inputs to FP registers. */ |
| 114 | setf.sig f8 = in0 |
| 115 | setf.sig f9 = in1 |
| 116 | ;; |
| 117 | /* Convert the inputs to FP, so that they won't be treated as |
| 118 | unsigned. */ |
| 119 | fcvt.xf f8 = f8 |
| 120 | fcvt.xf f9 = f9 |
| 121 | ;; |
| 122 | /* Compute the reciprocal approximation. */ |
| 123 | frcpa.s1 f10, p6 = f8, f9 |
| 124 | ;; |
| 125 | /* 3 Newton-Raphson iterations. */ |
| 126 | (p6) fnma.s1 f11 = f9, f10, f1 |
| 127 | (p6) fmpy.s1 f12 = f8, f10 |
| 128 | ;; |
| 129 | (p6) fmpy.s1 f13 = f11, f11 |
| 130 | (p6) fma.s1 f12 = f11, f12, f12 |
| 131 | ;; |
| 132 | (p6) fma.s1 f10 = f11, f10, f10 |
| 133 | (p6) fma.s1 f11 = f13, f12, f12 |
| 134 | ;; |
| 135 | (p6) fma.s1 f10 = f13, f10, f10 |
| 136 | (p6) fnma.s1 f12 = f9, f11, f8 |
| 137 | ;; |
| 138 | (p6) fma.s1 f10 = f12, f10, f11 |
| 139 | ;; |
| 140 | /* Round quotient to an integer. */ |
| 141 | fcvt.fx.trunc.s1 f10 = f10 |
| 142 | ;; |
| 143 | /* Transfer result to GP registers. */ |
| 144 | getf.sig ret0 = f10 |
| 145 | br.ret.sptk rp |
| 146 | ;; |
| 147 | END(___divdi3) |
| 148 | .symver ___divdi3, __divdi3@GLIBC_2.2 |
| 149 | |
| 150 | /* __moddi3 |
| 151 | Compute a 64-bit integer modulus. |
| 152 | in0 holds the dividend (a). in1 holds the divisor (b). */ |
| 153 | |
| 154 | ENTRY(___moddi3) |
| 155 | .regstk 2,0,0,0 |
| 156 | /* Transfer inputs to FP registers. */ |
| 157 | setf.sig f14 = in0 |
| 158 | setf.sig f9 = in1 |
| 159 | ;; |
| 160 | /* Convert the inputs to FP, so that they won't be treated as |
| 161 | unsigned. */ |
| 162 | fcvt.xf f8 = f14 |
| 163 | fcvt.xf f9 = f9 |
| 164 | ;; |
| 165 | /* Compute the reciprocal approximation. */ |
| 166 | frcpa.s1 f10, p6 = f8, f9 |
| 167 | ;; |
| 168 | /* 3 Newton-Raphson iterations. */ |
| 169 | (p6) fmpy.s1 f12 = f8, f10 |
| 170 | (p6) fnma.s1 f11 = f9, f10, f1 |
| 171 | ;; |
| 172 | (p6) fma.s1 f12 = f11, f12, f12 |
| 173 | (p6) fmpy.s1 f13 = f11, f11 |
| 174 | ;; |
| 175 | (p6) fma.s1 f10 = f11, f10, f10 |
| 176 | (p6) fma.s1 f11 = f13, f12, f12 |
| 177 | ;; |
| 178 | sub in1 = r0, in1 |
| 179 | (p6) fma.s1 f10 = f13, f10, f10 |
| 180 | (p6) fnma.s1 f12 = f9, f11, f8 |
| 181 | ;; |
| 182 | setf.sig f9 = in1 |
| 183 | (p6) fma.s1 f10 = f12, f10, f11 |
| 184 | ;; |
| 185 | fcvt.fx.trunc.s1 f10 = f10 |
| 186 | ;; |
| 187 | /* r = q * (-b) + a */ |
| 188 | xma.l f10 = f10, f9, f14 |
| 189 | ;; |
| 190 | /* Transfer result to GP registers. */ |
| 191 | getf.sig ret0 = f10 |
| 192 | br.ret.sptk rp |
| 193 | ;; |
| 194 | END(___moddi3) |
| 195 | .symver ___moddi3, __moddi3@GLIBC_2.2 |
| 196 | |
| 197 | /* __udivdi3 |
| 198 | Compute a 64-bit unsigned integer quotient. |
| 199 | in0 holds the dividend. in1 holds the divisor. */ |
| 200 | |
| 201 | ENTRY(___udivdi3) |
| 202 | .regstk 2,0,0,0 |
| 203 | /* Transfer inputs to FP registers. */ |
| 204 | setf.sig f8 = in0 |
| 205 | setf.sig f9 = in1 |
| 206 | ;; |
| 207 | /* Convert the inputs to FP, to avoid FP software-assist faults. */ |
| 208 | fcvt.xuf.s1 f8 = f8 |
| 209 | fcvt.xuf.s1 f9 = f9 |
| 210 | ;; |
| 211 | /* Compute the reciprocal approximation. */ |
| 212 | frcpa.s1 f10, p6 = f8, f9 |
| 213 | ;; |
| 214 | /* 3 Newton-Raphson iterations. */ |
| 215 | (p6) fnma.s1 f11 = f9, f10, f1 |
| 216 | (p6) fmpy.s1 f12 = f8, f10 |
| 217 | ;; |
| 218 | (p6) fmpy.s1 f13 = f11, f11 |
| 219 | (p6) fma.s1 f12 = f11, f12, f12 |
| 220 | ;; |
| 221 | (p6) fma.s1 f10 = f11, f10, f10 |
| 222 | (p6) fma.s1 f11 = f13, f12, f12 |
| 223 | ;; |
| 224 | (p6) fma.s1 f10 = f13, f10, f10 |
| 225 | (p6) fnma.s1 f12 = f9, f11, f8 |
| 226 | ;; |
| 227 | (p6) fma.s1 f10 = f12, f10, f11 |
| 228 | ;; |
| 229 | /* Round quotient to an unsigned integer. */ |
| 230 | fcvt.fxu.trunc.s1 f10 = f10 |
| 231 | ;; |
| 232 | /* Transfer result to GP registers. */ |
| 233 | getf.sig ret0 = f10 |
| 234 | br.ret.sptk rp |
| 235 | ;; |
| 236 | END(___udivdi3) |
| 237 | .symver ___udivdi3, __udivdi3@GLIBC_2.2 |
| 238 | |
| 239 | /* __umoddi3 |
| 240 | Compute a 64-bit unsigned integer modulus. |
| 241 | in0 holds the dividend (a). in1 holds the divisor (b). */ |
| 242 | |
| 243 | ENTRY(___umoddi3) |
| 244 | .regstk 2,0,0,0 |
| 245 | /* Transfer inputs to FP registers. */ |
| 246 | setf.sig f14 = in0 |
| 247 | setf.sig f9 = in1 |
| 248 | ;; |
| 249 | /* Convert the inputs to FP, to avoid FP software assist faults. */ |
| 250 | fcvt.xuf.s1 f8 = f14 |
| 251 | fcvt.xuf.s1 f9 = f9 |
| 252 | ;; |
| 253 | /* Compute the reciprocal approximation. */ |
| 254 | frcpa.s1 f10, p6 = f8, f9 |
| 255 | ;; |
| 256 | /* 3 Newton-Raphson iterations. */ |
| 257 | (p6) fmpy.s1 f12 = f8, f10 |
| 258 | (p6) fnma.s1 f11 = f9, f10, f1 |
| 259 | ;; |
| 260 | (p6) fma.s1 f12 = f11, f12, f12 |
| 261 | (p6) fmpy.s1 f13 = f11, f11 |
| 262 | ;; |
| 263 | (p6) fma.s1 f10 = f11, f10, f10 |
| 264 | (p6) fma.s1 f11 = f13, f12, f12 |
| 265 | ;; |
| 266 | sub in1 = r0, in1 |
| 267 | (p6) fma.s1 f10 = f13, f10, f10 |
| 268 | (p6) fnma.s1 f12 = f9, f11, f8 |
| 269 | ;; |
| 270 | setf.sig f9 = in1 |
| 271 | (p6) fma.s1 f10 = f12, f10, f11 |
| 272 | ;; |
| 273 | /* Round quotient to an unsigned integer. */ |
| 274 | fcvt.fxu.trunc.s1 f10 = f10 |
| 275 | ;; |
| 276 | /* r = q * (-b) + a */ |
| 277 | xma.l f10 = f10, f9, f14 |
| 278 | ;; |
| 279 | /* Transfer result to GP registers. */ |
| 280 | getf.sig ret0 = f10 |
| 281 | br.ret.sptk rp |
| 282 | ;; |
| 283 | END(___umoddi3) |
| 284 | .symver ___umoddi3, __umoddi3@GLIBC_2.2 |
| 285 | |
| 286 | /* __multi3 |
| 287 | Compute a 128-bit multiply of 128-bit multiplicands. |
| 288 | in0/in1 holds one multiplicand (a), in2/in3 holds the other one (b). */ |
| 289 | |
| 290 | ENTRY(___multi3) |
| 291 | .regstk 4,0,0,0 |
| 292 | setf.sig f6 = in1 |
| 293 | movl r19 = 0xffffffff |
| 294 | setf.sig f7 = in2 |
| 295 | ;; |
| 296 | and r14 = r19, in0 |
| 297 | ;; |
| 298 | setf.sig f10 = r14 |
| 299 | and r14 = r19, in2 |
| 300 | xmpy.l f9 = f6, f7 |
| 301 | ;; |
| 302 | setf.sig f6 = r14 |
| 303 | shr.u r14 = in0, 32 |
| 304 | ;; |
| 305 | setf.sig f7 = r14 |
| 306 | shr.u r14 = in2, 32 |
| 307 | ;; |
| 308 | setf.sig f8 = r14 |
| 309 | xmpy.l f11 = f10, f6 |
| 310 | xmpy.l f6 = f7, f6 |
| 311 | ;; |
| 312 | getf.sig r16 = f11 |
| 313 | xmpy.l f7 = f7, f8 |
| 314 | ;; |
| 315 | shr.u r14 = r16, 32 |
| 316 | and r16 = r19, r16 |
| 317 | getf.sig r17 = f6 |
| 318 | setf.sig f6 = in0 |
| 319 | ;; |
| 320 | setf.sig f11 = r14 |
| 321 | getf.sig r21 = f7 |
| 322 | setf.sig f7 = in3 |
| 323 | ;; |
| 324 | xma.l f11 = f10, f8, f11 |
| 325 | xma.l f6 = f6, f7, f9 |
| 326 | ;; |
| 327 | getf.sig r18 = f11 |
| 328 | ;; |
| 329 | add r18 = r18, r17 |
| 330 | ;; |
| 331 | and r15 = r19, r18 |
| 332 | cmp.ltu p7, p6 = r18, r17 |
| 333 | ;; |
| 334 | getf.sig r22 = f6 |
| 335 | (p7) adds r14 = 1, r19 |
| 336 | ;; |
| 337 | (p7) add r21 = r21, r14 |
| 338 | shr.u r14 = r18, 32 |
| 339 | shl r15 = r15, 32 |
| 340 | ;; |
| 341 | add r20 = r21, r14 |
| 342 | ;; |
| 343 | add ret0 = r15, r16 |
| 344 | add ret1 = r22, r20 |
| 345 | br.ret.sptk rp |
| 346 | ;; |
| 347 | END(___multi3) |
| 348 | .symver ___multi3, __multi3@GLIBC_2.2 |
| 349 | |
| 350 | #endif |