| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * RTC class driver for "CMOS RTC":  PCs, ACPI, etc | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) | 
|  | 5 | * Copyright (C) 2006 David Brownell (convert to new framework) | 
|  | 6 | * | 
|  | 7 | * This program is free software; you can redistribute it and/or | 
|  | 8 | * modify it under the terms of the GNU General Public License | 
|  | 9 | * as published by the Free Software Foundation; either version | 
|  | 10 | * 2 of the License, or (at your option) any later version. | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * The original "cmos clock" chip was an MC146818 chip, now obsolete. | 
|  | 15 | * That defined the register interface now provided by all PCs, some | 
|  | 16 | * non-PC systems, and incorporated into ACPI.  Modern PC chipsets | 
|  | 17 | * integrate an MC146818 clone in their southbridge, and boards use | 
|  | 18 | * that instead of discrete clones like the DS12887 or M48T86.  There | 
|  | 19 | * are also clones that connect using the LPC bus. | 
|  | 20 | * | 
|  | 21 | * That register API is also used directly by various other drivers | 
|  | 22 | * (notably for integrated NVRAM), infrastructure (x86 has code to | 
|  | 23 | * bypass the RTC framework, directly reading the RTC during boot | 
|  | 24 | * and updating minutes/seconds for systems using NTP synch) and | 
|  | 25 | * utilities (like userspace 'hwclock', if no /dev node exists). | 
|  | 26 | * | 
|  | 27 | * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with | 
|  | 28 | * interrupts disabled, holding the global rtc_lock, to exclude those | 
|  | 29 | * other drivers and utilities on correctly configured systems. | 
|  | 30 | */ | 
|  | 31 | #include <linux/kernel.h> | 
|  | 32 | #include <linux/module.h> | 
|  | 33 | #include <linux/init.h> | 
|  | 34 | #include <linux/interrupt.h> | 
|  | 35 | #include <linux/spinlock.h> | 
|  | 36 | #include <linux/platform_device.h> | 
|  | 37 | #include <linux/log2.h> | 
|  | 38 | #include <linux/pm.h> | 
|  | 39 | #include <linux/of.h> | 
|  | 40 | #include <linux/of_platform.h> | 
|  | 41 | #include <linux/dmi.h> | 
|  | 42 |  | 
|  | 43 | /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ | 
|  | 44 | #include <asm-generic/rtc.h> | 
|  | 45 |  | 
|  | 46 | struct cmos_rtc { | 
|  | 47 | struct rtc_device	*rtc; | 
|  | 48 | struct device		*dev; | 
|  | 49 | int			irq; | 
|  | 50 | struct resource		*iomem; | 
|  | 51 |  | 
|  | 52 | void			(*wake_on)(struct device *); | 
|  | 53 | void			(*wake_off)(struct device *); | 
|  | 54 |  | 
|  | 55 | u8			enabled_wake; | 
|  | 56 | u8			suspend_ctrl; | 
|  | 57 |  | 
|  | 58 | /* newer hardware extends the original register set */ | 
|  | 59 | u8			day_alrm; | 
|  | 60 | u8			mon_alrm; | 
|  | 61 | u8			century; | 
|  | 62 | }; | 
|  | 63 |  | 
|  | 64 | /* both platform and pnp busses use negative numbers for invalid irqs */ | 
|  | 65 | #define is_valid_irq(n)		((n) > 0) | 
|  | 66 |  | 
|  | 67 | static const char driver_name[] = "rtc_cmos"; | 
|  | 68 |  | 
|  | 69 | /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; | 
|  | 70 | * always mask it against the irq enable bits in RTC_CONTROL.  Bit values | 
|  | 71 | * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. | 
|  | 72 | */ | 
|  | 73 | #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF) | 
|  | 74 |  | 
|  | 75 | static inline int is_intr(u8 rtc_intr) | 
|  | 76 | { | 
|  | 77 | if (!(rtc_intr & RTC_IRQF)) | 
|  | 78 | return 0; | 
|  | 79 | return rtc_intr & RTC_IRQMASK; | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | /*----------------------------------------------------------------*/ | 
|  | 83 |  | 
|  | 84 | /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because | 
|  | 85 | * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly | 
|  | 86 | * used in a broken "legacy replacement" mode.  The breakage includes | 
|  | 87 | * HPET #1 hijacking the IRQ for this RTC, and being unavailable for | 
|  | 88 | * other (better) use. | 
|  | 89 | * | 
|  | 90 | * When that broken mode is in use, platform glue provides a partial | 
|  | 91 | * emulation of hardware RTC IRQ facilities using HPET #1.  We don't | 
|  | 92 | * want to use HPET for anything except those IRQs though... | 
|  | 93 | */ | 
|  | 94 | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  | 95 | #include <asm/hpet.h> | 
|  | 96 | #else | 
|  | 97 |  | 
|  | 98 | static inline int is_hpet_enabled(void) | 
|  | 99 | { | 
|  | 100 | return 0; | 
|  | 101 | } | 
|  | 102 |  | 
|  | 103 | static inline int hpet_mask_rtc_irq_bit(unsigned long mask) | 
|  | 104 | { | 
|  | 105 | return 0; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | static inline int hpet_set_rtc_irq_bit(unsigned long mask) | 
|  | 109 | { | 
|  | 110 | return 0; | 
|  | 111 | } | 
|  | 112 |  | 
|  | 113 | static inline int | 
|  | 114 | hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) | 
|  | 115 | { | 
|  | 116 | return 0; | 
|  | 117 | } | 
|  | 118 |  | 
|  | 119 | static inline int hpet_set_periodic_freq(unsigned long freq) | 
|  | 120 | { | 
|  | 121 | return 0; | 
|  | 122 | } | 
|  | 123 |  | 
|  | 124 | static inline int hpet_rtc_dropped_irq(void) | 
|  | 125 | { | 
|  | 126 | return 0; | 
|  | 127 | } | 
|  | 128 |  | 
|  | 129 | static inline int hpet_rtc_timer_init(void) | 
|  | 130 | { | 
|  | 131 | return 0; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | extern irq_handler_t hpet_rtc_interrupt; | 
|  | 135 |  | 
|  | 136 | static inline int hpet_register_irq_handler(irq_handler_t handler) | 
|  | 137 | { | 
|  | 138 | return 0; | 
|  | 139 | } | 
|  | 140 |  | 
|  | 141 | static inline int hpet_unregister_irq_handler(irq_handler_t handler) | 
|  | 142 | { | 
|  | 143 | return 0; | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | #endif | 
|  | 147 |  | 
|  | 148 | /*----------------------------------------------------------------*/ | 
|  | 149 |  | 
|  | 150 | #ifdef RTC_PORT | 
|  | 151 |  | 
|  | 152 | /* Most newer x86 systems have two register banks, the first used | 
|  | 153 | * for RTC and NVRAM and the second only for NVRAM.  Caller must | 
|  | 154 | * own rtc_lock ... and we won't worry about access during NMI. | 
|  | 155 | */ | 
|  | 156 | #define can_bank2	true | 
|  | 157 |  | 
|  | 158 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | 159 | { | 
|  | 160 | outb(addr, RTC_PORT(2)); | 
|  | 161 | return inb(RTC_PORT(3)); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | 165 | { | 
|  | 166 | outb(addr, RTC_PORT(2)); | 
|  | 167 | outb(val, RTC_PORT(3)); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | #else | 
|  | 171 |  | 
|  | 172 | #define can_bank2	false | 
|  | 173 |  | 
|  | 174 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | 175 | { | 
|  | 176 | return 0; | 
|  | 177 | } | 
|  | 178 |  | 
|  | 179 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | 180 | { | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | #endif | 
|  | 184 |  | 
|  | 185 | /*----------------------------------------------------------------*/ | 
|  | 186 |  | 
|  | 187 | static int cmos_read_time(struct device *dev, struct rtc_time *t) | 
|  | 188 | { | 
|  | 189 | /* REVISIT:  if the clock has a "century" register, use | 
|  | 190 | * that instead of the heuristic in get_rtc_time(). | 
|  | 191 | * That'll make Y3K compatility (year > 2070) easy! | 
|  | 192 | */ | 
|  | 193 | get_rtc_time(t); | 
|  | 194 | return 0; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | static int cmos_set_time(struct device *dev, struct rtc_time *t) | 
|  | 198 | { | 
|  | 199 | /* REVISIT:  set the "century" register if available | 
|  | 200 | * | 
|  | 201 | * NOTE: this ignores the issue whereby updating the seconds | 
|  | 202 | * takes effect exactly 500ms after we write the register. | 
|  | 203 | * (Also queueing and other delays before we get this far.) | 
|  | 204 | */ | 
|  | 205 | return set_rtc_time(t); | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | 209 | { | 
|  | 210 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 211 | unsigned char	rtc_control; | 
|  | 212 |  | 
|  | 213 | if (!is_valid_irq(cmos->irq)) | 
|  | 214 | return -EIO; | 
|  | 215 |  | 
|  | 216 | /* Basic alarms only support hour, minute, and seconds fields. | 
|  | 217 | * Some also support day and month, for alarms up to a year in | 
|  | 218 | * the future. | 
|  | 219 | */ | 
|  | 220 | t->time.tm_mday = -1; | 
|  | 221 | t->time.tm_mon = -1; | 
|  | 222 |  | 
|  | 223 | spin_lock_irq(&rtc_lock); | 
|  | 224 | t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | 
|  | 225 | t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); | 
|  | 226 | t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); | 
|  | 227 |  | 
|  | 228 | if (cmos->day_alrm) { | 
|  | 229 | /* ignore upper bits on readback per ACPI spec */ | 
|  | 230 | t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; | 
|  | 231 | if (!t->time.tm_mday) | 
|  | 232 | t->time.tm_mday = -1; | 
|  | 233 |  | 
|  | 234 | if (cmos->mon_alrm) { | 
|  | 235 | t->time.tm_mon = CMOS_READ(cmos->mon_alrm); | 
|  | 236 | if (!t->time.tm_mon) | 
|  | 237 | t->time.tm_mon = -1; | 
|  | 238 | } | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 242 | spin_unlock_irq(&rtc_lock); | 
|  | 243 |  | 
|  | 244 | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 245 | if (((unsigned)t->time.tm_sec) < 0x60) | 
|  | 246 | t->time.tm_sec = bcd2bin(t->time.tm_sec); | 
|  | 247 | else | 
|  | 248 | t->time.tm_sec = -1; | 
|  | 249 | if (((unsigned)t->time.tm_min) < 0x60) | 
|  | 250 | t->time.tm_min = bcd2bin(t->time.tm_min); | 
|  | 251 | else | 
|  | 252 | t->time.tm_min = -1; | 
|  | 253 | if (((unsigned)t->time.tm_hour) < 0x24) | 
|  | 254 | t->time.tm_hour = bcd2bin(t->time.tm_hour); | 
|  | 255 | else | 
|  | 256 | t->time.tm_hour = -1; | 
|  | 257 |  | 
|  | 258 | if (cmos->day_alrm) { | 
|  | 259 | if (((unsigned)t->time.tm_mday) <= 0x31) | 
|  | 260 | t->time.tm_mday = bcd2bin(t->time.tm_mday); | 
|  | 261 | else | 
|  | 262 | t->time.tm_mday = -1; | 
|  | 263 |  | 
|  | 264 | if (cmos->mon_alrm) { | 
|  | 265 | if (((unsigned)t->time.tm_mon) <= 0x12) | 
|  | 266 | t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; | 
|  | 267 | else | 
|  | 268 | t->time.tm_mon = -1; | 
|  | 269 | } | 
|  | 270 | } | 
|  | 271 | } | 
|  | 272 | t->time.tm_year = -1; | 
|  | 273 |  | 
|  | 274 | t->enabled = !!(rtc_control & RTC_AIE); | 
|  | 275 | t->pending = 0; | 
|  | 276 |  | 
|  | 277 | return 0; | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) | 
|  | 281 | { | 
|  | 282 | unsigned char	rtc_intr; | 
|  | 283 |  | 
|  | 284 | /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; | 
|  | 285 | * allegedly some older rtcs need that to handle irqs properly | 
|  | 286 | */ | 
|  | 287 | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 288 |  | 
|  | 289 | if (is_hpet_enabled()) | 
|  | 290 | return; | 
|  | 291 |  | 
|  | 292 | rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | 293 | if (is_intr(rtc_intr)) | 
|  | 294 | rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
|  | 295 | } | 
|  | 296 |  | 
|  | 297 | static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | 298 | { | 
|  | 299 | unsigned char	rtc_control; | 
|  | 300 |  | 
|  | 301 | /* flush any pending IRQ status, notably for update irqs, | 
|  | 302 | * before we enable new IRQs | 
|  | 303 | */ | 
|  | 304 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 305 | cmos_checkintr(cmos, rtc_control); | 
|  | 306 |  | 
|  | 307 | rtc_control |= mask; | 
|  | 308 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 309 | hpet_set_rtc_irq_bit(mask); | 
|  | 310 |  | 
|  | 311 | cmos_checkintr(cmos, rtc_control); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | 315 | { | 
|  | 316 | unsigned char	rtc_control; | 
|  | 317 |  | 
|  | 318 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 319 | rtc_control &= ~mask; | 
|  | 320 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 321 | hpet_mask_rtc_irq_bit(mask); | 
|  | 322 |  | 
|  | 323 | cmos_checkintr(cmos, rtc_control); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | 327 | { | 
|  | 328 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 329 | unsigned char   mon, mday, hrs, min, sec, rtc_control; | 
|  | 330 |  | 
|  | 331 | if (!is_valid_irq(cmos->irq)) | 
|  | 332 | return -EIO; | 
|  | 333 |  | 
|  | 334 | mon = t->time.tm_mon + 1; | 
|  | 335 | mday = t->time.tm_mday; | 
|  | 336 | hrs = t->time.tm_hour; | 
|  | 337 | min = t->time.tm_min; | 
|  | 338 | sec = t->time.tm_sec; | 
|  | 339 |  | 
|  | 340 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 341 | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 342 | /* Writing 0xff means "don't care" or "match all".  */ | 
|  | 343 | mon = (mon <= 12) ? bin2bcd(mon) : 0xff; | 
|  | 344 | mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; | 
|  | 345 | hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; | 
|  | 346 | min = (min < 60) ? bin2bcd(min) : 0xff; | 
|  | 347 | sec = (sec < 60) ? bin2bcd(sec) : 0xff; | 
|  | 348 | } | 
|  | 349 |  | 
|  | 350 | spin_lock_irq(&rtc_lock); | 
|  | 351 |  | 
|  | 352 | /* next rtc irq must not be from previous alarm setting */ | 
|  | 353 | cmos_irq_disable(cmos, RTC_AIE); | 
|  | 354 |  | 
|  | 355 | /* update alarm */ | 
|  | 356 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); | 
|  | 357 | CMOS_WRITE(min, RTC_MINUTES_ALARM); | 
|  | 358 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); | 
|  | 359 |  | 
|  | 360 | /* the system may support an "enhanced" alarm */ | 
|  | 361 | if (cmos->day_alrm) { | 
|  | 362 | CMOS_WRITE(mday, cmos->day_alrm); | 
|  | 363 | if (cmos->mon_alrm) | 
|  | 364 | CMOS_WRITE(mon, cmos->mon_alrm); | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | /* FIXME the HPET alarm glue currently ignores day_alrm | 
|  | 368 | * and mon_alrm ... | 
|  | 369 | */ | 
|  | 370 | hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); | 
|  | 371 |  | 
|  | 372 | if (t->enabled) | 
|  | 373 | cmos_irq_enable(cmos, RTC_AIE); | 
|  | 374 |  | 
|  | 375 | spin_unlock_irq(&rtc_lock); | 
|  | 376 |  | 
|  | 377 | return 0; | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | /* | 
|  | 381 | * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes. | 
|  | 382 | */ | 
|  | 383 | static bool alarm_disable_quirk; | 
|  | 384 |  | 
|  | 385 | static int __init set_alarm_disable_quirk(const struct dmi_system_id *id) | 
|  | 386 | { | 
|  | 387 | alarm_disable_quirk = true; | 
|  | 388 | pr_info("rtc-cmos: BIOS has alarm-disable quirk. "); | 
|  | 389 | pr_info("RTC alarms disabled\n"); | 
|  | 390 | return 0; | 
|  | 391 | } | 
|  | 392 |  | 
|  | 393 | static const struct dmi_system_id rtc_quirks[] __initconst = { | 
|  | 394 | /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */ | 
|  | 395 | { | 
|  | 396 | .callback = set_alarm_disable_quirk, | 
|  | 397 | .ident    = "IBM Truman", | 
|  | 398 | .matches  = { | 
|  | 399 | DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), | 
|  | 400 | DMI_MATCH(DMI_PRODUCT_NAME, "4852570"), | 
|  | 401 | }, | 
|  | 402 | }, | 
|  | 403 | /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */ | 
|  | 404 | { | 
|  | 405 | .callback = set_alarm_disable_quirk, | 
|  | 406 | .ident    = "Gigabyte GA-990XA-UD3", | 
|  | 407 | .matches  = { | 
|  | 408 | DMI_MATCH(DMI_SYS_VENDOR, | 
|  | 409 | "Gigabyte Technology Co., Ltd."), | 
|  | 410 | DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"), | 
|  | 411 | }, | 
|  | 412 | }, | 
|  | 413 | /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */ | 
|  | 414 | { | 
|  | 415 | .callback = set_alarm_disable_quirk, | 
|  | 416 | .ident    = "Toshiba Satellite L300", | 
|  | 417 | .matches  = { | 
|  | 418 | DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), | 
|  | 419 | DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"), | 
|  | 420 | }, | 
|  | 421 | }, | 
|  | 422 | {} | 
|  | 423 | }; | 
|  | 424 |  | 
|  | 425 | static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) | 
|  | 426 | { | 
|  | 427 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 428 | unsigned long	flags; | 
|  | 429 |  | 
|  | 430 | if (!is_valid_irq(cmos->irq)) | 
|  | 431 | return -EINVAL; | 
|  | 432 |  | 
|  | 433 | if (alarm_disable_quirk) | 
|  | 434 | return 0; | 
|  | 435 |  | 
|  | 436 | spin_lock_irqsave(&rtc_lock, flags); | 
|  | 437 |  | 
|  | 438 | if (enabled) | 
|  | 439 | cmos_irq_enable(cmos, RTC_AIE); | 
|  | 440 | else | 
|  | 441 | cmos_irq_disable(cmos, RTC_AIE); | 
|  | 442 |  | 
|  | 443 | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | 444 | return 0; | 
|  | 445 | } | 
|  | 446 |  | 
|  | 447 | #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) | 
|  | 448 |  | 
|  | 449 | static int cmos_procfs(struct device *dev, struct seq_file *seq) | 
|  | 450 | { | 
|  | 451 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 452 | unsigned char	rtc_control, valid; | 
|  | 453 |  | 
|  | 454 | spin_lock_irq(&rtc_lock); | 
|  | 455 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 456 | valid = CMOS_READ(RTC_VALID); | 
|  | 457 | spin_unlock_irq(&rtc_lock); | 
|  | 458 |  | 
|  | 459 | /* NOTE:  at least ICH6 reports battery status using a different | 
|  | 460 | * (non-RTC) bit; and SQWE is ignored on many current systems. | 
|  | 461 | */ | 
|  | 462 | return seq_printf(seq, | 
|  | 463 | "periodic_IRQ\t: %s\n" | 
|  | 464 | "update_IRQ\t: %s\n" | 
|  | 465 | "HPET_emulated\t: %s\n" | 
|  | 466 | // "square_wave\t: %s\n" | 
|  | 467 | "BCD\t\t: %s\n" | 
|  | 468 | "DST_enable\t: %s\n" | 
|  | 469 | "periodic_freq\t: %d\n" | 
|  | 470 | "batt_status\t: %s\n", | 
|  | 471 | (rtc_control & RTC_PIE) ? "yes" : "no", | 
|  | 472 | (rtc_control & RTC_UIE) ? "yes" : "no", | 
|  | 473 | is_hpet_enabled() ? "yes" : "no", | 
|  | 474 | // (rtc_control & RTC_SQWE) ? "yes" : "no", | 
|  | 475 | (rtc_control & RTC_DM_BINARY) ? "no" : "yes", | 
|  | 476 | (rtc_control & RTC_DST_EN) ? "yes" : "no", | 
|  | 477 | cmos->rtc->irq_freq, | 
|  | 478 | (valid & RTC_VRT) ? "okay" : "dead"); | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | #else | 
|  | 482 | #define	cmos_procfs	NULL | 
|  | 483 | #endif | 
|  | 484 |  | 
|  | 485 | static const struct rtc_class_ops cmos_rtc_ops = { | 
|  | 486 | .read_time		= cmos_read_time, | 
|  | 487 | .set_time		= cmos_set_time, | 
|  | 488 | .read_alarm		= cmos_read_alarm, | 
|  | 489 | .set_alarm		= cmos_set_alarm, | 
|  | 490 | .proc			= cmos_procfs, | 
|  | 491 | .alarm_irq_enable	= cmos_alarm_irq_enable, | 
|  | 492 | }; | 
|  | 493 |  | 
|  | 494 | /*----------------------------------------------------------------*/ | 
|  | 495 |  | 
|  | 496 | /* | 
|  | 497 | * All these chips have at least 64 bytes of address space, shared by | 
|  | 498 | * RTC registers and NVRAM.  Most of those bytes of NVRAM are used | 
|  | 499 | * by boot firmware.  Modern chips have 128 or 256 bytes. | 
|  | 500 | */ | 
|  | 501 |  | 
|  | 502 | #define NVRAM_OFFSET	(RTC_REG_D + 1) | 
|  | 503 |  | 
|  | 504 | static ssize_t | 
|  | 505 | cmos_nvram_read(struct file *filp, struct kobject *kobj, | 
|  | 506 | struct bin_attribute *attr, | 
|  | 507 | char *buf, loff_t off, size_t count) | 
|  | 508 | { | 
|  | 509 | int	retval; | 
|  | 510 |  | 
|  | 511 | if (unlikely(off >= attr->size)) | 
|  | 512 | return 0; | 
|  | 513 | if (unlikely(off < 0)) | 
|  | 514 | return -EINVAL; | 
|  | 515 | if ((off + count) > attr->size) | 
|  | 516 | count = attr->size - off; | 
|  | 517 |  | 
|  | 518 | off += NVRAM_OFFSET; | 
|  | 519 | spin_lock_irq(&rtc_lock); | 
|  | 520 | for (retval = 0; count; count--, off++, retval++) { | 
|  | 521 | if (off < 128) | 
|  | 522 | *buf++ = CMOS_READ(off); | 
|  | 523 | else if (can_bank2) | 
|  | 524 | *buf++ = cmos_read_bank2(off); | 
|  | 525 | else | 
|  | 526 | break; | 
|  | 527 | } | 
|  | 528 | spin_unlock_irq(&rtc_lock); | 
|  | 529 |  | 
|  | 530 | return retval; | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | static ssize_t | 
|  | 534 | cmos_nvram_write(struct file *filp, struct kobject *kobj, | 
|  | 535 | struct bin_attribute *attr, | 
|  | 536 | char *buf, loff_t off, size_t count) | 
|  | 537 | { | 
|  | 538 | struct cmos_rtc	*cmos; | 
|  | 539 | int		retval; | 
|  | 540 |  | 
|  | 541 | cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); | 
|  | 542 | if (unlikely(off >= attr->size)) | 
|  | 543 | return -EFBIG; | 
|  | 544 | if (unlikely(off < 0)) | 
|  | 545 | return -EINVAL; | 
|  | 546 | if ((off + count) > attr->size) | 
|  | 547 | count = attr->size - off; | 
|  | 548 |  | 
|  | 549 | /* NOTE:  on at least PCs and Ataris, the boot firmware uses a | 
|  | 550 | * checksum on part of the NVRAM data.  That's currently ignored | 
|  | 551 | * here.  If userspace is smart enough to know what fields of | 
|  | 552 | * NVRAM to update, updating checksums is also part of its job. | 
|  | 553 | */ | 
|  | 554 | off += NVRAM_OFFSET; | 
|  | 555 | spin_lock_irq(&rtc_lock); | 
|  | 556 | for (retval = 0; count; count--, off++, retval++) { | 
|  | 557 | /* don't trash RTC registers */ | 
|  | 558 | if (off == cmos->day_alrm | 
|  | 559 | || off == cmos->mon_alrm | 
|  | 560 | || off == cmos->century) | 
|  | 561 | buf++; | 
|  | 562 | else if (off < 128) | 
|  | 563 | CMOS_WRITE(*buf++, off); | 
|  | 564 | else if (can_bank2) | 
|  | 565 | cmos_write_bank2(*buf++, off); | 
|  | 566 | else | 
|  | 567 | break; | 
|  | 568 | } | 
|  | 569 | spin_unlock_irq(&rtc_lock); | 
|  | 570 |  | 
|  | 571 | return retval; | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | static struct bin_attribute nvram = { | 
|  | 575 | .attr = { | 
|  | 576 | .name	= "nvram", | 
|  | 577 | .mode	= S_IRUGO | S_IWUSR, | 
|  | 578 | }, | 
|  | 579 |  | 
|  | 580 | .read	= cmos_nvram_read, | 
|  | 581 | .write	= cmos_nvram_write, | 
|  | 582 | /* size gets set up later */ | 
|  | 583 | }; | 
|  | 584 |  | 
|  | 585 | /*----------------------------------------------------------------*/ | 
|  | 586 |  | 
|  | 587 | static struct cmos_rtc	cmos_rtc; | 
|  | 588 |  | 
|  | 589 | static irqreturn_t cmos_interrupt(int irq, void *p) | 
|  | 590 | { | 
|  | 591 | u8		irqstat; | 
|  | 592 | u8		rtc_control; | 
|  | 593 |  | 
|  | 594 | spin_lock(&rtc_lock); | 
|  | 595 |  | 
|  | 596 | /* When the HPET interrupt handler calls us, the interrupt | 
|  | 597 | * status is passed as arg1 instead of the irq number.  But | 
|  | 598 | * always clear irq status, even when HPET is in the way. | 
|  | 599 | * | 
|  | 600 | * Note that HPET and RTC are almost certainly out of phase, | 
|  | 601 | * giving different IRQ status ... | 
|  | 602 | */ | 
|  | 603 | irqstat = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 604 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 605 | if (is_hpet_enabled()) | 
|  | 606 | irqstat = (unsigned long)irq & 0xF0; | 
|  | 607 | irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | 608 |  | 
|  | 609 | /* All Linux RTC alarms should be treated as if they were oneshot. | 
|  | 610 | * Similar code may be needed in system wakeup paths, in case the | 
|  | 611 | * alarm woke the system. | 
|  | 612 | */ | 
|  | 613 | if (irqstat & RTC_AIE) { | 
|  | 614 | rtc_control &= ~RTC_AIE; | 
|  | 615 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 616 | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | 617 |  | 
|  | 618 | CMOS_READ(RTC_INTR_FLAGS); | 
|  | 619 | } | 
|  | 620 | spin_unlock(&rtc_lock); | 
|  | 621 |  | 
|  | 622 | if (is_intr(irqstat)) { | 
|  | 623 | rtc_update_irq(p, 1, irqstat); | 
|  | 624 | return IRQ_HANDLED; | 
|  | 625 | } else | 
|  | 626 | return IRQ_NONE; | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | #ifdef	CONFIG_PNP | 
|  | 630 | #define	INITSECTION | 
|  | 631 |  | 
|  | 632 | #else | 
|  | 633 | #define	INITSECTION	__init | 
|  | 634 | #endif | 
|  | 635 |  | 
|  | 636 | static int INITSECTION | 
|  | 637 | cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) | 
|  | 638 | { | 
|  | 639 | struct cmos_rtc_board_info	*info = dev->platform_data; | 
|  | 640 | int				retval = 0; | 
|  | 641 | unsigned char			rtc_control; | 
|  | 642 | unsigned			address_space; | 
|  | 643 |  | 
|  | 644 | /* there can be only one ... */ | 
|  | 645 | if (cmos_rtc.dev) | 
|  | 646 | return -EBUSY; | 
|  | 647 |  | 
|  | 648 | if (!ports) | 
|  | 649 | return -ENODEV; | 
|  | 650 |  | 
|  | 651 | /* Claim I/O ports ASAP, minimizing conflict with legacy driver. | 
|  | 652 | * | 
|  | 653 | * REVISIT non-x86 systems may instead use memory space resources | 
|  | 654 | * (needing ioremap etc), not i/o space resources like this ... | 
|  | 655 | */ | 
|  | 656 | ports = request_region(ports->start, | 
|  | 657 | resource_size(ports), | 
|  | 658 | driver_name); | 
|  | 659 | if (!ports) { | 
|  | 660 | dev_dbg(dev, "i/o registers already in use\n"); | 
|  | 661 | return -EBUSY; | 
|  | 662 | } | 
|  | 663 |  | 
|  | 664 | cmos_rtc.irq = rtc_irq; | 
|  | 665 | cmos_rtc.iomem = ports; | 
|  | 666 |  | 
|  | 667 | /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM | 
|  | 668 | * driver did, but don't reject unknown configs.   Old hardware | 
|  | 669 | * won't address 128 bytes.  Newer chips have multiple banks, | 
|  | 670 | * though they may not be listed in one I/O resource. | 
|  | 671 | */ | 
|  | 672 | #if	defined(CONFIG_ATARI) | 
|  | 673 | address_space = 64; | 
|  | 674 | #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ | 
|  | 675 | || defined(__sparc__) || defined(__mips__) \ | 
|  | 676 | || defined(__powerpc__) | 
|  | 677 | address_space = 128; | 
|  | 678 | #else | 
|  | 679 | #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. | 
|  | 680 | address_space = 128; | 
|  | 681 | #endif | 
|  | 682 | if (can_bank2 && ports->end > (ports->start + 1)) | 
|  | 683 | address_space = 256; | 
|  | 684 |  | 
|  | 685 | /* For ACPI systems extension info comes from the FADT.  On others, | 
|  | 686 | * board specific setup provides it as appropriate.  Systems where | 
|  | 687 | * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and | 
|  | 688 | * some almost-clones) can provide hooks to make that behave. | 
|  | 689 | * | 
|  | 690 | * Note that ACPI doesn't preclude putting these registers into | 
|  | 691 | * "extended" areas of the chip, including some that we won't yet | 
|  | 692 | * expect CMOS_READ and friends to handle. | 
|  | 693 | */ | 
|  | 694 | if (info) { | 
|  | 695 | if (info->rtc_day_alarm && info->rtc_day_alarm < 128) | 
|  | 696 | cmos_rtc.day_alrm = info->rtc_day_alarm; | 
|  | 697 | if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) | 
|  | 698 | cmos_rtc.mon_alrm = info->rtc_mon_alarm; | 
|  | 699 | if (info->rtc_century && info->rtc_century < 128) | 
|  | 700 | cmos_rtc.century = info->rtc_century; | 
|  | 701 |  | 
|  | 702 | if (info->wake_on && info->wake_off) { | 
|  | 703 | cmos_rtc.wake_on = info->wake_on; | 
|  | 704 | cmos_rtc.wake_off = info->wake_off; | 
|  | 705 | } | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | cmos_rtc.dev = dev; | 
|  | 709 | dev_set_drvdata(dev, &cmos_rtc); | 
|  | 710 |  | 
|  | 711 | cmos_rtc.rtc = rtc_device_register(driver_name, dev, | 
|  | 712 | &cmos_rtc_ops, THIS_MODULE); | 
|  | 713 | if (IS_ERR(cmos_rtc.rtc)) { | 
|  | 714 | retval = PTR_ERR(cmos_rtc.rtc); | 
|  | 715 | goto cleanup0; | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); | 
|  | 719 |  | 
|  | 720 | spin_lock_irq(&rtc_lock); | 
|  | 721 |  | 
|  | 722 | /* force periodic irq to CMOS reset default of 1024Hz; | 
|  | 723 | * | 
|  | 724 | * REVISIT it's been reported that at least one x86_64 ALI mobo | 
|  | 725 | * doesn't use 32KHz here ... for portability we might need to | 
|  | 726 | * do something about other clock frequencies. | 
|  | 727 | */ | 
|  | 728 | cmos_rtc.rtc->irq_freq = 1024; | 
|  | 729 | hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); | 
|  | 730 | CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); | 
|  | 731 |  | 
|  | 732 | /* disable irqs */ | 
|  | 733 | cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); | 
|  | 734 |  | 
|  | 735 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 736 |  | 
|  | 737 | spin_unlock_irq(&rtc_lock); | 
|  | 738 |  | 
|  | 739 | /* FIXME: | 
|  | 740 | * <asm-generic/rtc.h> doesn't know 12-hour mode either. | 
|  | 741 | */ | 
|  | 742 | if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { | 
|  | 743 | dev_warn(dev, "only 24-hr supported\n"); | 
|  | 744 | retval = -ENXIO; | 
|  | 745 | goto cleanup1; | 
|  | 746 | } | 
|  | 747 |  | 
|  | 748 | if (is_valid_irq(rtc_irq)) { | 
|  | 749 | irq_handler_t rtc_cmos_int_handler; | 
|  | 750 |  | 
|  | 751 | if (is_hpet_enabled()) { | 
|  | 752 | int err; | 
|  | 753 |  | 
|  | 754 | rtc_cmos_int_handler = hpet_rtc_interrupt; | 
|  | 755 | err = hpet_register_irq_handler(cmos_interrupt); | 
|  | 756 | if (err != 0) { | 
|  | 757 | printk(KERN_WARNING "hpet_register_irq_handler " | 
|  | 758 | " failed in rtc_init()."); | 
|  | 759 | goto cleanup1; | 
|  | 760 | } | 
|  | 761 | } else | 
|  | 762 | rtc_cmos_int_handler = cmos_interrupt; | 
|  | 763 |  | 
|  | 764 | retval = request_irq(rtc_irq, rtc_cmos_int_handler, | 
|  | 765 | 0, dev_name(&cmos_rtc.rtc->dev), | 
|  | 766 | cmos_rtc.rtc); | 
|  | 767 | if (retval < 0) { | 
|  | 768 | dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); | 
|  | 769 | goto cleanup1; | 
|  | 770 | } | 
|  | 771 | } | 
|  | 772 | hpet_rtc_timer_init(); | 
|  | 773 |  | 
|  | 774 | /* export at least the first block of NVRAM */ | 
|  | 775 | nvram.size = address_space - NVRAM_OFFSET; | 
|  | 776 | retval = sysfs_create_bin_file(&dev->kobj, &nvram); | 
|  | 777 | if (retval < 0) { | 
|  | 778 | dev_dbg(dev, "can't create nvram file? %d\n", retval); | 
|  | 779 | goto cleanup2; | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | pr_info("%s: %s%s, %zd bytes nvram%s\n", | 
|  | 783 | dev_name(&cmos_rtc.rtc->dev), | 
|  | 784 | !is_valid_irq(rtc_irq) ? "no alarms" : | 
|  | 785 | cmos_rtc.mon_alrm ? "alarms up to one year" : | 
|  | 786 | cmos_rtc.day_alrm ? "alarms up to one month" : | 
|  | 787 | "alarms up to one day", | 
|  | 788 | cmos_rtc.century ? ", y3k" : "", | 
|  | 789 | nvram.size, | 
|  | 790 | is_hpet_enabled() ? ", hpet irqs" : ""); | 
|  | 791 |  | 
|  | 792 | return 0; | 
|  | 793 |  | 
|  | 794 | cleanup2: | 
|  | 795 | if (is_valid_irq(rtc_irq)) | 
|  | 796 | free_irq(rtc_irq, cmos_rtc.rtc); | 
|  | 797 | cleanup1: | 
|  | 798 | cmos_rtc.dev = NULL; | 
|  | 799 | rtc_device_unregister(cmos_rtc.rtc); | 
|  | 800 | cleanup0: | 
|  | 801 | release_region(ports->start, resource_size(ports)); | 
|  | 802 | return retval; | 
|  | 803 | } | 
|  | 804 |  | 
|  | 805 | static void cmos_do_shutdown(void) | 
|  | 806 | { | 
|  | 807 | spin_lock_irq(&rtc_lock); | 
|  | 808 | cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); | 
|  | 809 | spin_unlock_irq(&rtc_lock); | 
|  | 810 | } | 
|  | 811 |  | 
|  | 812 | static void __exit cmos_do_remove(struct device *dev) | 
|  | 813 | { | 
|  | 814 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 815 | struct resource *ports; | 
|  | 816 |  | 
|  | 817 | cmos_do_shutdown(); | 
|  | 818 |  | 
|  | 819 | sysfs_remove_bin_file(&dev->kobj, &nvram); | 
|  | 820 |  | 
|  | 821 | if (is_valid_irq(cmos->irq)) { | 
|  | 822 | free_irq(cmos->irq, cmos->rtc); | 
|  | 823 | hpet_unregister_irq_handler(cmos_interrupt); | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | rtc_device_unregister(cmos->rtc); | 
|  | 827 | cmos->rtc = NULL; | 
|  | 828 |  | 
|  | 829 | ports = cmos->iomem; | 
|  | 830 | release_region(ports->start, resource_size(ports)); | 
|  | 831 | cmos->iomem = NULL; | 
|  | 832 |  | 
|  | 833 | cmos->dev = NULL; | 
|  | 834 | dev_set_drvdata(dev, NULL); | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | #ifdef	CONFIG_PM | 
|  | 838 |  | 
|  | 839 | static int cmos_suspend(struct device *dev) | 
|  | 840 | { | 
|  | 841 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 842 | unsigned char	tmp; | 
|  | 843 |  | 
|  | 844 | /* only the alarm might be a wakeup event source */ | 
|  | 845 | spin_lock_irq(&rtc_lock); | 
|  | 846 | cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); | 
|  | 847 | if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { | 
|  | 848 | unsigned char	mask; | 
|  | 849 |  | 
|  | 850 | if (device_may_wakeup(dev)) | 
|  | 851 | mask = RTC_IRQMASK & ~RTC_AIE; | 
|  | 852 | else | 
|  | 853 | mask = RTC_IRQMASK; | 
|  | 854 | tmp &= ~mask; | 
|  | 855 | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | 856 | hpet_mask_rtc_irq_bit(mask); | 
|  | 857 |  | 
|  | 858 | cmos_checkintr(cmos, tmp); | 
|  | 859 | } | 
|  | 860 | spin_unlock_irq(&rtc_lock); | 
|  | 861 |  | 
|  | 862 | if (tmp & RTC_AIE) { | 
|  | 863 | cmos->enabled_wake = 1; | 
|  | 864 | if (cmos->wake_on) | 
|  | 865 | cmos->wake_on(dev); | 
|  | 866 | else | 
|  | 867 | enable_irq_wake(cmos->irq); | 
|  | 868 | } | 
|  | 869 |  | 
|  | 870 | pr_debug("%s: suspend%s, ctrl %02x\n", | 
|  | 871 | dev_name(&cmos_rtc.rtc->dev), | 
|  | 872 | (tmp & RTC_AIE) ? ", alarm may wake" : "", | 
|  | 873 | tmp); | 
|  | 874 |  | 
|  | 875 | return 0; | 
|  | 876 | } | 
|  | 877 |  | 
|  | 878 | /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even | 
|  | 879 | * after a detour through G3 "mechanical off", although the ACPI spec | 
|  | 880 | * says wakeup should only work from G1/S4 "hibernate".  To most users, | 
|  | 881 | * distinctions between S4 and S5 are pointless.  So when the hardware | 
|  | 882 | * allows, don't draw that distinction. | 
|  | 883 | */ | 
|  | 884 | static inline int cmos_poweroff(struct device *dev) | 
|  | 885 | { | 
|  | 886 | return cmos_suspend(dev); | 
|  | 887 | } | 
|  | 888 |  | 
|  | 889 | static int cmos_resume(struct device *dev) | 
|  | 890 | { | 
|  | 891 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 892 | unsigned char	tmp = cmos->suspend_ctrl; | 
|  | 893 |  | 
|  | 894 | /* re-enable any irqs previously active */ | 
|  | 895 | if (tmp & RTC_IRQMASK) { | 
|  | 896 | unsigned char	mask; | 
|  | 897 |  | 
|  | 898 | if (cmos->enabled_wake) { | 
|  | 899 | if (cmos->wake_off) | 
|  | 900 | cmos->wake_off(dev); | 
|  | 901 | else | 
|  | 902 | disable_irq_wake(cmos->irq); | 
|  | 903 | cmos->enabled_wake = 0; | 
|  | 904 | } | 
|  | 905 |  | 
|  | 906 | spin_lock_irq(&rtc_lock); | 
|  | 907 | do { | 
|  | 908 | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | 909 | hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); | 
|  | 910 |  | 
|  | 911 | mask = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 912 | mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; | 
|  | 913 | if (!is_hpet_enabled() || !is_intr(mask)) | 
|  | 914 | break; | 
|  | 915 |  | 
|  | 916 | /* force one-shot behavior if HPET blocked | 
|  | 917 | * the wake alarm's irq | 
|  | 918 | */ | 
|  | 919 | rtc_update_irq(cmos->rtc, 1, mask); | 
|  | 920 | tmp &= ~RTC_AIE; | 
|  | 921 | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | 922 | hpet_rtc_timer_init(); | 
|  | 923 | } while (mask & RTC_AIE); | 
|  | 924 | spin_unlock_irq(&rtc_lock); | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | pr_debug("%s: resume, ctrl %02x\n", | 
|  | 928 | dev_name(&cmos_rtc.rtc->dev), | 
|  | 929 | tmp); | 
|  | 930 |  | 
|  | 931 | return 0; | 
|  | 932 | } | 
|  | 933 |  | 
|  | 934 | static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); | 
|  | 935 |  | 
|  | 936 | #else | 
|  | 937 |  | 
|  | 938 | static inline int cmos_poweroff(struct device *dev) | 
|  | 939 | { | 
|  | 940 | return -ENOSYS; | 
|  | 941 | } | 
|  | 942 |  | 
|  | 943 | #endif | 
|  | 944 |  | 
|  | 945 | /*----------------------------------------------------------------*/ | 
|  | 946 |  | 
|  | 947 | /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. | 
|  | 948 | * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs | 
|  | 949 | * probably list them in similar PNPBIOS tables; so PNP is more common. | 
|  | 950 | * | 
|  | 951 | * We don't use legacy "poke at the hardware" probing.  Ancient PCs that | 
|  | 952 | * predate even PNPBIOS should set up platform_bus devices. | 
|  | 953 | */ | 
|  | 954 |  | 
|  | 955 | #ifdef	CONFIG_ACPI | 
|  | 956 |  | 
|  | 957 | #include <linux/acpi.h> | 
|  | 958 |  | 
|  | 959 | static u32 rtc_handler(void *context) | 
|  | 960 | { | 
|  | 961 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 962 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 963 | return ACPI_INTERRUPT_HANDLED; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | static inline void rtc_wake_setup(void) | 
|  | 967 | { | 
|  | 968 | acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); | 
|  | 969 | /* | 
|  | 970 | * After the RTC handler is installed, the Fixed_RTC event should | 
|  | 971 | * be disabled. Only when the RTC alarm is set will it be enabled. | 
|  | 972 | */ | 
|  | 973 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 974 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | static void rtc_wake_on(struct device *dev) | 
|  | 978 | { | 
|  | 979 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 980 | acpi_enable_event(ACPI_EVENT_RTC, 0); | 
|  | 981 | } | 
|  | 982 |  | 
|  | 983 | static void rtc_wake_off(struct device *dev) | 
|  | 984 | { | 
|  | 985 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find | 
|  | 989 | * its device node and pass extra config data.  This helps its driver use | 
|  | 990 | * capabilities that the now-obsolete mc146818 didn't have, and informs it | 
|  | 991 | * that this board's RTC is wakeup-capable (per ACPI spec). | 
|  | 992 | */ | 
|  | 993 | static struct cmos_rtc_board_info acpi_rtc_info; | 
|  | 994 |  | 
|  | 995 | static void __devinit | 
|  | 996 | cmos_wake_setup(struct device *dev) | 
|  | 997 | { | 
|  | 998 | if (acpi_disabled) | 
|  | 999 | return; | 
|  | 1000 |  | 
|  | 1001 | rtc_wake_setup(); | 
|  | 1002 | acpi_rtc_info.wake_on = rtc_wake_on; | 
|  | 1003 | acpi_rtc_info.wake_off = rtc_wake_off; | 
|  | 1004 |  | 
|  | 1005 | /* workaround bug in some ACPI tables */ | 
|  | 1006 | if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { | 
|  | 1007 | dev_dbg(dev, "bogus FADT month_alarm (%d)\n", | 
|  | 1008 | acpi_gbl_FADT.month_alarm); | 
|  | 1009 | acpi_gbl_FADT.month_alarm = 0; | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; | 
|  | 1013 | acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; | 
|  | 1014 | acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; | 
|  | 1015 |  | 
|  | 1016 | /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */ | 
|  | 1017 | if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) | 
|  | 1018 | dev_info(dev, "RTC can wake from S4\n"); | 
|  | 1019 |  | 
|  | 1020 | dev->platform_data = &acpi_rtc_info; | 
|  | 1021 |  | 
|  | 1022 | /* RTC always wakes from S1/S2/S3, and often S4/STD */ | 
|  | 1023 | device_init_wakeup(dev, 1); | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | #else | 
|  | 1027 |  | 
|  | 1028 | static void __devinit | 
|  | 1029 | cmos_wake_setup(struct device *dev) | 
|  | 1030 | { | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | #endif | 
|  | 1034 |  | 
|  | 1035 | #ifdef	CONFIG_PNP | 
|  | 1036 |  | 
|  | 1037 | #include <linux/pnp.h> | 
|  | 1038 |  | 
|  | 1039 | static int __devinit | 
|  | 1040 | cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) | 
|  | 1041 | { | 
|  | 1042 | cmos_wake_setup(&pnp->dev); | 
|  | 1043 |  | 
|  | 1044 | if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) | 
|  | 1045 | /* Some machines contain a PNP entry for the RTC, but | 
|  | 1046 | * don't define the IRQ. It should always be safe to | 
|  | 1047 | * hardcode it in these cases | 
|  | 1048 | */ | 
|  | 1049 | return cmos_do_probe(&pnp->dev, | 
|  | 1050 | pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); | 
|  | 1051 | else | 
|  | 1052 | return cmos_do_probe(&pnp->dev, | 
|  | 1053 | pnp_get_resource(pnp, IORESOURCE_IO, 0), | 
|  | 1054 | pnp_irq(pnp, 0)); | 
|  | 1055 | } | 
|  | 1056 |  | 
|  | 1057 | static void __exit cmos_pnp_remove(struct pnp_dev *pnp) | 
|  | 1058 | { | 
|  | 1059 | cmos_do_remove(&pnp->dev); | 
|  | 1060 | } | 
|  | 1061 |  | 
|  | 1062 | #ifdef	CONFIG_PM | 
|  | 1063 |  | 
|  | 1064 | static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) | 
|  | 1065 | { | 
|  | 1066 | return cmos_suspend(&pnp->dev); | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | static int cmos_pnp_resume(struct pnp_dev *pnp) | 
|  | 1070 | { | 
|  | 1071 | return cmos_resume(&pnp->dev); | 
|  | 1072 | } | 
|  | 1073 |  | 
|  | 1074 | #else | 
|  | 1075 | #define	cmos_pnp_suspend	NULL | 
|  | 1076 | #define	cmos_pnp_resume		NULL | 
|  | 1077 | #endif | 
|  | 1078 |  | 
|  | 1079 | static void cmos_pnp_shutdown(struct pnp_dev *pnp) | 
|  | 1080 | { | 
|  | 1081 | if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) | 
|  | 1082 | return; | 
|  | 1083 |  | 
|  | 1084 | cmos_do_shutdown(); | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | static const struct pnp_device_id rtc_ids[] = { | 
|  | 1088 | { .id = "PNP0b00", }, | 
|  | 1089 | { .id = "PNP0b01", }, | 
|  | 1090 | { .id = "PNP0b02", }, | 
|  | 1091 | { }, | 
|  | 1092 | }; | 
|  | 1093 | MODULE_DEVICE_TABLE(pnp, rtc_ids); | 
|  | 1094 |  | 
|  | 1095 | static struct pnp_driver cmos_pnp_driver = { | 
|  | 1096 | .name		= (char *) driver_name, | 
|  | 1097 | .id_table	= rtc_ids, | 
|  | 1098 | .probe		= cmos_pnp_probe, | 
|  | 1099 | .remove		= __exit_p(cmos_pnp_remove), | 
|  | 1100 | .shutdown	= cmos_pnp_shutdown, | 
|  | 1101 |  | 
|  | 1102 | /* flag ensures resume() gets called, and stops syslog spam */ | 
|  | 1103 | .flags		= PNP_DRIVER_RES_DO_NOT_CHANGE, | 
|  | 1104 | .suspend	= cmos_pnp_suspend, | 
|  | 1105 | .resume		= cmos_pnp_resume, | 
|  | 1106 | }; | 
|  | 1107 |  | 
|  | 1108 | #endif	/* CONFIG_PNP */ | 
|  | 1109 |  | 
|  | 1110 | #ifdef CONFIG_OF | 
|  | 1111 | static const struct of_device_id of_cmos_match[] = { | 
|  | 1112 | { | 
|  | 1113 | .compatible = "motorola,mc146818", | 
|  | 1114 | }, | 
|  | 1115 | { }, | 
|  | 1116 | }; | 
|  | 1117 | MODULE_DEVICE_TABLE(of, of_cmos_match); | 
|  | 1118 |  | 
|  | 1119 | static __init void cmos_of_init(struct platform_device *pdev) | 
|  | 1120 | { | 
|  | 1121 | struct device_node *node = pdev->dev.of_node; | 
|  | 1122 | struct rtc_time time; | 
|  | 1123 | int ret; | 
|  | 1124 | const __be32 *val; | 
|  | 1125 |  | 
|  | 1126 | if (!node) | 
|  | 1127 | return; | 
|  | 1128 |  | 
|  | 1129 | val = of_get_property(node, "ctrl-reg", NULL); | 
|  | 1130 | if (val) | 
|  | 1131 | CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); | 
|  | 1132 |  | 
|  | 1133 | val = of_get_property(node, "freq-reg", NULL); | 
|  | 1134 | if (val) | 
|  | 1135 | CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); | 
|  | 1136 |  | 
|  | 1137 | get_rtc_time(&time); | 
|  | 1138 | ret = rtc_valid_tm(&time); | 
|  | 1139 | if (ret) { | 
|  | 1140 | struct rtc_time def_time = { | 
|  | 1141 | .tm_year = 1, | 
|  | 1142 | .tm_mday = 1, | 
|  | 1143 | }; | 
|  | 1144 | set_rtc_time(&def_time); | 
|  | 1145 | } | 
|  | 1146 | } | 
|  | 1147 | #else | 
|  | 1148 | static inline void cmos_of_init(struct platform_device *pdev) {} | 
|  | 1149 | #define of_cmos_match NULL | 
|  | 1150 | #endif | 
|  | 1151 | /*----------------------------------------------------------------*/ | 
|  | 1152 |  | 
|  | 1153 | /* Platform setup should have set up an RTC device, when PNP is | 
|  | 1154 | * unavailable ... this could happen even on (older) PCs. | 
|  | 1155 | */ | 
|  | 1156 |  | 
|  | 1157 | static int __init cmos_platform_probe(struct platform_device *pdev) | 
|  | 1158 | { | 
|  | 1159 | cmos_of_init(pdev); | 
|  | 1160 | cmos_wake_setup(&pdev->dev); | 
|  | 1161 | return cmos_do_probe(&pdev->dev, | 
|  | 1162 | platform_get_resource(pdev, IORESOURCE_IO, 0), | 
|  | 1163 | platform_get_irq(pdev, 0)); | 
|  | 1164 | } | 
|  | 1165 |  | 
|  | 1166 | static int __exit cmos_platform_remove(struct platform_device *pdev) | 
|  | 1167 | { | 
|  | 1168 | cmos_do_remove(&pdev->dev); | 
|  | 1169 | return 0; | 
|  | 1170 | } | 
|  | 1171 |  | 
|  | 1172 | static void cmos_platform_shutdown(struct platform_device *pdev) | 
|  | 1173 | { | 
|  | 1174 | if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) | 
|  | 1175 | return; | 
|  | 1176 |  | 
|  | 1177 | cmos_do_shutdown(); | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | /* work with hotplug and coldplug */ | 
|  | 1181 | MODULE_ALIAS("platform:rtc_cmos"); | 
|  | 1182 |  | 
|  | 1183 | static struct platform_driver cmos_platform_driver = { | 
|  | 1184 | .remove		= __exit_p(cmos_platform_remove), | 
|  | 1185 | .shutdown	= cmos_platform_shutdown, | 
|  | 1186 | .driver = { | 
|  | 1187 | .name		= (char *) driver_name, | 
|  | 1188 | #ifdef CONFIG_PM | 
|  | 1189 | .pm		= &cmos_pm_ops, | 
|  | 1190 | #endif | 
|  | 1191 | .of_match_table = of_cmos_match, | 
|  | 1192 | } | 
|  | 1193 | }; | 
|  | 1194 |  | 
|  | 1195 | #ifdef CONFIG_PNP | 
|  | 1196 | static bool pnp_driver_registered; | 
|  | 1197 | #endif | 
|  | 1198 | static bool platform_driver_registered; | 
|  | 1199 |  | 
|  | 1200 | static int __init cmos_init(void) | 
|  | 1201 | { | 
|  | 1202 | int retval = 0; | 
|  | 1203 |  | 
|  | 1204 | #ifdef	CONFIG_PNP | 
|  | 1205 | retval = pnp_register_driver(&cmos_pnp_driver); | 
|  | 1206 | if (retval == 0) | 
|  | 1207 | pnp_driver_registered = true; | 
|  | 1208 | #endif | 
|  | 1209 |  | 
|  | 1210 | if (!cmos_rtc.dev) { | 
|  | 1211 | retval = platform_driver_probe(&cmos_platform_driver, | 
|  | 1212 | cmos_platform_probe); | 
|  | 1213 | if (retval == 0) | 
|  | 1214 | platform_driver_registered = true; | 
|  | 1215 | } | 
|  | 1216 |  | 
|  | 1217 | dmi_check_system(rtc_quirks); | 
|  | 1218 |  | 
|  | 1219 | if (retval == 0) | 
|  | 1220 | return 0; | 
|  | 1221 |  | 
|  | 1222 | #ifdef	CONFIG_PNP | 
|  | 1223 | if (pnp_driver_registered) | 
|  | 1224 | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | 1225 | #endif | 
|  | 1226 | return retval; | 
|  | 1227 | } | 
|  | 1228 | module_init(cmos_init); | 
|  | 1229 |  | 
|  | 1230 | static void __exit cmos_exit(void) | 
|  | 1231 | { | 
|  | 1232 | #ifdef	CONFIG_PNP | 
|  | 1233 | if (pnp_driver_registered) | 
|  | 1234 | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | 1235 | #endif | 
|  | 1236 | if (platform_driver_registered) | 
|  | 1237 | platform_driver_unregister(&cmos_platform_driver); | 
|  | 1238 | } | 
|  | 1239 | module_exit(cmos_exit); | 
|  | 1240 |  | 
|  | 1241 |  | 
|  | 1242 | MODULE_AUTHOR("David Brownell"); | 
|  | 1243 | MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); | 
|  | 1244 | MODULE_LICENSE("GPL"); |