lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | |
| 2 | /* Copyright 1998 by the Massachusetts Institute of Technology. |
| 3 | * Copyright (C) 2004-2016 by Daniel Stenberg |
| 4 | * |
| 5 | * Permission to use, copy, modify, and distribute this |
| 6 | * software and its documentation for any purpose and without |
| 7 | * fee is hereby granted, provided that the above copyright |
| 8 | * notice appear in all copies and that both that copyright |
| 9 | * notice and this permission notice appear in supporting |
| 10 | * documentation, and that the name of M.I.T. not be used in |
| 11 | * advertising or publicity pertaining to distribution of the |
| 12 | * software without specific, written prior permission. |
| 13 | * M.I.T. makes no representations about the suitability of |
| 14 | * this software for any purpose. It is provided "as is" |
| 15 | * without express or implied warranty. |
| 16 | */ |
| 17 | |
| 18 | #include "ares_setup.h" |
| 19 | |
| 20 | #ifdef HAVE_SYS_UIO_H |
| 21 | # include <sys/uio.h> |
| 22 | #endif |
| 23 | #ifdef HAVE_NETINET_IN_H |
| 24 | # include <netinet/in.h> |
| 25 | #endif |
| 26 | #ifdef HAVE_NETINET_TCP_H |
| 27 | # include <netinet/tcp.h> |
| 28 | #endif |
| 29 | #ifdef HAVE_NETDB_H |
| 30 | # include <netdb.h> |
| 31 | #endif |
| 32 | #ifdef HAVE_ARPA_NAMESER_H |
| 33 | # include <arpa/nameser.h> |
| 34 | #else |
| 35 | # include "nameser.h" |
| 36 | #endif |
| 37 | #ifdef HAVE_ARPA_NAMESER_COMPAT_H |
| 38 | # include <arpa/nameser_compat.h> |
| 39 | #endif |
| 40 | |
| 41 | #ifdef HAVE_STRINGS_H |
| 42 | # include <strings.h> |
| 43 | #endif |
| 44 | #ifdef HAVE_SYS_IOCTL_H |
| 45 | # include <sys/ioctl.h> |
| 46 | #endif |
| 47 | #ifdef NETWARE |
| 48 | # include <sys/filio.h> |
| 49 | #endif |
| 50 | |
| 51 | #include <assert.h> |
| 52 | #include <fcntl.h> |
| 53 | |
| 54 | #include "ares.h" |
| 55 | #include "ares_dns.h" |
| 56 | #include "ares_nowarn.h" |
| 57 | #include "ares_private.h" |
| 58 | |
| 59 | |
| 60 | static int try_again(int errnum); |
| 61 | static void write_tcp_data(ares_channel channel, fd_set *write_fds, |
| 62 | ares_socket_t write_fd, struct timeval *now); |
| 63 | static void read_tcp_data(ares_channel channel, fd_set *read_fds, |
| 64 | ares_socket_t read_fd, struct timeval *now); |
| 65 | static void read_udp_packets(ares_channel channel, fd_set *read_fds, |
| 66 | ares_socket_t read_fd, struct timeval *now); |
| 67 | static void advance_tcp_send_queue(ares_channel channel, int whichserver, |
| 68 | ssize_t num_bytes); |
| 69 | static void process_timeouts(ares_channel channel, struct timeval *now); |
| 70 | static void process_broken_connections(ares_channel channel, |
| 71 | struct timeval *now); |
| 72 | static void process_answer(ares_channel channel, unsigned char *abuf, |
| 73 | int alen, int whichserver, int tcp, |
| 74 | struct timeval *now); |
| 75 | static void handle_error(ares_channel channel, int whichserver, |
| 76 | struct timeval *now); |
| 77 | static void skip_server(ares_channel channel, struct query *query, |
| 78 | int whichserver); |
| 79 | static void next_server(ares_channel channel, struct query *query, |
| 80 | struct timeval *now); |
| 81 | static int open_tcp_socket(ares_channel channel, struct server_state *server); |
| 82 | static int open_udp_socket(ares_channel channel, struct server_state *server); |
| 83 | static int same_questions(const unsigned char *qbuf, int qlen, |
| 84 | const unsigned char *abuf, int alen); |
| 85 | static int same_address(struct sockaddr *sa, struct ares_addr *aa); |
| 86 | static void end_query(ares_channel channel, struct query *query, int status, |
| 87 | unsigned char *abuf, int alen); |
| 88 | |
| 89 | /* return true if now is exactly check time or later */ |
| 90 | int ares__timedout(struct timeval *now, |
| 91 | struct timeval *check) |
| 92 | { |
| 93 | long secs = (now->tv_sec - check->tv_sec); |
| 94 | |
| 95 | if(secs > 0) |
| 96 | return 1; /* yes, timed out */ |
| 97 | if(secs < 0) |
| 98 | return 0; /* nope, not timed out */ |
| 99 | |
| 100 | /* if the full seconds were identical, check the sub second parts */ |
| 101 | return (now->tv_usec - check->tv_usec >= 0); |
| 102 | } |
| 103 | |
| 104 | /* add the specific number of milliseconds to the time in the first argument */ |
| 105 | static void timeadd(struct timeval *now, int millisecs) |
| 106 | { |
| 107 | now->tv_sec += millisecs/1000; |
| 108 | now->tv_usec += (millisecs%1000)*1000; |
| 109 | |
| 110 | if(now->tv_usec >= 1000000) { |
| 111 | ++(now->tv_sec); |
| 112 | now->tv_usec -= 1000000; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * generic process function |
| 118 | */ |
| 119 | static void processfds(ares_channel channel, |
| 120 | fd_set *read_fds, ares_socket_t read_fd, |
| 121 | fd_set *write_fds, ares_socket_t write_fd) |
| 122 | { |
| 123 | struct timeval now = ares__tvnow(); |
| 124 | |
| 125 | write_tcp_data(channel, write_fds, write_fd, &now); |
| 126 | read_tcp_data(channel, read_fds, read_fd, &now); |
| 127 | read_udp_packets(channel, read_fds, read_fd, &now); |
| 128 | process_timeouts(channel, &now); |
| 129 | process_broken_connections(channel, &now); |
| 130 | } |
| 131 | |
| 132 | /* Something interesting happened on the wire, or there was a timeout. |
| 133 | * See what's up and respond accordingly. |
| 134 | */ |
| 135 | void ares_process(ares_channel channel, fd_set *read_fds, fd_set *write_fds) |
| 136 | { |
| 137 | processfds(channel, read_fds, ARES_SOCKET_BAD, write_fds, ARES_SOCKET_BAD); |
| 138 | } |
| 139 | |
| 140 | /* Something interesting happened on the wire, or there was a timeout. |
| 141 | * See what's up and respond accordingly. |
| 142 | */ |
| 143 | void ares_process_fd(ares_channel channel, |
| 144 | ares_socket_t read_fd, /* use ARES_SOCKET_BAD or valid |
| 145 | file descriptors */ |
| 146 | ares_socket_t write_fd) |
| 147 | { |
| 148 | processfds(channel, NULL, read_fd, NULL, write_fd); |
| 149 | } |
| 150 | |
| 151 | |
| 152 | /* Return 1 if the specified error number describes a readiness error, or 0 |
| 153 | * otherwise. This is mostly for HP-UX, which could return EAGAIN or |
| 154 | * EWOULDBLOCK. See this man page |
| 155 | * |
| 156 | * http://devrsrc1.external.hp.com/STKS/cgi-bin/man2html? |
| 157 | * manpage=/usr/share/man/man2.Z/send.2 |
| 158 | */ |
| 159 | static int try_again(int errnum) |
| 160 | { |
| 161 | #if !defined EWOULDBLOCK && !defined EAGAIN |
| 162 | #error "Neither EWOULDBLOCK nor EAGAIN defined" |
| 163 | #endif |
| 164 | switch (errnum) |
| 165 | { |
| 166 | #ifdef EWOULDBLOCK |
| 167 | case EWOULDBLOCK: |
| 168 | return 1; |
| 169 | #endif |
| 170 | #if defined EAGAIN && EAGAIN != EWOULDBLOCK |
| 171 | case EAGAIN: |
| 172 | return 1; |
| 173 | #endif |
| 174 | } |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | /* If any TCP sockets select true for writing, write out queued data |
| 179 | * we have for them. |
| 180 | */ |
| 181 | static void write_tcp_data(ares_channel channel, |
| 182 | fd_set *write_fds, |
| 183 | ares_socket_t write_fd, |
| 184 | struct timeval *now) |
| 185 | { |
| 186 | struct server_state *server; |
| 187 | struct send_request *sendreq; |
| 188 | struct iovec *vec; |
| 189 | int i; |
| 190 | ssize_t scount; |
| 191 | ssize_t wcount; |
| 192 | size_t n; |
| 193 | |
| 194 | if(!write_fds && (write_fd == ARES_SOCKET_BAD)) |
| 195 | /* no possible action */ |
| 196 | return; |
| 197 | |
| 198 | for (i = 0; i < channel->nservers; i++) |
| 199 | { |
| 200 | /* Make sure server has data to send and is selected in write_fds or |
| 201 | write_fd. */ |
| 202 | server = &channel->servers[i]; |
| 203 | if (!server->qhead || server->tcp_socket == ARES_SOCKET_BAD || |
| 204 | server->is_broken) |
| 205 | continue; |
| 206 | |
| 207 | if(write_fds) { |
| 208 | if(!FD_ISSET(server->tcp_socket, write_fds)) |
| 209 | continue; |
| 210 | } |
| 211 | else { |
| 212 | if(server->tcp_socket != write_fd) |
| 213 | continue; |
| 214 | } |
| 215 | |
| 216 | if(write_fds) |
| 217 | /* If there's an error and we close this socket, then open |
| 218 | * another with the same fd to talk to another server, then we |
| 219 | * don't want to think that it was the new socket that was |
| 220 | * ready. This is not disastrous, but is likely to result in |
| 221 | * extra system calls and confusion. */ |
| 222 | FD_CLR(server->tcp_socket, write_fds); |
| 223 | |
| 224 | /* Count the number of send queue items. */ |
| 225 | n = 0; |
| 226 | for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
| 227 | n++; |
| 228 | |
| 229 | /* Allocate iovecs so we can send all our data at once. */ |
| 230 | vec = ares_malloc(n * sizeof(struct iovec)); |
| 231 | if (vec) |
| 232 | { |
| 233 | /* Fill in the iovecs and send. */ |
| 234 | n = 0; |
| 235 | for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
| 236 | { |
| 237 | vec[n].iov_base = (char *) sendreq->data; |
| 238 | vec[n].iov_len = sendreq->len; |
| 239 | n++; |
| 240 | } |
| 241 | wcount = (ssize_t)writev(server->tcp_socket, vec, (int)n); |
| 242 | ares_free(vec); |
| 243 | if (wcount < 0) |
| 244 | { |
| 245 | if (!try_again(SOCKERRNO)) |
| 246 | handle_error(channel, i, now); |
| 247 | continue; |
| 248 | } |
| 249 | |
| 250 | /* Advance the send queue by as many bytes as we sent. */ |
| 251 | advance_tcp_send_queue(channel, i, wcount); |
| 252 | } |
| 253 | else |
| 254 | { |
| 255 | /* Can't allocate iovecs; just send the first request. */ |
| 256 | sendreq = server->qhead; |
| 257 | |
| 258 | scount = swrite(server->tcp_socket, sendreq->data, sendreq->len); |
| 259 | if (scount < 0) |
| 260 | { |
| 261 | if (!try_again(SOCKERRNO)) |
| 262 | handle_error(channel, i, now); |
| 263 | continue; |
| 264 | } |
| 265 | |
| 266 | /* Advance the send queue by as many bytes as we sent. */ |
| 267 | advance_tcp_send_queue(channel, i, scount); |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /* Consume the given number of bytes from the head of the TCP send queue. */ |
| 273 | static void advance_tcp_send_queue(ares_channel channel, int whichserver, |
| 274 | ssize_t num_bytes) |
| 275 | { |
| 276 | struct send_request *sendreq; |
| 277 | struct server_state *server = &channel->servers[whichserver]; |
| 278 | while (num_bytes > 0) { |
| 279 | sendreq = server->qhead; |
| 280 | if ((size_t)num_bytes >= sendreq->len) { |
| 281 | num_bytes -= sendreq->len; |
| 282 | server->qhead = sendreq->next; |
| 283 | if (sendreq->data_storage) |
| 284 | ares_free(sendreq->data_storage); |
| 285 | ares_free(sendreq); |
| 286 | if (server->qhead == NULL) { |
| 287 | SOCK_STATE_CALLBACK(channel, server->tcp_socket, 1, 0); |
| 288 | server->qtail = NULL; |
| 289 | |
| 290 | /* qhead is NULL so we cannot continue this loop */ |
| 291 | break; |
| 292 | } |
| 293 | } |
| 294 | else { |
| 295 | sendreq->data += num_bytes; |
| 296 | sendreq->len -= num_bytes; |
| 297 | num_bytes = 0; |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /* If any TCP socket selects true for reading, read some data, |
| 303 | * allocate a buffer if we finish reading the length word, and process |
| 304 | * a packet if we finish reading one. |
| 305 | */ |
| 306 | static void read_tcp_data(ares_channel channel, fd_set *read_fds, |
| 307 | ares_socket_t read_fd, struct timeval *now) |
| 308 | { |
| 309 | struct server_state *server; |
| 310 | int i; |
| 311 | ssize_t count; |
| 312 | |
| 313 | if(!read_fds && (read_fd == ARES_SOCKET_BAD)) |
| 314 | /* no possible action */ |
| 315 | return; |
| 316 | |
| 317 | for (i = 0; i < channel->nservers; i++) |
| 318 | { |
| 319 | /* Make sure the server has a socket and is selected in read_fds. */ |
| 320 | server = &channel->servers[i]; |
| 321 | if (server->tcp_socket == ARES_SOCKET_BAD || server->is_broken) |
| 322 | continue; |
| 323 | |
| 324 | if(read_fds) { |
| 325 | if(!FD_ISSET(server->tcp_socket, read_fds)) |
| 326 | continue; |
| 327 | } |
| 328 | else { |
| 329 | if(server->tcp_socket != read_fd) |
| 330 | continue; |
| 331 | } |
| 332 | |
| 333 | if(read_fds) |
| 334 | /* If there's an error and we close this socket, then open another |
| 335 | * with the same fd to talk to another server, then we don't want to |
| 336 | * think that it was the new socket that was ready. This is not |
| 337 | * disastrous, but is likely to result in extra system calls and |
| 338 | * confusion. */ |
| 339 | FD_CLR(server->tcp_socket, read_fds); |
| 340 | |
| 341 | if (server->tcp_lenbuf_pos != 2) |
| 342 | { |
| 343 | /* We haven't yet read a length word, so read that (or |
| 344 | * what's left to read of it). |
| 345 | */ |
| 346 | count = sread(server->tcp_socket, |
| 347 | server->tcp_lenbuf + server->tcp_lenbuf_pos, |
| 348 | 2 - server->tcp_lenbuf_pos); |
| 349 | if (count <= 0) |
| 350 | { |
| 351 | if (!(count == -1 && try_again(SOCKERRNO))) |
| 352 | handle_error(channel, i, now); |
| 353 | continue; |
| 354 | } |
| 355 | |
| 356 | server->tcp_lenbuf_pos += (int)count; |
| 357 | if (server->tcp_lenbuf_pos == 2) |
| 358 | { |
| 359 | /* We finished reading the length word. Decode the |
| 360 | * length and allocate a buffer for the data. |
| 361 | */ |
| 362 | server->tcp_length = server->tcp_lenbuf[0] << 8 |
| 363 | | server->tcp_lenbuf[1]; |
| 364 | server->tcp_buffer = ares_malloc(server->tcp_length); |
| 365 | if (!server->tcp_buffer) { |
| 366 | handle_error(channel, i, now); |
| 367 | return; /* bail out on malloc failure. TODO: make this |
| 368 | function return error codes */ |
| 369 | } |
| 370 | server->tcp_buffer_pos = 0; |
| 371 | } |
| 372 | } |
| 373 | else |
| 374 | { |
| 375 | /* Read data into the allocated buffer. */ |
| 376 | count = sread(server->tcp_socket, |
| 377 | server->tcp_buffer + server->tcp_buffer_pos, |
| 378 | server->tcp_length - server->tcp_buffer_pos); |
| 379 | if (count <= 0) |
| 380 | { |
| 381 | if (!(count == -1 && try_again(SOCKERRNO))) |
| 382 | handle_error(channel, i, now); |
| 383 | continue; |
| 384 | } |
| 385 | |
| 386 | server->tcp_buffer_pos += (int)count; |
| 387 | if (server->tcp_buffer_pos == server->tcp_length) |
| 388 | { |
| 389 | /* We finished reading this answer; process it and |
| 390 | * prepare to read another length word. |
| 391 | */ |
| 392 | process_answer(channel, server->tcp_buffer, server->tcp_length, |
| 393 | i, 1, now); |
| 394 | ares_free(server->tcp_buffer); |
| 395 | server->tcp_buffer = NULL; |
| 396 | server->tcp_lenbuf_pos = 0; |
| 397 | server->tcp_buffer_pos = 0; |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* If any UDP sockets select true for reading, process them. */ |
| 404 | static void read_udp_packets(ares_channel channel, fd_set *read_fds, |
| 405 | ares_socket_t read_fd, struct timeval *now) |
| 406 | { |
| 407 | struct server_state *server; |
| 408 | int i; |
| 409 | ssize_t count; |
| 410 | unsigned char buf[MAXENDSSZ + 1]; |
| 411 | #ifdef HAVE_RECVFROM |
| 412 | ares_socklen_t fromlen; |
| 413 | union { |
| 414 | struct sockaddr sa; |
| 415 | struct sockaddr_in sa4; |
| 416 | struct sockaddr_in6 sa6; |
| 417 | } from; |
| 418 | #endif |
| 419 | |
| 420 | if(!read_fds && (read_fd == ARES_SOCKET_BAD)) |
| 421 | /* no possible action */ |
| 422 | return; |
| 423 | |
| 424 | for (i = 0; i < channel->nservers; i++) |
| 425 | { |
| 426 | /* Make sure the server has a socket and is selected in read_fds. */ |
| 427 | server = &channel->servers[i]; |
| 428 | |
| 429 | if (server->udp_socket == ARES_SOCKET_BAD || server->is_broken) |
| 430 | continue; |
| 431 | |
| 432 | if(read_fds) { |
| 433 | if(!FD_ISSET(server->udp_socket, read_fds)) |
| 434 | continue; |
| 435 | } |
| 436 | else { |
| 437 | if(server->udp_socket != read_fd) |
| 438 | continue; |
| 439 | } |
| 440 | |
| 441 | if(read_fds) |
| 442 | /* If there's an error and we close this socket, then open |
| 443 | * another with the same fd to talk to another server, then we |
| 444 | * don't want to think that it was the new socket that was |
| 445 | * ready. This is not disastrous, but is likely to result in |
| 446 | * extra system calls and confusion. */ |
| 447 | FD_CLR(server->udp_socket, read_fds); |
| 448 | |
| 449 | /* To reduce event loop overhead, read and process as many |
| 450 | * packets as we can. */ |
| 451 | do { |
| 452 | if (server->udp_socket == ARES_SOCKET_BAD) |
| 453 | count = 0; |
| 454 | |
| 455 | else { |
| 456 | #ifdef HAVE_RECVFROM |
| 457 | if (server->addr.family == AF_INET) |
| 458 | fromlen = sizeof(from.sa4); |
| 459 | else |
| 460 | fromlen = sizeof(from.sa6); |
| 461 | count = (ssize_t)recvfrom(server->udp_socket, (void *)buf, |
| 462 | sizeof(buf), 0, &from.sa, &fromlen); |
| 463 | #else |
| 464 | count = sread(server->udp_socket, buf, sizeof(buf)); |
| 465 | #endif |
| 466 | } |
| 467 | |
| 468 | if (count == -1 && try_again(SOCKERRNO)) |
| 469 | continue; |
| 470 | else if (count <= 0) |
| 471 | handle_error(channel, i, now); |
| 472 | #ifdef HAVE_RECVFROM |
| 473 | else if (!same_address(&from.sa, &server->addr)) |
| 474 | /* The address the response comes from does not match the address we |
| 475 | * sent the request to. Someone may be attempting to perform a cache |
| 476 | * poisoning attack. */ |
| 477 | break; |
| 478 | #endif |
| 479 | else |
| 480 | process_answer(channel, buf, (int)count, i, 0, now); |
| 481 | } while (count > 0); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | /* If any queries have timed out, note the timeout and move them on. */ |
| 486 | static void process_timeouts(ares_channel channel, struct timeval *now) |
| 487 | { |
| 488 | time_t t; /* the time of the timeouts we're processing */ |
| 489 | struct query *query; |
| 490 | struct list_node* list_head; |
| 491 | struct list_node* list_node; |
| 492 | |
| 493 | /* Process all the timeouts that have fired since the last time we processed |
| 494 | * timeouts. If things are going well, then we'll have hundreds/thousands of |
| 495 | * queries that fall into future buckets, and only a handful of requests |
| 496 | * that fall into the "now" bucket, so this should be quite quick. |
| 497 | */ |
| 498 | for (t = channel->last_timeout_processed; t <= now->tv_sec; t++) |
| 499 | { |
| 500 | list_head = &(channel->queries_by_timeout[t % ARES_TIMEOUT_TABLE_SIZE]); |
| 501 | for (list_node = list_head->next; list_node != list_head; ) |
| 502 | { |
| 503 | query = list_node->data; |
| 504 | list_node = list_node->next; /* in case the query gets deleted */ |
| 505 | if (query->timeout.tv_sec && ares__timedout(now, &query->timeout)) |
| 506 | { |
| 507 | query->error_status = ARES_ETIMEOUT; |
| 508 | ++query->timeouts; |
| 509 | next_server(channel, query, now); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | channel->last_timeout_processed = now->tv_sec; |
| 514 | } |
| 515 | |
| 516 | /* Handle an answer from a server. */ |
| 517 | static void process_answer(ares_channel channel, unsigned char *abuf, |
| 518 | int alen, int whichserver, int tcp, |
| 519 | struct timeval *now) |
| 520 | { |
| 521 | int tc, rcode, packetsz; |
| 522 | unsigned short id; |
| 523 | struct query *query; |
| 524 | struct list_node* list_head; |
| 525 | struct list_node* list_node; |
| 526 | |
| 527 | /* If there's no room in the answer for a header, we can't do much |
| 528 | * with it. */ |
| 529 | if (alen < HFIXEDSZ) |
| 530 | return; |
| 531 | |
| 532 | /* Grab the query ID, truncate bit, and response code from the packet. */ |
| 533 | id = DNS_HEADER_QID(abuf); |
| 534 | tc = DNS_HEADER_TC(abuf); |
| 535 | rcode = DNS_HEADER_RCODE(abuf); |
| 536 | |
| 537 | /* Find the query corresponding to this packet. The queries are |
| 538 | * hashed/bucketed by query id, so this lookup should be quick. Note that |
| 539 | * both the query id and the questions must be the same; when the query id |
| 540 | * wraps around we can have multiple outstanding queries with the same query |
| 541 | * id, so we need to check both the id and question. |
| 542 | */ |
| 543 | query = NULL; |
| 544 | list_head = &(channel->queries_by_qid[id % ARES_QID_TABLE_SIZE]); |
| 545 | for (list_node = list_head->next; list_node != list_head; |
| 546 | list_node = list_node->next) |
| 547 | { |
| 548 | struct query *q = list_node->data; |
| 549 | if ((q->qid == id) && same_questions(q->qbuf, q->qlen, abuf, alen)) |
| 550 | { |
| 551 | query = q; |
| 552 | break; |
| 553 | } |
| 554 | } |
| 555 | if (!query) |
| 556 | return; |
| 557 | |
| 558 | packetsz = PACKETSZ; |
| 559 | /* If we use EDNS and server answers with one of these RCODES, the protocol |
| 560 | * extension is not understood by the responder. We must retry the query |
| 561 | * without EDNS enabled. |
| 562 | */ |
| 563 | if (channel->flags & ARES_FLAG_EDNS) |
| 564 | { |
| 565 | packetsz = channel->ednspsz; |
| 566 | if (rcode == NOTIMP || rcode == FORMERR || rcode == SERVFAIL) |
| 567 | { |
| 568 | int qlen = (query->tcplen - 2) - EDNSFIXEDSZ; |
| 569 | channel->flags ^= ARES_FLAG_EDNS; |
| 570 | query->tcplen -= EDNSFIXEDSZ; |
| 571 | query->qlen -= EDNSFIXEDSZ; |
| 572 | query->tcpbuf[0] = (unsigned char)((qlen >> 8) & 0xff); |
| 573 | query->tcpbuf[1] = (unsigned char)(qlen & 0xff); |
| 574 | DNS_HEADER_SET_ARCOUNT(query->tcpbuf + 2, 0); |
| 575 | query->tcpbuf = ares_realloc(query->tcpbuf, query->tcplen); |
| 576 | query->qbuf = query->tcpbuf + 2; |
| 577 | ares__send_query(channel, query, now); |
| 578 | return; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | /* If we got a truncated UDP packet and are not ignoring truncation, |
| 583 | * don't accept the packet, and switch the query to TCP if we hadn't |
| 584 | * done so already. |
| 585 | */ |
| 586 | if ((tc || alen > packetsz) && !tcp && !(channel->flags & ARES_FLAG_IGNTC)) |
| 587 | { |
| 588 | if (!query->using_tcp) |
| 589 | { |
| 590 | query->using_tcp = 1; |
| 591 | ares__send_query(channel, query, now); |
| 592 | } |
| 593 | return; |
| 594 | } |
| 595 | |
| 596 | /* Limit alen to PACKETSZ if we aren't using TCP (only relevant if we |
| 597 | * are ignoring truncation. |
| 598 | */ |
| 599 | if (alen > packetsz && !tcp) |
| 600 | alen = packetsz; |
| 601 | |
| 602 | /* If we aren't passing through all error packets, discard packets |
| 603 | * with SERVFAIL, NOTIMP, or REFUSED response codes. |
| 604 | */ |
| 605 | if (!(channel->flags & ARES_FLAG_NOCHECKRESP)) |
| 606 | { |
| 607 | if (rcode == SERVFAIL || rcode == NOTIMP || rcode == REFUSED) |
| 608 | { |
| 609 | skip_server(channel, query, whichserver); |
| 610 | if (query->server == whichserver) |
| 611 | next_server(channel, query, now); |
| 612 | return; |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | end_query(channel, query, ARES_SUCCESS, abuf, alen); |
| 617 | } |
| 618 | |
| 619 | /* Close all the connections that are no longer usable. */ |
| 620 | static void process_broken_connections(ares_channel channel, |
| 621 | struct timeval *now) |
| 622 | { |
| 623 | int i; |
| 624 | for (i = 0; i < channel->nservers; i++) |
| 625 | { |
| 626 | struct server_state *server = &channel->servers[i]; |
| 627 | if (server->is_broken) |
| 628 | { |
| 629 | handle_error(channel, i, now); |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | /* Swap the contents of two lists */ |
| 635 | static void swap_lists(struct list_node* head_a, |
| 636 | struct list_node* head_b) |
| 637 | { |
| 638 | int is_a_empty = ares__is_list_empty(head_a); |
| 639 | int is_b_empty = ares__is_list_empty(head_b); |
| 640 | struct list_node old_a = *head_a; |
| 641 | struct list_node old_b = *head_b; |
| 642 | |
| 643 | if (is_a_empty) { |
| 644 | ares__init_list_head(head_b); |
| 645 | } else { |
| 646 | *head_b = old_a; |
| 647 | old_a.next->prev = head_b; |
| 648 | old_a.prev->next = head_b; |
| 649 | } |
| 650 | if (is_b_empty) { |
| 651 | ares__init_list_head(head_a); |
| 652 | } else { |
| 653 | *head_a = old_b; |
| 654 | old_b.next->prev = head_a; |
| 655 | old_b.prev->next = head_a; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | static void handle_error(ares_channel channel, int whichserver, |
| 660 | struct timeval *now) |
| 661 | { |
| 662 | struct server_state *server; |
| 663 | struct query *query; |
| 664 | struct list_node list_head; |
| 665 | struct list_node* list_node; |
| 666 | |
| 667 | server = &channel->servers[whichserver]; |
| 668 | |
| 669 | /* Reset communications with this server. */ |
| 670 | ares__close_sockets(channel, server); |
| 671 | |
| 672 | /* Tell all queries talking to this server to move on and not try this |
| 673 | * server again. We steal the current list of queries that were in-flight to |
| 674 | * this server, since when we call next_server this can cause the queries to |
| 675 | * be re-sent to this server, which will re-insert these queries in that |
| 676 | * same server->queries_to_server list. |
| 677 | */ |
| 678 | ares__init_list_head(&list_head); |
| 679 | swap_lists(&list_head, &(server->queries_to_server)); |
| 680 | for (list_node = list_head.next; list_node != &list_head; ) |
| 681 | { |
| 682 | query = list_node->data; |
| 683 | list_node = list_node->next; /* in case the query gets deleted */ |
| 684 | assert(query->server == whichserver); |
| 685 | skip_server(channel, query, whichserver); |
| 686 | next_server(channel, query, now); |
| 687 | } |
| 688 | /* Each query should have removed itself from our temporary list as |
| 689 | * it re-sent itself or finished up... |
| 690 | */ |
| 691 | assert(ares__is_list_empty(&list_head)); |
| 692 | } |
| 693 | |
| 694 | static void skip_server(ares_channel channel, struct query *query, |
| 695 | int whichserver) |
| 696 | { |
| 697 | /* The given server gave us problems with this query, so if we have the |
| 698 | * luxury of using other servers, then let's skip the potentially broken |
| 699 | * server and just use the others. If we only have one server and we need to |
| 700 | * retry then we should just go ahead and re-use that server, since it's our |
| 701 | * only hope; perhaps we just got unlucky, and retrying will work (eg, the |
| 702 | * server timed out our TCP connection just as we were sending another |
| 703 | * request). |
| 704 | */ |
| 705 | if (channel->nservers > 1) |
| 706 | { |
| 707 | query->server_info[whichserver].skip_server = 1; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | static void next_server(ares_channel channel, struct query *query, |
| 712 | struct timeval *now) |
| 713 | { |
| 714 | /* We need to try each server channel->tries times. We have channel->nservers |
| 715 | * servers to try. In total, we need to do channel->nservers * channel->tries |
| 716 | * attempts. Use query->try to remember how many times we already attempted |
| 717 | * this query. Use modular arithmetic to find the next server to try. */ |
| 718 | while (++(query->try_count) < (channel->nservers * channel->tries)) |
| 719 | { |
| 720 | struct server_state *server; |
| 721 | |
| 722 | /* Move on to the next server. */ |
| 723 | query->server = (query->server + 1) % channel->nservers; |
| 724 | server = &channel->servers[query->server]; |
| 725 | |
| 726 | /* We don't want to use this server if (1) we decided this connection is |
| 727 | * broken, and thus about to be closed, (2) we've decided to skip this |
| 728 | * server because of earlier errors we encountered, or (3) we already |
| 729 | * sent this query over this exact connection. |
| 730 | */ |
| 731 | if (!server->is_broken && |
| 732 | !query->server_info[query->server].skip_server && |
| 733 | !(query->using_tcp && |
| 734 | (query->server_info[query->server].tcp_connection_generation == |
| 735 | server->tcp_connection_generation))) |
| 736 | { |
| 737 | ares__send_query(channel, query, now); |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | /* You might think that with TCP we only need one try. However, even |
| 742 | * when using TCP, servers can time-out our connection just as we're |
| 743 | * sending a request, or close our connection because they die, or never |
| 744 | * send us a reply because they get wedged or tickle a bug that drops |
| 745 | * our request. |
| 746 | */ |
| 747 | } |
| 748 | |
| 749 | /* If we are here, all attempts to perform query failed. */ |
| 750 | end_query(channel, query, query->error_status, NULL, 0); |
| 751 | } |
| 752 | |
| 753 | void ares__send_query(ares_channel channel, struct query *query, |
| 754 | struct timeval *now) |
| 755 | { |
| 756 | struct send_request *sendreq; |
| 757 | struct server_state *server; |
| 758 | int timeplus; |
| 759 | |
| 760 | server = &channel->servers[query->server]; |
| 761 | if (query->using_tcp) |
| 762 | { |
| 763 | /* Make sure the TCP socket for this server is set up and queue |
| 764 | * a send request. |
| 765 | */ |
| 766 | if (server->tcp_socket == ARES_SOCKET_BAD) |
| 767 | { |
| 768 | if (open_tcp_socket(channel, server) == -1) |
| 769 | { |
| 770 | skip_server(channel, query, query->server); |
| 771 | next_server(channel, query, now); |
| 772 | return; |
| 773 | } |
| 774 | } |
| 775 | sendreq = ares_malloc(sizeof(struct send_request)); |
| 776 | if (!sendreq) |
| 777 | { |
| 778 | end_query(channel, query, ARES_ENOMEM, NULL, 0); |
| 779 | return; |
| 780 | } |
| 781 | memset(sendreq, 0, sizeof(struct send_request)); |
| 782 | /* To make the common case fast, we avoid copies by using the query's |
| 783 | * tcpbuf for as long as the query is alive. In the rare case where the |
| 784 | * query ends while it's queued for transmission, then we give the |
| 785 | * sendreq its own copy of the request packet and put it in |
| 786 | * sendreq->data_storage. |
| 787 | */ |
| 788 | sendreq->data_storage = NULL; |
| 789 | sendreq->data = query->tcpbuf; |
| 790 | sendreq->len = query->tcplen; |
| 791 | sendreq->owner_query = query; |
| 792 | sendreq->next = NULL; |
| 793 | if (server->qtail) |
| 794 | server->qtail->next = sendreq; |
| 795 | else |
| 796 | { |
| 797 | SOCK_STATE_CALLBACK(channel, server->tcp_socket, 1, 1); |
| 798 | server->qhead = sendreq; |
| 799 | } |
| 800 | server->qtail = sendreq; |
| 801 | query->server_info[query->server].tcp_connection_generation = |
| 802 | server->tcp_connection_generation; |
| 803 | } |
| 804 | else |
| 805 | { |
| 806 | if (server->udp_socket == ARES_SOCKET_BAD) |
| 807 | { |
| 808 | if (open_udp_socket(channel, server) == -1) |
| 809 | { |
| 810 | skip_server(channel, query, query->server); |
| 811 | next_server(channel, query, now); |
| 812 | return; |
| 813 | } |
| 814 | } |
| 815 | if (swrite(server->udp_socket, query->qbuf, query->qlen) == -1) |
| 816 | { |
| 817 | /* FIXME: Handle EAGAIN here since it likely can happen. */ |
| 818 | skip_server(channel, query, query->server); |
| 819 | next_server(channel, query, now); |
| 820 | return; |
| 821 | } |
| 822 | } |
| 823 | timeplus = channel->timeout << (query->try_count / channel->nservers); |
| 824 | timeplus = (timeplus * (9 + (rand () & 7))) / 16; |
| 825 | query->timeout = *now; |
| 826 | timeadd(&query->timeout, timeplus); |
| 827 | /* Keep track of queries bucketed by timeout, so we can process |
| 828 | * timeout events quickly. |
| 829 | */ |
| 830 | ares__remove_from_list(&(query->queries_by_timeout)); |
| 831 | ares__insert_in_list( |
| 832 | &(query->queries_by_timeout), |
| 833 | &(channel->queries_by_timeout[query->timeout.tv_sec % |
| 834 | ARES_TIMEOUT_TABLE_SIZE])); |
| 835 | |
| 836 | /* Keep track of queries bucketed by server, so we can process server |
| 837 | * errors quickly. |
| 838 | */ |
| 839 | ares__remove_from_list(&(query->queries_to_server)); |
| 840 | ares__insert_in_list(&(query->queries_to_server), |
| 841 | &(server->queries_to_server)); |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * setsocknonblock sets the given socket to either blocking or non-blocking |
| 846 | * mode based on the 'nonblock' boolean argument. This function is highly |
| 847 | * portable. |
| 848 | */ |
| 849 | static int setsocknonblock(ares_socket_t sockfd, /* operate on this */ |
| 850 | int nonblock /* TRUE or FALSE */) |
| 851 | { |
| 852 | #if defined(USE_BLOCKING_SOCKETS) |
| 853 | |
| 854 | return 0; /* returns success */ |
| 855 | |
| 856 | #elif defined(HAVE_FCNTL_O_NONBLOCK) |
| 857 | |
| 858 | /* most recent unix versions */ |
| 859 | int flags; |
| 860 | flags = fcntl(sockfd, F_GETFL, 0); |
| 861 | if (FALSE != nonblock) |
| 862 | return fcntl(sockfd, F_SETFL, flags | O_NONBLOCK); |
| 863 | else |
| 864 | return fcntl(sockfd, F_SETFL, flags & (~O_NONBLOCK)); /* LCOV_EXCL_LINE */ |
| 865 | |
| 866 | #elif defined(HAVE_IOCTL_FIONBIO) |
| 867 | |
| 868 | /* older unix versions */ |
| 869 | int flags = nonblock ? 1 : 0; |
| 870 | return ioctl(sockfd, FIONBIO, &flags); |
| 871 | |
| 872 | #elif defined(HAVE_IOCTLSOCKET_FIONBIO) |
| 873 | |
| 874 | #ifdef WATT32 |
| 875 | char flags = nonblock ? 1 : 0; |
| 876 | #else |
| 877 | /* Windows */ |
| 878 | unsigned long flags = nonblock ? 1UL : 0UL; |
| 879 | #endif |
| 880 | return ioctlsocket(sockfd, FIONBIO, &flags); |
| 881 | |
| 882 | #elif defined(HAVE_IOCTLSOCKET_CAMEL_FIONBIO) |
| 883 | |
| 884 | /* Amiga */ |
| 885 | long flags = nonblock ? 1L : 0L; |
| 886 | return IoctlSocket(sockfd, FIONBIO, flags); |
| 887 | |
| 888 | #elif defined(HAVE_SETSOCKOPT_SO_NONBLOCK) |
| 889 | |
| 890 | /* BeOS */ |
| 891 | long b = nonblock ? 1L : 0L; |
| 892 | return setsockopt(sockfd, SOL_SOCKET, SO_NONBLOCK, &b, sizeof(b)); |
| 893 | |
| 894 | #else |
| 895 | # error "no non-blocking method was found/used/set" |
| 896 | #endif |
| 897 | } |
| 898 | #define SO_BINDTODEVICE 1 |
| 899 | static int configure_socket(ares_socket_t s, int family, ares_channel channel) |
| 900 | { |
| 901 | union { |
| 902 | struct sockaddr sa; |
| 903 | struct sockaddr_in sa4; |
| 904 | struct sockaddr_in6 sa6; |
| 905 | } local; |
| 906 | |
| 907 | (void)setsocknonblock(s, TRUE); |
| 908 | |
| 909 | #if defined(FD_CLOEXEC) && !defined(MSDOS) |
| 910 | /* Configure the socket fd as close-on-exec. */ |
| 911 | if (fcntl(s, F_SETFD, FD_CLOEXEC) == -1) |
| 912 | return -1; /* LCOV_EXCL_LINE */ |
| 913 | #endif |
| 914 | |
| 915 | /* Set the socket's send and receive buffer sizes. */ |
| 916 | if ((channel->socket_send_buffer_size > 0) && |
| 917 | setsockopt(s, SOL_SOCKET, SO_SNDBUF, |
| 918 | (void *)&channel->socket_send_buffer_size, |
| 919 | sizeof(channel->socket_send_buffer_size)) == -1) |
| 920 | return -1; |
| 921 | |
| 922 | if ((channel->socket_receive_buffer_size > 0) && |
| 923 | setsockopt(s, SOL_SOCKET, SO_RCVBUF, |
| 924 | (void *)&channel->socket_receive_buffer_size, |
| 925 | sizeof(channel->socket_receive_buffer_size)) == -1) |
| 926 | return -1; |
| 927 | fprintf(stderr, "configure_socket before\n"); |
| 928 | #ifdef SO_BINDTODEVICE |
| 929 | if (channel->local_dev_name[0]) { |
| 930 | if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, |
| 931 | channel->local_dev_name, sizeof(channel->local_dev_name)) == -1) { |
| 932 | /* Only root can do this, and usually not fatal if it doesn't work, so */ |
| 933 | /* just continue on. */ |
| 934 | fprintf(stderr, "configure_socket failed\n"); |
| 935 | } |
| 936 | } |
| 937 | #endif |
| 938 | fprintf(stderr, "configure_socket good\n"); |
| 939 | if (family == AF_INET) { |
| 940 | if (channel->local_ip4) { |
| 941 | memset(&local.sa4, 0, sizeof(local.sa4)); |
| 942 | local.sa4.sin_family = AF_INET; |
| 943 | local.sa4.sin_addr.s_addr = htonl(channel->local_ip4); |
| 944 | if (bind(s, &local.sa, sizeof(local.sa4)) < 0) |
| 945 | return -1; |
| 946 | } |
| 947 | } |
| 948 | else if (family == AF_INET6) { |
| 949 | if (memcmp(channel->local_ip6, &ares_in6addr_any, |
| 950 | sizeof(channel->local_ip6)) != 0) { |
| 951 | memset(&local.sa6, 0, sizeof(local.sa6)); |
| 952 | local.sa6.sin6_family = AF_INET6; |
| 953 | memcpy(&local.sa6.sin6_addr, channel->local_ip6, |
| 954 | sizeof(channel->local_ip6)); |
| 955 | if (bind(s, &local.sa, sizeof(local.sa6)) < 0) |
| 956 | return -1; |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | return 0; |
| 961 | } |
| 962 | |
| 963 | static int open_tcp_socket(ares_channel channel, struct server_state *server) |
| 964 | { |
| 965 | ares_socket_t s; |
| 966 | int opt; |
| 967 | ares_socklen_t salen; |
| 968 | union { |
| 969 | struct sockaddr_in sa4; |
| 970 | struct sockaddr_in6 sa6; |
| 971 | } saddr; |
| 972 | struct sockaddr *sa; |
| 973 | |
| 974 | switch (server->addr.family) |
| 975 | { |
| 976 | case AF_INET: |
| 977 | sa = (void *)&saddr.sa4; |
| 978 | salen = sizeof(saddr.sa4); |
| 979 | memset(sa, 0, salen); |
| 980 | saddr.sa4.sin_family = AF_INET; |
| 981 | if (server->addr.tcp_port) { |
| 982 | saddr.sa4.sin_port = aresx_sitous(server->addr.tcp_port); |
| 983 | } else { |
| 984 | saddr.sa4.sin_port = aresx_sitous(channel->tcp_port); |
| 985 | } |
| 986 | memcpy(&saddr.sa4.sin_addr, &server->addr.addrV4, |
| 987 | sizeof(server->addr.addrV4)); |
| 988 | break; |
| 989 | case AF_INET6: |
| 990 | sa = (void *)&saddr.sa6; |
| 991 | salen = sizeof(saddr.sa6); |
| 992 | memset(sa, 0, salen); |
| 993 | saddr.sa6.sin6_family = AF_INET6; |
| 994 | if (server->addr.tcp_port) { |
| 995 | saddr.sa6.sin6_port = aresx_sitous(server->addr.tcp_port); |
| 996 | } else { |
| 997 | saddr.sa6.sin6_port = aresx_sitous(channel->tcp_port); |
| 998 | } |
| 999 | memcpy(&saddr.sa6.sin6_addr, &server->addr.addrV6, |
| 1000 | sizeof(server->addr.addrV6)); |
| 1001 | break; |
| 1002 | default: |
| 1003 | return -1; /* LCOV_EXCL_LINE */ |
| 1004 | } |
| 1005 | |
| 1006 | /* Acquire a socket. */ |
| 1007 | s = socket(server->addr.family, SOCK_STREAM, 0); |
| 1008 | if (s == ARES_SOCKET_BAD) |
| 1009 | return -1; |
| 1010 | |
| 1011 | /* Configure it. */ |
| 1012 | if (configure_socket(s, server->addr.family, channel) < 0) |
| 1013 | { |
| 1014 | sclose(s); |
| 1015 | return -1; |
| 1016 | } |
| 1017 | |
| 1018 | #ifdef TCP_NODELAY |
| 1019 | /* |
| 1020 | * Disable the Nagle algorithm (only relevant for TCP sockets, and thus not |
| 1021 | * in configure_socket). In general, in DNS lookups we're pretty much |
| 1022 | * interested in firing off a single request and then waiting for a reply, |
| 1023 | * so batching isn't very interesting. |
| 1024 | */ |
| 1025 | opt = 1; |
| 1026 | if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, |
| 1027 | (void *)&opt, sizeof(opt)) == -1) |
| 1028 | { |
| 1029 | sclose(s); |
| 1030 | return -1; |
| 1031 | } |
| 1032 | #endif |
| 1033 | |
| 1034 | if (channel->sock_config_cb) |
| 1035 | { |
| 1036 | int err = channel->sock_config_cb(s, SOCK_STREAM, |
| 1037 | channel->sock_config_cb_data); |
| 1038 | if (err < 0) |
| 1039 | { |
| 1040 | sclose(s); |
| 1041 | return err; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | /* Connect to the server. */ |
| 1046 | if (connect(s, sa, salen) == -1) |
| 1047 | { |
| 1048 | int err = SOCKERRNO; |
| 1049 | |
| 1050 | if (err != EINPROGRESS && err != EWOULDBLOCK) |
| 1051 | { |
| 1052 | sclose(s); |
| 1053 | return -1; |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | if (channel->sock_create_cb) |
| 1058 | { |
| 1059 | int err = channel->sock_create_cb(s, SOCK_STREAM, |
| 1060 | channel->sock_create_cb_data); |
| 1061 | if (err < 0) |
| 1062 | { |
| 1063 | sclose(s); |
| 1064 | return err; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | SOCK_STATE_CALLBACK(channel, s, 1, 0); |
| 1069 | server->tcp_buffer_pos = 0; |
| 1070 | server->tcp_socket = s; |
| 1071 | server->tcp_connection_generation = ++channel->tcp_connection_generation; |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | static int open_udp_socket(ares_channel channel, struct server_state *server) |
| 1076 | { |
| 1077 | ares_socket_t s; |
| 1078 | ares_socklen_t salen; |
| 1079 | union { |
| 1080 | struct sockaddr_in sa4; |
| 1081 | struct sockaddr_in6 sa6; |
| 1082 | } saddr; |
| 1083 | struct sockaddr *sa; |
| 1084 | |
| 1085 | switch (server->addr.family) |
| 1086 | { |
| 1087 | case AF_INET: |
| 1088 | sa = (void *)&saddr.sa4; |
| 1089 | salen = sizeof(saddr.sa4); |
| 1090 | memset(sa, 0, salen); |
| 1091 | saddr.sa4.sin_family = AF_INET; |
| 1092 | if (server->addr.udp_port) { |
| 1093 | saddr.sa4.sin_port = aresx_sitous(server->addr.udp_port); |
| 1094 | } else { |
| 1095 | saddr.sa4.sin_port = aresx_sitous(channel->udp_port); |
| 1096 | } |
| 1097 | memcpy(&saddr.sa4.sin_addr, &server->addr.addrV4, |
| 1098 | sizeof(server->addr.addrV4)); |
| 1099 | break; |
| 1100 | case AF_INET6: |
| 1101 | sa = (void *)&saddr.sa6; |
| 1102 | salen = sizeof(saddr.sa6); |
| 1103 | memset(sa, 0, salen); |
| 1104 | saddr.sa6.sin6_family = AF_INET6; |
| 1105 | if (server->addr.udp_port) { |
| 1106 | saddr.sa6.sin6_port = aresx_sitous(server->addr.udp_port); |
| 1107 | } else { |
| 1108 | saddr.sa6.sin6_port = aresx_sitous(channel->udp_port); |
| 1109 | } |
| 1110 | memcpy(&saddr.sa6.sin6_addr, &server->addr.addrV6, |
| 1111 | sizeof(server->addr.addrV6)); |
| 1112 | break; |
| 1113 | default: |
| 1114 | return -1; /* LCOV_EXCL_LINE */ |
| 1115 | } |
| 1116 | |
| 1117 | /* Acquire a socket. */ |
| 1118 | s = socket(server->addr.family, SOCK_DGRAM, 0); |
| 1119 | if (s == ARES_SOCKET_BAD) |
| 1120 | return -1; |
| 1121 | |
| 1122 | /* Set the socket non-blocking. */ |
| 1123 | if (configure_socket(s, server->addr.family, channel) < 0) |
| 1124 | { |
| 1125 | sclose(s); |
| 1126 | return -1; |
| 1127 | } |
| 1128 | |
| 1129 | if (channel->sock_config_cb) |
| 1130 | { |
| 1131 | int err = channel->sock_config_cb(s, SOCK_DGRAM, |
| 1132 | channel->sock_config_cb_data); |
| 1133 | if (err < 0) |
| 1134 | { |
| 1135 | sclose(s); |
| 1136 | return err; |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | /* Connect to the server. */ |
| 1141 | if (connect(s, sa, salen) == -1) |
| 1142 | { |
| 1143 | int err = SOCKERRNO; |
| 1144 | |
| 1145 | if (err != EINPROGRESS && err != EWOULDBLOCK) |
| 1146 | { |
| 1147 | sclose(s); |
| 1148 | return -1; |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | if (channel->sock_create_cb) |
| 1153 | { |
| 1154 | int err = channel->sock_create_cb(s, SOCK_DGRAM, |
| 1155 | channel->sock_create_cb_data); |
| 1156 | if (err < 0) |
| 1157 | { |
| 1158 | sclose(s); |
| 1159 | return err; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | SOCK_STATE_CALLBACK(channel, s, 1, 0); |
| 1164 | |
| 1165 | server->udp_socket = s; |
| 1166 | return 0; |
| 1167 | } |
| 1168 | |
| 1169 | static int same_questions(const unsigned char *qbuf, int qlen, |
| 1170 | const unsigned char *abuf, int alen) |
| 1171 | { |
| 1172 | struct { |
| 1173 | const unsigned char *p; |
| 1174 | int qdcount; |
| 1175 | char *name; |
| 1176 | long namelen; |
| 1177 | int type; |
| 1178 | int dnsclass; |
| 1179 | } q, a; |
| 1180 | int i, j; |
| 1181 | |
| 1182 | if (qlen < HFIXEDSZ || alen < HFIXEDSZ) |
| 1183 | return 0; |
| 1184 | |
| 1185 | /* Extract qdcount from the request and reply buffers and compare them. */ |
| 1186 | q.qdcount = DNS_HEADER_QDCOUNT(qbuf); |
| 1187 | a.qdcount = DNS_HEADER_QDCOUNT(abuf); |
| 1188 | if (q.qdcount != a.qdcount) |
| 1189 | return 0; |
| 1190 | |
| 1191 | /* For each question in qbuf, find it in abuf. */ |
| 1192 | q.p = qbuf + HFIXEDSZ; |
| 1193 | for (i = 0; i < q.qdcount; i++) |
| 1194 | { |
| 1195 | /* Decode the question in the query. */ |
| 1196 | if (ares_expand_name(q.p, qbuf, qlen, &q.name, &q.namelen) |
| 1197 | != ARES_SUCCESS) |
| 1198 | return 0; |
| 1199 | q.p += q.namelen; |
| 1200 | if (q.p + QFIXEDSZ > qbuf + qlen) |
| 1201 | { |
| 1202 | ares_free(q.name); |
| 1203 | return 0; |
| 1204 | } |
| 1205 | q.type = DNS_QUESTION_TYPE(q.p); |
| 1206 | q.dnsclass = DNS_QUESTION_CLASS(q.p); |
| 1207 | q.p += QFIXEDSZ; |
| 1208 | |
| 1209 | /* Search for this question in the answer. */ |
| 1210 | a.p = abuf + HFIXEDSZ; |
| 1211 | for (j = 0; j < a.qdcount; j++) |
| 1212 | { |
| 1213 | /* Decode the question in the answer. */ |
| 1214 | if (ares_expand_name(a.p, abuf, alen, &a.name, &a.namelen) |
| 1215 | != ARES_SUCCESS) |
| 1216 | { |
| 1217 | ares_free(q.name); |
| 1218 | return 0; |
| 1219 | } |
| 1220 | a.p += a.namelen; |
| 1221 | if (a.p + QFIXEDSZ > abuf + alen) |
| 1222 | { |
| 1223 | ares_free(q.name); |
| 1224 | ares_free(a.name); |
| 1225 | return 0; |
| 1226 | } |
| 1227 | a.type = DNS_QUESTION_TYPE(a.p); |
| 1228 | a.dnsclass = DNS_QUESTION_CLASS(a.p); |
| 1229 | a.p += QFIXEDSZ; |
| 1230 | |
| 1231 | /* Compare the decoded questions. */ |
| 1232 | if (strcasecmp(q.name, a.name) == 0 && q.type == a.type |
| 1233 | && q.dnsclass == a.dnsclass) |
| 1234 | { |
| 1235 | ares_free(a.name); |
| 1236 | break; |
| 1237 | } |
| 1238 | ares_free(a.name); |
| 1239 | } |
| 1240 | |
| 1241 | ares_free(q.name); |
| 1242 | if (j == a.qdcount) |
| 1243 | return 0; |
| 1244 | } |
| 1245 | return 1; |
| 1246 | } |
| 1247 | |
| 1248 | static int same_address(struct sockaddr *sa, struct ares_addr *aa) |
| 1249 | { |
| 1250 | void *addr1; |
| 1251 | void *addr2; |
| 1252 | |
| 1253 | if (sa->sa_family == aa->family) |
| 1254 | { |
| 1255 | switch (aa->family) |
| 1256 | { |
| 1257 | case AF_INET: |
| 1258 | addr1 = &aa->addrV4; |
| 1259 | addr2 = &((struct sockaddr_in *)sa)->sin_addr; |
| 1260 | if (memcmp(addr1, addr2, sizeof(aa->addrV4)) == 0) |
| 1261 | return 1; /* match */ |
| 1262 | break; |
| 1263 | case AF_INET6: |
| 1264 | addr1 = &aa->addrV6; |
| 1265 | addr2 = &((struct sockaddr_in6 *)sa)->sin6_addr; |
| 1266 | if (memcmp(addr1, addr2, sizeof(aa->addrV6)) == 0) |
| 1267 | return 1; /* match */ |
| 1268 | break; |
| 1269 | default: |
| 1270 | break; /* LCOV_EXCL_LINE */ |
| 1271 | } |
| 1272 | } |
| 1273 | return 0; /* different */ |
| 1274 | } |
| 1275 | |
| 1276 | static void end_query (ares_channel channel, struct query *query, int status, |
| 1277 | unsigned char *abuf, int alen) |
| 1278 | { |
| 1279 | int i; |
| 1280 | |
| 1281 | /* First we check to see if this query ended while one of our send |
| 1282 | * queues still has pointers to it. |
| 1283 | */ |
| 1284 | for (i = 0; i < channel->nservers; i++) |
| 1285 | { |
| 1286 | struct server_state *server = &channel->servers[i]; |
| 1287 | struct send_request *sendreq; |
| 1288 | for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
| 1289 | if (sendreq->owner_query == query) |
| 1290 | { |
| 1291 | sendreq->owner_query = NULL; |
| 1292 | assert(sendreq->data_storage == NULL); |
| 1293 | if (status == ARES_SUCCESS) |
| 1294 | { |
| 1295 | /* We got a reply for this query, but this queued sendreq |
| 1296 | * points into this soon-to-be-gone query's tcpbuf. Probably |
| 1297 | * this means we timed out and queued the query for |
| 1298 | * retransmission, then received a response before actually |
| 1299 | * retransmitting. This is perfectly fine, so we want to keep |
| 1300 | * the connection running smoothly if we can. But in the worst |
| 1301 | * case we may have sent only some prefix of the query, with |
| 1302 | * some suffix of the query left to send. Also, the buffer may |
| 1303 | * be queued on multiple queues. To prevent dangling pointers |
| 1304 | * to the query's tcpbuf and handle these cases, we just give |
| 1305 | * such sendreqs their own copy of the query packet. |
| 1306 | */ |
| 1307 | sendreq->data_storage = ares_malloc(sendreq->len); |
| 1308 | if (sendreq->data_storage != NULL) |
| 1309 | { |
| 1310 | memcpy(sendreq->data_storage, sendreq->data, sendreq->len); |
| 1311 | sendreq->data = sendreq->data_storage; |
| 1312 | } |
| 1313 | } |
| 1314 | if ((status != ARES_SUCCESS) || (sendreq->data_storage == NULL)) |
| 1315 | { |
| 1316 | /* We encountered an error (probably a timeout, suggesting the |
| 1317 | * DNS server we're talking to is probably unreachable, |
| 1318 | * wedged, or severely overloaded) or we couldn't copy the |
| 1319 | * request, so mark the connection as broken. When we get to |
| 1320 | * process_broken_connections() we'll close the connection and |
| 1321 | * try to re-send requests to another server. |
| 1322 | */ |
| 1323 | server->is_broken = 1; |
| 1324 | /* Just to be paranoid, zero out this sendreq... */ |
| 1325 | sendreq->data = NULL; |
| 1326 | sendreq->len = 0; |
| 1327 | } |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | /* Invoke the callback */ |
| 1332 | query->callback(query->arg, status, query->timeouts, abuf, alen); |
| 1333 | ares__free_query(query); |
| 1334 | |
| 1335 | /* Simple cleanup policy: if no queries are remaining, close all network |
| 1336 | * sockets unless STAYOPEN is set. |
| 1337 | */ |
| 1338 | if (!(channel->flags & ARES_FLAG_STAYOPEN) && |
| 1339 | ares__is_list_empty(&(channel->all_queries))) |
| 1340 | { |
| 1341 | for (i = 0; i < channel->nservers; i++) |
| 1342 | ares__close_sockets(channel, &channel->servers[i]); |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | void ares__free_query(struct query *query) |
| 1347 | { |
| 1348 | /* Remove the query from all the lists in which it is linked */ |
| 1349 | ares__remove_from_list(&(query->queries_by_qid)); |
| 1350 | ares__remove_from_list(&(query->queries_by_timeout)); |
| 1351 | ares__remove_from_list(&(query->queries_to_server)); |
| 1352 | ares__remove_from_list(&(query->all_queries)); |
| 1353 | /* Zero out some important stuff, to help catch bugs */ |
| 1354 | query->callback = NULL; |
| 1355 | query->arg = NULL; |
| 1356 | /* Deallocate the memory associated with the query */ |
| 1357 | ares_free(query->tcpbuf); |
| 1358 | ares_free(query->server_info); |
| 1359 | ares_free(query); |
| 1360 | } |