| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* gf128mul.c - GF(2^128) multiplication functions | 
|  | 2 | * | 
|  | 3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | 
|  | 4 | * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> | 
|  | 5 | * | 
|  | 6 | * Based on Dr Brian Gladman's (GPL'd) work published at | 
|  | 7 | * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php | 
|  | 8 | * See the original copyright notice below. | 
|  | 9 | * | 
|  | 10 | * This program is free software; you can redistribute it and/or modify it | 
|  | 11 | * under the terms of the GNU General Public License as published by the Free | 
|  | 12 | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | 13 | * any later version. | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | /* | 
|  | 17 | --------------------------------------------------------------------------- | 
|  | 18 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved. | 
|  | 19 |  | 
|  | 20 | LICENSE TERMS | 
|  | 21 |  | 
|  | 22 | The free distribution and use of this software in both source and binary | 
|  | 23 | form is allowed (with or without changes) provided that: | 
|  | 24 |  | 
|  | 25 | 1. distributions of this source code include the above copyright | 
|  | 26 | notice, this list of conditions and the following disclaimer; | 
|  | 27 |  | 
|  | 28 | 2. distributions in binary form include the above copyright | 
|  | 29 | notice, this list of conditions and the following disclaimer | 
|  | 30 | in the documentation and/or other associated materials; | 
|  | 31 |  | 
|  | 32 | 3. the copyright holder's name is not used to endorse products | 
|  | 33 | built using this software without specific written permission. | 
|  | 34 |  | 
|  | 35 | ALTERNATIVELY, provided that this notice is retained in full, this product | 
|  | 36 | may be distributed under the terms of the GNU General Public License (GPL), | 
|  | 37 | in which case the provisions of the GPL apply INSTEAD OF those given above. | 
|  | 38 |  | 
|  | 39 | DISCLAIMER | 
|  | 40 |  | 
|  | 41 | This software is provided 'as is' with no explicit or implied warranties | 
|  | 42 | in respect of its properties, including, but not limited to, correctness | 
|  | 43 | and/or fitness for purpose. | 
|  | 44 | --------------------------------------------------------------------------- | 
|  | 45 | Issue 31/01/2006 | 
|  | 46 |  | 
|  | 47 | This file provides fast multiplication in GF(128) as required by several | 
|  | 48 | cryptographic authentication modes | 
|  | 49 | */ | 
|  | 50 |  | 
|  | 51 | #include <crypto/gf128mul.h> | 
|  | 52 | #include <linux/kernel.h> | 
|  | 53 | #include <linux/module.h> | 
|  | 54 | #include <linux/slab.h> | 
|  | 55 |  | 
|  | 56 | #define gf128mul_dat(q) { \ | 
|  | 57 | q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ | 
|  | 58 | q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ | 
|  | 59 | q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ | 
|  | 60 | q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ | 
|  | 61 | q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ | 
|  | 62 | q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ | 
|  | 63 | q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ | 
|  | 64 | q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ | 
|  | 65 | q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ | 
|  | 66 | q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ | 
|  | 67 | q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ | 
|  | 68 | q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ | 
|  | 69 | q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ | 
|  | 70 | q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ | 
|  | 71 | q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ | 
|  | 72 | q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ | 
|  | 73 | q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ | 
|  | 74 | q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ | 
|  | 75 | q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ | 
|  | 76 | q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ | 
|  | 77 | q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ | 
|  | 78 | q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ | 
|  | 79 | q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ | 
|  | 80 | q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ | 
|  | 81 | q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ | 
|  | 82 | q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ | 
|  | 83 | q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ | 
|  | 84 | q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ | 
|  | 85 | q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ | 
|  | 86 | q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ | 
|  | 87 | q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ | 
|  | 88 | q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | /*	Given the value i in 0..255 as the byte overflow when a field element | 
|  | 92 | in GHASH is multiplied by x^8, this function will return the values that | 
|  | 93 | are generated in the lo 16-bit word of the field value by applying the | 
|  | 94 | modular polynomial. The values lo_byte and hi_byte are returned via the | 
|  | 95 | macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into | 
|  | 96 | memory as required by a suitable definition of this macro operating on | 
|  | 97 | the table above | 
|  | 98 | */ | 
|  | 99 |  | 
|  | 100 | #define xx(p, q)	0x##p##q | 
|  | 101 |  | 
|  | 102 | #define xda_bbe(i) ( \ | 
|  | 103 | (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ | 
|  | 104 | (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ | 
|  | 105 | (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ | 
|  | 106 | (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ | 
|  | 107 | ) | 
|  | 108 |  | 
|  | 109 | #define xda_lle(i) ( \ | 
|  | 110 | (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ | 
|  | 111 | (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ | 
|  | 112 | (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ | 
|  | 113 | (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ | 
|  | 114 | ) | 
|  | 115 |  | 
|  | 116 | static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); | 
|  | 117 | static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); | 
|  | 118 |  | 
|  | 119 | /* These functions multiply a field element by x, by x^4 and by x^8 | 
|  | 120 | * in the polynomial field representation. It uses 32-bit word operations | 
|  | 121 | * to gain speed but compensates for machine endianess and hence works | 
|  | 122 | * correctly on both styles of machine. | 
|  | 123 | */ | 
|  | 124 |  | 
|  | 125 | static void gf128mul_x_lle(be128 *r, const be128 *x) | 
|  | 126 | { | 
|  | 127 | u64 a = be64_to_cpu(x->a); | 
|  | 128 | u64 b = be64_to_cpu(x->b); | 
|  | 129 | u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; | 
|  | 130 |  | 
|  | 131 | r->b = cpu_to_be64((b >> 1) | (a << 63)); | 
|  | 132 | r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | static void gf128mul_x_bbe(be128 *r, const be128 *x) | 
|  | 136 | { | 
|  | 137 | u64 a = be64_to_cpu(x->a); | 
|  | 138 | u64 b = be64_to_cpu(x->b); | 
|  | 139 | u64 _tt = gf128mul_table_bbe[a >> 63]; | 
|  | 140 |  | 
|  | 141 | r->a = cpu_to_be64((a << 1) | (b >> 63)); | 
|  | 142 | r->b = cpu_to_be64((b << 1) ^ _tt); | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | void gf128mul_x_ble(be128 *r, const be128 *x) | 
|  | 146 | { | 
|  | 147 | u64 a = le64_to_cpu(x->a); | 
|  | 148 | u64 b = le64_to_cpu(x->b); | 
|  | 149 | u64 _tt = gf128mul_table_bbe[b >> 63]; | 
|  | 150 |  | 
|  | 151 | r->a = cpu_to_le64((a << 1) ^ _tt); | 
|  | 152 | r->b = cpu_to_le64((b << 1) | (a >> 63)); | 
|  | 153 | } | 
|  | 154 | EXPORT_SYMBOL(gf128mul_x_ble); | 
|  | 155 |  | 
|  | 156 | static void gf128mul_x8_lle(be128 *x) | 
|  | 157 | { | 
|  | 158 | u64 a = be64_to_cpu(x->a); | 
|  | 159 | u64 b = be64_to_cpu(x->b); | 
|  | 160 | u64 _tt = gf128mul_table_lle[b & 0xff]; | 
|  | 161 |  | 
|  | 162 | x->b = cpu_to_be64((b >> 8) | (a << 56)); | 
|  | 163 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | static void gf128mul_x8_bbe(be128 *x) | 
|  | 167 | { | 
|  | 168 | u64 a = be64_to_cpu(x->a); | 
|  | 169 | u64 b = be64_to_cpu(x->b); | 
|  | 170 | u64 _tt = gf128mul_table_bbe[a >> 56]; | 
|  | 171 |  | 
|  | 172 | x->a = cpu_to_be64((a << 8) | (b >> 56)); | 
|  | 173 | x->b = cpu_to_be64((b << 8) ^ _tt); | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | void gf128mul_lle(be128 *r, const be128 *b) | 
|  | 177 | { | 
|  | 178 | be128 p[8]; | 
|  | 179 | int i; | 
|  | 180 |  | 
|  | 181 | p[0] = *r; | 
|  | 182 | for (i = 0; i < 7; ++i) | 
|  | 183 | gf128mul_x_lle(&p[i + 1], &p[i]); | 
|  | 184 |  | 
|  | 185 | memset(r, 0, sizeof(*r)); | 
|  | 186 | for (i = 0;;) { | 
|  | 187 | u8 ch = ((u8 *)b)[15 - i]; | 
|  | 188 |  | 
|  | 189 | if (ch & 0x80) | 
|  | 190 | be128_xor(r, r, &p[0]); | 
|  | 191 | if (ch & 0x40) | 
|  | 192 | be128_xor(r, r, &p[1]); | 
|  | 193 | if (ch & 0x20) | 
|  | 194 | be128_xor(r, r, &p[2]); | 
|  | 195 | if (ch & 0x10) | 
|  | 196 | be128_xor(r, r, &p[3]); | 
|  | 197 | if (ch & 0x08) | 
|  | 198 | be128_xor(r, r, &p[4]); | 
|  | 199 | if (ch & 0x04) | 
|  | 200 | be128_xor(r, r, &p[5]); | 
|  | 201 | if (ch & 0x02) | 
|  | 202 | be128_xor(r, r, &p[6]); | 
|  | 203 | if (ch & 0x01) | 
|  | 204 | be128_xor(r, r, &p[7]); | 
|  | 205 |  | 
|  | 206 | if (++i >= 16) | 
|  | 207 | break; | 
|  | 208 |  | 
|  | 209 | gf128mul_x8_lle(r); | 
|  | 210 | } | 
|  | 211 | } | 
|  | 212 | EXPORT_SYMBOL(gf128mul_lle); | 
|  | 213 |  | 
|  | 214 | void gf128mul_bbe(be128 *r, const be128 *b) | 
|  | 215 | { | 
|  | 216 | be128 p[8]; | 
|  | 217 | int i; | 
|  | 218 |  | 
|  | 219 | p[0] = *r; | 
|  | 220 | for (i = 0; i < 7; ++i) | 
|  | 221 | gf128mul_x_bbe(&p[i + 1], &p[i]); | 
|  | 222 |  | 
|  | 223 | memset(r, 0, sizeof(*r)); | 
|  | 224 | for (i = 0;;) { | 
|  | 225 | u8 ch = ((u8 *)b)[i]; | 
|  | 226 |  | 
|  | 227 | if (ch & 0x80) | 
|  | 228 | be128_xor(r, r, &p[7]); | 
|  | 229 | if (ch & 0x40) | 
|  | 230 | be128_xor(r, r, &p[6]); | 
|  | 231 | if (ch & 0x20) | 
|  | 232 | be128_xor(r, r, &p[5]); | 
|  | 233 | if (ch & 0x10) | 
|  | 234 | be128_xor(r, r, &p[4]); | 
|  | 235 | if (ch & 0x08) | 
|  | 236 | be128_xor(r, r, &p[3]); | 
|  | 237 | if (ch & 0x04) | 
|  | 238 | be128_xor(r, r, &p[2]); | 
|  | 239 | if (ch & 0x02) | 
|  | 240 | be128_xor(r, r, &p[1]); | 
|  | 241 | if (ch & 0x01) | 
|  | 242 | be128_xor(r, r, &p[0]); | 
|  | 243 |  | 
|  | 244 | if (++i >= 16) | 
|  | 245 | break; | 
|  | 246 |  | 
|  | 247 | gf128mul_x8_bbe(r); | 
|  | 248 | } | 
|  | 249 | } | 
|  | 250 | EXPORT_SYMBOL(gf128mul_bbe); | 
|  | 251 |  | 
|  | 252 | /*      This version uses 64k bytes of table space. | 
|  | 253 | A 16 byte buffer has to be multiplied by a 16 byte key | 
|  | 254 | value in GF(128).  If we consider a GF(128) value in | 
|  | 255 | the buffer's lowest byte, we can construct a table of | 
|  | 256 | the 256 16 byte values that result from the 256 values | 
|  | 257 | of this byte.  This requires 4096 bytes. But we also | 
|  | 258 | need tables for each of the 16 higher bytes in the | 
|  | 259 | buffer as well, which makes 64 kbytes in total. | 
|  | 260 | */ | 
|  | 261 | /* additional explanation | 
|  | 262 | * t[0][BYTE] contains g*BYTE | 
|  | 263 | * t[1][BYTE] contains g*x^8*BYTE | 
|  | 264 | *  .. | 
|  | 265 | * t[15][BYTE] contains g*x^120*BYTE */ | 
|  | 266 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) | 
|  | 267 | { | 
|  | 268 | struct gf128mul_64k *t; | 
|  | 269 | int i, j, k; | 
|  | 270 |  | 
|  | 271 | t = kzalloc(sizeof(*t), GFP_KERNEL); | 
|  | 272 | if (!t) | 
|  | 273 | goto out; | 
|  | 274 |  | 
|  | 275 | for (i = 0; i < 16; i++) { | 
|  | 276 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | 
|  | 277 | if (!t->t[i]) { | 
|  | 278 | gf128mul_free_64k(t); | 
|  | 279 | t = NULL; | 
|  | 280 | goto out; | 
|  | 281 | } | 
|  | 282 | } | 
|  | 283 |  | 
|  | 284 | t->t[0]->t[128] = *g; | 
|  | 285 | for (j = 64; j > 0; j >>= 1) | 
|  | 286 | gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); | 
|  | 287 |  | 
|  | 288 | for (i = 0;;) { | 
|  | 289 | for (j = 2; j < 256; j += j) | 
|  | 290 | for (k = 1; k < j; ++k) | 
|  | 291 | be128_xor(&t->t[i]->t[j + k], | 
|  | 292 | &t->t[i]->t[j], &t->t[i]->t[k]); | 
|  | 293 |  | 
|  | 294 | if (++i >= 16) | 
|  | 295 | break; | 
|  | 296 |  | 
|  | 297 | for (j = 128; j > 0; j >>= 1) { | 
|  | 298 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | 
|  | 299 | gf128mul_x8_lle(&t->t[i]->t[j]); | 
|  | 300 | } | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | out: | 
|  | 304 | return t; | 
|  | 305 | } | 
|  | 306 | EXPORT_SYMBOL(gf128mul_init_64k_lle); | 
|  | 307 |  | 
|  | 308 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) | 
|  | 309 | { | 
|  | 310 | struct gf128mul_64k *t; | 
|  | 311 | int i, j, k; | 
|  | 312 |  | 
|  | 313 | t = kzalloc(sizeof(*t), GFP_KERNEL); | 
|  | 314 | if (!t) | 
|  | 315 | goto out; | 
|  | 316 |  | 
|  | 317 | for (i = 0; i < 16; i++) { | 
|  | 318 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | 
|  | 319 | if (!t->t[i]) { | 
|  | 320 | gf128mul_free_64k(t); | 
|  | 321 | t = NULL; | 
|  | 322 | goto out; | 
|  | 323 | } | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | t->t[0]->t[1] = *g; | 
|  | 327 | for (j = 1; j <= 64; j <<= 1) | 
|  | 328 | gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); | 
|  | 329 |  | 
|  | 330 | for (i = 0;;) { | 
|  | 331 | for (j = 2; j < 256; j += j) | 
|  | 332 | for (k = 1; k < j; ++k) | 
|  | 333 | be128_xor(&t->t[i]->t[j + k], | 
|  | 334 | &t->t[i]->t[j], &t->t[i]->t[k]); | 
|  | 335 |  | 
|  | 336 | if (++i >= 16) | 
|  | 337 | break; | 
|  | 338 |  | 
|  | 339 | for (j = 128; j > 0; j >>= 1) { | 
|  | 340 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | 
|  | 341 | gf128mul_x8_bbe(&t->t[i]->t[j]); | 
|  | 342 | } | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | out: | 
|  | 346 | return t; | 
|  | 347 | } | 
|  | 348 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); | 
|  | 349 |  | 
|  | 350 | void gf128mul_free_64k(struct gf128mul_64k *t) | 
|  | 351 | { | 
|  | 352 | int i; | 
|  | 353 |  | 
|  | 354 | for (i = 0; i < 16; i++) | 
|  | 355 | kfree(t->t[i]); | 
|  | 356 | kfree(t); | 
|  | 357 | } | 
|  | 358 | EXPORT_SYMBOL(gf128mul_free_64k); | 
|  | 359 |  | 
|  | 360 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) | 
|  | 361 | { | 
|  | 362 | u8 *ap = (u8 *)a; | 
|  | 363 | be128 r[1]; | 
|  | 364 | int i; | 
|  | 365 |  | 
|  | 366 | *r = t->t[0]->t[ap[0]]; | 
|  | 367 | for (i = 1; i < 16; ++i) | 
|  | 368 | be128_xor(r, r, &t->t[i]->t[ap[i]]); | 
|  | 369 | *a = *r; | 
|  | 370 | } | 
|  | 371 | EXPORT_SYMBOL(gf128mul_64k_lle); | 
|  | 372 |  | 
|  | 373 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) | 
|  | 374 | { | 
|  | 375 | u8 *ap = (u8 *)a; | 
|  | 376 | be128 r[1]; | 
|  | 377 | int i; | 
|  | 378 |  | 
|  | 379 | *r = t->t[0]->t[ap[15]]; | 
|  | 380 | for (i = 1; i < 16; ++i) | 
|  | 381 | be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); | 
|  | 382 | *a = *r; | 
|  | 383 | } | 
|  | 384 | EXPORT_SYMBOL(gf128mul_64k_bbe); | 
|  | 385 |  | 
|  | 386 | /*      This version uses 4k bytes of table space. | 
|  | 387 | A 16 byte buffer has to be multiplied by a 16 byte key | 
|  | 388 | value in GF(128).  If we consider a GF(128) value in a | 
|  | 389 | single byte, we can construct a table of the 256 16 byte | 
|  | 390 | values that result from the 256 values of this byte. | 
|  | 391 | This requires 4096 bytes. If we take the highest byte in | 
|  | 392 | the buffer and use this table to get the result, we then | 
|  | 393 | have to multiply by x^120 to get the final value. For the | 
|  | 394 | next highest byte the result has to be multiplied by x^112 | 
|  | 395 | and so on. But we can do this by accumulating the result | 
|  | 396 | in an accumulator starting with the result for the top | 
|  | 397 | byte.  We repeatedly multiply the accumulator value by | 
|  | 398 | x^8 and then add in (i.e. xor) the 16 bytes of the next | 
|  | 399 | lower byte in the buffer, stopping when we reach the | 
|  | 400 | lowest byte. This requires a 4096 byte table. | 
|  | 401 | */ | 
|  | 402 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) | 
|  | 403 | { | 
|  | 404 | struct gf128mul_4k *t; | 
|  | 405 | int j, k; | 
|  | 406 |  | 
|  | 407 | t = kzalloc(sizeof(*t), GFP_KERNEL); | 
|  | 408 | if (!t) | 
|  | 409 | goto out; | 
|  | 410 |  | 
|  | 411 | t->t[128] = *g; | 
|  | 412 | for (j = 64; j > 0; j >>= 1) | 
|  | 413 | gf128mul_x_lle(&t->t[j], &t->t[j+j]); | 
|  | 414 |  | 
|  | 415 | for (j = 2; j < 256; j += j) | 
|  | 416 | for (k = 1; k < j; ++k) | 
|  | 417 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | 
|  | 418 |  | 
|  | 419 | out: | 
|  | 420 | return t; | 
|  | 421 | } | 
|  | 422 | EXPORT_SYMBOL(gf128mul_init_4k_lle); | 
|  | 423 |  | 
|  | 424 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) | 
|  | 425 | { | 
|  | 426 | struct gf128mul_4k *t; | 
|  | 427 | int j, k; | 
|  | 428 |  | 
|  | 429 | t = kzalloc(sizeof(*t), GFP_KERNEL); | 
|  | 430 | if (!t) | 
|  | 431 | goto out; | 
|  | 432 |  | 
|  | 433 | t->t[1] = *g; | 
|  | 434 | for (j = 1; j <= 64; j <<= 1) | 
|  | 435 | gf128mul_x_bbe(&t->t[j + j], &t->t[j]); | 
|  | 436 |  | 
|  | 437 | for (j = 2; j < 256; j += j) | 
|  | 438 | for (k = 1; k < j; ++k) | 
|  | 439 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | 
|  | 440 |  | 
|  | 441 | out: | 
|  | 442 | return t; | 
|  | 443 | } | 
|  | 444 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); | 
|  | 445 |  | 
|  | 446 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) | 
|  | 447 | { | 
|  | 448 | u8 *ap = (u8 *)a; | 
|  | 449 | be128 r[1]; | 
|  | 450 | int i = 15; | 
|  | 451 |  | 
|  | 452 | *r = t->t[ap[15]]; | 
|  | 453 | while (i--) { | 
|  | 454 | gf128mul_x8_lle(r); | 
|  | 455 | be128_xor(r, r, &t->t[ap[i]]); | 
|  | 456 | } | 
|  | 457 | *a = *r; | 
|  | 458 | } | 
|  | 459 | EXPORT_SYMBOL(gf128mul_4k_lle); | 
|  | 460 |  | 
|  | 461 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) | 
|  | 462 | { | 
|  | 463 | u8 *ap = (u8 *)a; | 
|  | 464 | be128 r[1]; | 
|  | 465 | int i = 0; | 
|  | 466 |  | 
|  | 467 | *r = t->t[ap[0]]; | 
|  | 468 | while (++i < 16) { | 
|  | 469 | gf128mul_x8_bbe(r); | 
|  | 470 | be128_xor(r, r, &t->t[ap[i]]); | 
|  | 471 | } | 
|  | 472 | *a = *r; | 
|  | 473 | } | 
|  | 474 | EXPORT_SYMBOL(gf128mul_4k_bbe); | 
|  | 475 |  | 
|  | 476 | MODULE_LICENSE("GPL"); | 
|  | 477 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |