lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "crypto/cryptlib.h" |
| 11 | #include "internal/thread_once.h" |
| 12 | |
| 13 | /* |
| 14 | * Each structure type (sometimes called a class), that supports |
| 15 | * exdata has a stack of callbacks for each instance. |
| 16 | */ |
| 17 | struct ex_callback_st { |
| 18 | long argl; /* Arbitrary long */ |
| 19 | void *argp; /* Arbitrary void * */ |
| 20 | CRYPTO_EX_new *new_func; |
| 21 | CRYPTO_EX_free *free_func; |
| 22 | CRYPTO_EX_dup *dup_func; |
| 23 | }; |
| 24 | |
| 25 | /* |
| 26 | * The state for each class. This could just be a typedef, but |
| 27 | * a structure allows future changes. |
| 28 | */ |
| 29 | typedef struct ex_callbacks_st { |
| 30 | STACK_OF(EX_CALLBACK) *meth; |
| 31 | } EX_CALLBACKS; |
| 32 | |
| 33 | static EX_CALLBACKS ex_data[CRYPTO_EX_INDEX__COUNT]; |
| 34 | |
| 35 | static CRYPTO_RWLOCK *ex_data_lock = NULL; |
| 36 | static CRYPTO_ONCE ex_data_init = CRYPTO_ONCE_STATIC_INIT; |
| 37 | |
| 38 | DEFINE_RUN_ONCE_STATIC(do_ex_data_init) |
| 39 | { |
| 40 | if (!OPENSSL_init_crypto(0, NULL)) |
| 41 | return 0; |
| 42 | ex_data_lock = CRYPTO_THREAD_lock_new(); |
| 43 | return ex_data_lock != NULL; |
| 44 | } |
| 45 | |
| 46 | /* |
| 47 | * Return the EX_CALLBACKS from the |ex_data| array that corresponds to |
| 48 | * a given class. On success, *holds the lock.* |
| 49 | */ |
| 50 | static EX_CALLBACKS *get_and_lock(int class_index) |
| 51 | { |
| 52 | EX_CALLBACKS *ip; |
| 53 | |
| 54 | if (class_index < 0 || class_index >= CRYPTO_EX_INDEX__COUNT) { |
| 55 | CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_PASSED_INVALID_ARGUMENT); |
| 56 | return NULL; |
| 57 | } |
| 58 | |
| 59 | if (!RUN_ONCE(&ex_data_init, do_ex_data_init)) { |
| 60 | CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_MALLOC_FAILURE); |
| 61 | return NULL; |
| 62 | } |
| 63 | |
| 64 | if (ex_data_lock == NULL) { |
| 65 | /* |
| 66 | * This can happen in normal operation when using CRYPTO_mem_leaks(). |
| 67 | * The CRYPTO_mem_leaks() function calls OPENSSL_cleanup() which cleans |
| 68 | * up the locks. Subsequently the BIO that CRYPTO_mem_leaks() uses gets |
| 69 | * freed, which also attempts to free the ex_data. However |
| 70 | * CRYPTO_mem_leaks() ensures that the ex_data is freed early (i.e. |
| 71 | * before OPENSSL_cleanup() is called), so if we get here we can safely |
| 72 | * ignore this operation. We just treat it as an error. |
| 73 | */ |
| 74 | return NULL; |
| 75 | } |
| 76 | |
| 77 | ip = &ex_data[class_index]; |
| 78 | CRYPTO_THREAD_write_lock(ex_data_lock); |
| 79 | return ip; |
| 80 | } |
| 81 | |
| 82 | static void cleanup_cb(EX_CALLBACK *funcs) |
| 83 | { |
| 84 | OPENSSL_free(funcs); |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Release all "ex_data" state to prevent memory leaks. This can't be made |
| 89 | * thread-safe without overhauling a lot of stuff, and shouldn't really be |
| 90 | * called under potential race-conditions anyway (it's for program shutdown |
| 91 | * after all). |
| 92 | */ |
| 93 | void crypto_cleanup_all_ex_data_int(void) |
| 94 | { |
| 95 | int i; |
| 96 | |
| 97 | for (i = 0; i < CRYPTO_EX_INDEX__COUNT; ++i) { |
| 98 | EX_CALLBACKS *ip = &ex_data[i]; |
| 99 | |
| 100 | sk_EX_CALLBACK_pop_free(ip->meth, cleanup_cb); |
| 101 | ip->meth = NULL; |
| 102 | } |
| 103 | |
| 104 | CRYPTO_THREAD_lock_free(ex_data_lock); |
| 105 | ex_data_lock = NULL; |
| 106 | } |
| 107 | |
| 108 | |
| 109 | /* |
| 110 | * Unregister a new index by replacing the callbacks with no-ops. |
| 111 | * Any in-use instances are leaked. |
| 112 | */ |
| 113 | static void dummy_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, |
| 114 | long argl, void *argp) |
| 115 | { |
| 116 | } |
| 117 | |
| 118 | static void dummy_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, |
| 119 | long argl, void *argp) |
| 120 | { |
| 121 | } |
| 122 | |
| 123 | static int dummy_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, |
| 124 | void *from_d, int idx, |
| 125 | long argl, void *argp) |
| 126 | { |
| 127 | return 1; |
| 128 | } |
| 129 | |
| 130 | int CRYPTO_free_ex_index(int class_index, int idx) |
| 131 | { |
| 132 | EX_CALLBACKS *ip = get_and_lock(class_index); |
| 133 | EX_CALLBACK *a; |
| 134 | int toret = 0; |
| 135 | |
| 136 | if (ip == NULL) |
| 137 | return 0; |
| 138 | if (idx < 0 || idx >= sk_EX_CALLBACK_num(ip->meth)) |
| 139 | goto err; |
| 140 | a = sk_EX_CALLBACK_value(ip->meth, idx); |
| 141 | if (a == NULL) |
| 142 | goto err; |
| 143 | a->new_func = dummy_new; |
| 144 | a->dup_func = dummy_dup; |
| 145 | a->free_func = dummy_free; |
| 146 | toret = 1; |
| 147 | err: |
| 148 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 149 | return toret; |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * Register a new index. |
| 154 | */ |
| 155 | int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp, |
| 156 | CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, |
| 157 | CRYPTO_EX_free *free_func) |
| 158 | { |
| 159 | int toret = -1; |
| 160 | EX_CALLBACK *a; |
| 161 | EX_CALLBACKS *ip = get_and_lock(class_index); |
| 162 | |
| 163 | if (ip == NULL) |
| 164 | return -1; |
| 165 | |
| 166 | if (ip->meth == NULL) { |
| 167 | ip->meth = sk_EX_CALLBACK_new_null(); |
| 168 | /* We push an initial value on the stack because the SSL |
| 169 | * "app_data" routines use ex_data index zero. See RT 3710. */ |
| 170 | if (ip->meth == NULL |
| 171 | || !sk_EX_CALLBACK_push(ip->meth, NULL)) { |
| 172 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
| 173 | goto err; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | a = (EX_CALLBACK *)OPENSSL_malloc(sizeof(*a)); |
| 178 | if (a == NULL) { |
| 179 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
| 180 | goto err; |
| 181 | } |
| 182 | a->argl = argl; |
| 183 | a->argp = argp; |
| 184 | a->new_func = new_func; |
| 185 | a->dup_func = dup_func; |
| 186 | a->free_func = free_func; |
| 187 | |
| 188 | if (!sk_EX_CALLBACK_push(ip->meth, NULL)) { |
| 189 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
| 190 | OPENSSL_free(a); |
| 191 | goto err; |
| 192 | } |
| 193 | toret = sk_EX_CALLBACK_num(ip->meth) - 1; |
| 194 | (void)sk_EX_CALLBACK_set(ip->meth, toret, a); |
| 195 | |
| 196 | err: |
| 197 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 198 | return toret; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Initialise a new CRYPTO_EX_DATA for use in a particular class - including |
| 203 | * calling new() callbacks for each index in the class used by this variable |
| 204 | * Thread-safe by copying a class's array of "EX_CALLBACK" entries |
| 205 | * in the lock, then using them outside the lock. Note this only applies |
| 206 | * to the global "ex_data" state (ie. class definitions), not 'ad' itself. |
| 207 | */ |
| 208 | int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) |
| 209 | { |
| 210 | int mx, i; |
| 211 | void *ptr; |
| 212 | EX_CALLBACK **storage = NULL; |
| 213 | EX_CALLBACK *stack[10]; |
| 214 | EX_CALLBACKS *ip = get_and_lock(class_index); |
| 215 | |
| 216 | if (ip == NULL) |
| 217 | return 0; |
| 218 | |
| 219 | ad->sk = NULL; |
| 220 | |
| 221 | mx = sk_EX_CALLBACK_num(ip->meth); |
| 222 | if (mx > 0) { |
| 223 | if (mx < (int)OSSL_NELEM(stack)) |
| 224 | storage = stack; |
| 225 | else |
| 226 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
| 227 | if (storage != NULL) |
| 228 | for (i = 0; i < mx; i++) |
| 229 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
| 230 | } |
| 231 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 232 | |
| 233 | if (mx > 0 && storage == NULL) { |
| 234 | CRYPTOerr(CRYPTO_F_CRYPTO_NEW_EX_DATA, ERR_R_MALLOC_FAILURE); |
| 235 | return 0; |
| 236 | } |
| 237 | for (i = 0; i < mx; i++) { |
| 238 | if (storage[i] != NULL && storage[i]->new_func != NULL) { |
| 239 | ptr = CRYPTO_get_ex_data(ad, i); |
| 240 | storage[i]->new_func(obj, ptr, ad, i, |
| 241 | storage[i]->argl, storage[i]->argp); |
| 242 | } |
| 243 | } |
| 244 | if (storage != stack) |
| 245 | OPENSSL_free(storage); |
| 246 | return 1; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Duplicate a CRYPTO_EX_DATA variable - including calling dup() callbacks |
| 251 | * for each index in the class used by this variable |
| 252 | */ |
| 253 | int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to, |
| 254 | const CRYPTO_EX_DATA *from) |
| 255 | { |
| 256 | int mx, j, i; |
| 257 | void *ptr; |
| 258 | EX_CALLBACK *stack[10]; |
| 259 | EX_CALLBACK **storage = NULL; |
| 260 | EX_CALLBACKS *ip; |
| 261 | int toret = 0; |
| 262 | |
| 263 | if (from->sk == NULL) |
| 264 | /* Nothing to copy over */ |
| 265 | return 1; |
| 266 | if ((ip = get_and_lock(class_index)) == NULL) |
| 267 | return 0; |
| 268 | |
| 269 | mx = sk_EX_CALLBACK_num(ip->meth); |
| 270 | j = sk_void_num(from->sk); |
| 271 | if (j < mx) |
| 272 | mx = j; |
| 273 | if (mx > 0) { |
| 274 | if (mx < (int)OSSL_NELEM(stack)) |
| 275 | storage = stack; |
| 276 | else |
| 277 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
| 278 | if (storage != NULL) |
| 279 | for (i = 0; i < mx; i++) |
| 280 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
| 281 | } |
| 282 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 283 | |
| 284 | if (mx == 0) |
| 285 | return 1; |
| 286 | if (storage == NULL) { |
| 287 | CRYPTOerr(CRYPTO_F_CRYPTO_DUP_EX_DATA, ERR_R_MALLOC_FAILURE); |
| 288 | return 0; |
| 289 | } |
| 290 | /* |
| 291 | * Make sure the ex_data stack is at least |mx| elements long to avoid |
| 292 | * issues in the for loop that follows; so go get the |mx|'th element |
| 293 | * (if it does not exist CRYPTO_get_ex_data() returns NULL), and assign |
| 294 | * to itself. This is normally a no-op; but ensures the stack is the |
| 295 | * proper size |
| 296 | */ |
| 297 | if (!CRYPTO_set_ex_data(to, mx - 1, CRYPTO_get_ex_data(to, mx - 1))) |
| 298 | goto err; |
| 299 | |
| 300 | for (i = 0; i < mx; i++) { |
| 301 | ptr = CRYPTO_get_ex_data(from, i); |
| 302 | if (storage[i] != NULL && storage[i]->dup_func != NULL) |
| 303 | if (!storage[i]->dup_func(to, from, &ptr, i, |
| 304 | storage[i]->argl, storage[i]->argp)) |
| 305 | goto err; |
| 306 | CRYPTO_set_ex_data(to, i, ptr); |
| 307 | } |
| 308 | toret = 1; |
| 309 | err: |
| 310 | if (storage != stack) |
| 311 | OPENSSL_free(storage); |
| 312 | return toret; |
| 313 | } |
| 314 | |
| 315 | |
| 316 | /* |
| 317 | * Cleanup a CRYPTO_EX_DATA variable - including calling free() callbacks for |
| 318 | * each index in the class used by this variable |
| 319 | */ |
| 320 | void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) |
| 321 | { |
| 322 | int mx, i; |
| 323 | EX_CALLBACKS *ip; |
| 324 | void *ptr; |
| 325 | EX_CALLBACK *f; |
| 326 | EX_CALLBACK *stack[10]; |
| 327 | EX_CALLBACK **storage = NULL; |
| 328 | |
| 329 | if ((ip = get_and_lock(class_index)) == NULL) |
| 330 | goto err; |
| 331 | |
| 332 | mx = sk_EX_CALLBACK_num(ip->meth); |
| 333 | if (mx > 0) { |
| 334 | if (mx < (int)OSSL_NELEM(stack)) |
| 335 | storage = stack; |
| 336 | else |
| 337 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
| 338 | if (storage != NULL) |
| 339 | for (i = 0; i < mx; i++) |
| 340 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
| 341 | } |
| 342 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 343 | |
| 344 | for (i = 0; i < mx; i++) { |
| 345 | if (storage != NULL) |
| 346 | f = storage[i]; |
| 347 | else { |
| 348 | CRYPTO_THREAD_write_lock(ex_data_lock); |
| 349 | f = sk_EX_CALLBACK_value(ip->meth, i); |
| 350 | CRYPTO_THREAD_unlock(ex_data_lock); |
| 351 | } |
| 352 | if (f != NULL && f->free_func != NULL) { |
| 353 | ptr = CRYPTO_get_ex_data(ad, i); |
| 354 | f->free_func(obj, ptr, ad, i, f->argl, f->argp); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | if (storage != stack) |
| 359 | OPENSSL_free(storage); |
| 360 | err: |
| 361 | sk_void_free(ad->sk); |
| 362 | ad->sk = NULL; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * For a given CRYPTO_EX_DATA variable, set the value corresponding to a |
| 367 | * particular index in the class used by this variable |
| 368 | */ |
| 369 | int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val) |
| 370 | { |
| 371 | int i; |
| 372 | |
| 373 | if (ad->sk == NULL) { |
| 374 | if ((ad->sk = sk_void_new_null()) == NULL) { |
| 375 | CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); |
| 376 | return 0; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | for (i = sk_void_num(ad->sk); i <= idx; ++i) { |
| 381 | if (!sk_void_push(ad->sk, NULL)) { |
| 382 | CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); |
| 383 | return 0; |
| 384 | } |
| 385 | } |
| 386 | sk_void_set(ad->sk, idx, val); |
| 387 | return 1; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * For a given CRYPTO_EX_DATA_ variable, get the value corresponding to a |
| 392 | * particular index in the class used by this variable |
| 393 | */ |
| 394 | void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int idx) |
| 395 | { |
| 396 | if (ad->sk == NULL || idx >= sk_void_num(ad->sk)) |
| 397 | return NULL; |
| 398 | return sk_void_value(ad->sk, idx); |
| 399 | } |