lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdlib.h> |
| 11 | #include <string.h> |
| 12 | #include <openssl/hmac.h> |
| 13 | #include <openssl/kdf.h> |
| 14 | #include <openssl/evp.h> |
| 15 | #include "internal/cryptlib.h" |
| 16 | #include "crypto/evp.h" |
| 17 | |
| 18 | #ifndef OPENSSL_NO_SCRYPT |
| 19 | |
| 20 | static int atou64(const char *nptr, uint64_t *result); |
| 21 | |
| 22 | typedef struct { |
| 23 | unsigned char *pass; |
| 24 | size_t pass_len; |
| 25 | unsigned char *salt; |
| 26 | size_t salt_len; |
| 27 | uint64_t N, r, p; |
| 28 | uint64_t maxmem_bytes; |
| 29 | } SCRYPT_PKEY_CTX; |
| 30 | |
| 31 | /* Custom uint64_t parser since we do not have strtoull */ |
| 32 | static int atou64(const char *nptr, uint64_t *result) |
| 33 | { |
| 34 | uint64_t value = 0; |
| 35 | |
| 36 | while (*nptr) { |
| 37 | unsigned int digit; |
| 38 | uint64_t new_value; |
| 39 | |
| 40 | if ((*nptr < '0') || (*nptr > '9')) { |
| 41 | return 0; |
| 42 | } |
| 43 | digit = (unsigned int)(*nptr - '0'); |
| 44 | new_value = (value * 10) + digit; |
| 45 | if ((new_value < digit) || ((new_value - digit) / 10 != value)) { |
| 46 | /* Overflow */ |
| 47 | return 0; |
| 48 | } |
| 49 | value = new_value; |
| 50 | nptr++; |
| 51 | } |
| 52 | *result = value; |
| 53 | return 1; |
| 54 | } |
| 55 | |
| 56 | static int pkey_scrypt_init(EVP_PKEY_CTX *ctx) |
| 57 | { |
| 58 | SCRYPT_PKEY_CTX *kctx; |
| 59 | |
| 60 | kctx = OPENSSL_zalloc(sizeof(*kctx)); |
| 61 | if (kctx == NULL) { |
| 62 | KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE); |
| 63 | return 0; |
| 64 | } |
| 65 | |
| 66 | /* Default values are the most conservative recommendation given in the |
| 67 | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
| 68 | * for this parameter choice (approx. 128 * r * (N + p) bytes). |
| 69 | */ |
| 70 | kctx->N = 1 << 20; |
| 71 | kctx->r = 8; |
| 72 | kctx->p = 1; |
| 73 | kctx->maxmem_bytes = 1025 * 1024 * 1024; |
| 74 | |
| 75 | ctx->data = kctx; |
| 76 | |
| 77 | return 1; |
| 78 | } |
| 79 | |
| 80 | static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx) |
| 81 | { |
| 82 | SCRYPT_PKEY_CTX *kctx = ctx->data; |
| 83 | |
| 84 | OPENSSL_clear_free(kctx->salt, kctx->salt_len); |
| 85 | OPENSSL_clear_free(kctx->pass, kctx->pass_len); |
| 86 | OPENSSL_free(kctx); |
| 87 | } |
| 88 | |
| 89 | static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
| 90 | const unsigned char *new_buffer, |
| 91 | const int new_buflen) |
| 92 | { |
| 93 | if (new_buffer == NULL) |
| 94 | return 1; |
| 95 | |
| 96 | if (new_buflen < 0) |
| 97 | return 0; |
| 98 | |
| 99 | if (*buffer != NULL) |
| 100 | OPENSSL_clear_free(*buffer, *buflen); |
| 101 | |
| 102 | if (new_buflen > 0) { |
| 103 | *buffer = OPENSSL_memdup(new_buffer, new_buflen); |
| 104 | } else { |
| 105 | *buffer = OPENSSL_malloc(1); |
| 106 | } |
| 107 | if (*buffer == NULL) { |
| 108 | KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | *buflen = new_buflen; |
| 113 | return 1; |
| 114 | } |
| 115 | |
| 116 | static int is_power_of_two(uint64_t value) |
| 117 | { |
| 118 | return (value != 0) && ((value & (value - 1)) == 0); |
| 119 | } |
| 120 | |
| 121 | static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) |
| 122 | { |
| 123 | SCRYPT_PKEY_CTX *kctx = ctx->data; |
| 124 | uint64_t u64_value; |
| 125 | |
| 126 | switch (type) { |
| 127 | case EVP_PKEY_CTRL_PASS: |
| 128 | return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1); |
| 129 | |
| 130 | case EVP_PKEY_CTRL_SCRYPT_SALT: |
| 131 | return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1); |
| 132 | |
| 133 | case EVP_PKEY_CTRL_SCRYPT_N: |
| 134 | u64_value = *((uint64_t *)p2); |
| 135 | if ((u64_value <= 1) || !is_power_of_two(u64_value)) |
| 136 | return 0; |
| 137 | kctx->N = u64_value; |
| 138 | return 1; |
| 139 | |
| 140 | case EVP_PKEY_CTRL_SCRYPT_R: |
| 141 | u64_value = *((uint64_t *)p2); |
| 142 | if (u64_value < 1) |
| 143 | return 0; |
| 144 | kctx->r = u64_value; |
| 145 | return 1; |
| 146 | |
| 147 | case EVP_PKEY_CTRL_SCRYPT_P: |
| 148 | u64_value = *((uint64_t *)p2); |
| 149 | if (u64_value < 1) |
| 150 | return 0; |
| 151 | kctx->p = u64_value; |
| 152 | return 1; |
| 153 | |
| 154 | case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES: |
| 155 | u64_value = *((uint64_t *)p2); |
| 156 | if (u64_value < 1) |
| 157 | return 0; |
| 158 | kctx->maxmem_bytes = u64_value; |
| 159 | return 1; |
| 160 | |
| 161 | default: |
| 162 | return -2; |
| 163 | |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type, |
| 168 | const char *value) |
| 169 | { |
| 170 | uint64_t int_value; |
| 171 | |
| 172 | if (!atou64(value, &int_value)) { |
| 173 | KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); |
| 174 | return 0; |
| 175 | } |
| 176 | return pkey_scrypt_ctrl(ctx, type, 0, &int_value); |
| 177 | } |
| 178 | |
| 179 | static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, |
| 180 | const char *value) |
| 181 | { |
| 182 | if (value == NULL) { |
| 183 | KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); |
| 184 | return 0; |
| 185 | } |
| 186 | |
| 187 | if (strcmp(type, "pass") == 0) |
| 188 | return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); |
| 189 | |
| 190 | if (strcmp(type, "hexpass") == 0) |
| 191 | return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); |
| 192 | |
| 193 | if (strcmp(type, "salt") == 0) |
| 194 | return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); |
| 195 | |
| 196 | if (strcmp(type, "hexsalt") == 0) |
| 197 | return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); |
| 198 | |
| 199 | if (strcmp(type, "N") == 0) |
| 200 | return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value); |
| 201 | |
| 202 | if (strcmp(type, "r") == 0) |
| 203 | return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value); |
| 204 | |
| 205 | if (strcmp(type, "p") == 0) |
| 206 | return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value); |
| 207 | |
| 208 | if (strcmp(type, "maxmem_bytes") == 0) |
| 209 | return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, |
| 210 | value); |
| 211 | |
| 212 | KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); |
| 213 | return -2; |
| 214 | } |
| 215 | |
| 216 | static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key, |
| 217 | size_t *keylen) |
| 218 | { |
| 219 | SCRYPT_PKEY_CTX *kctx = ctx->data; |
| 220 | |
| 221 | if (kctx->pass == NULL) { |
| 222 | KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS); |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | if (kctx->salt == NULL) { |
| 227 | KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT); |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt, |
| 232 | kctx->salt_len, kctx->N, kctx->r, kctx->p, |
| 233 | kctx->maxmem_bytes, key, *keylen); |
| 234 | } |
| 235 | |
| 236 | const EVP_PKEY_METHOD scrypt_pkey_meth = { |
| 237 | EVP_PKEY_SCRYPT, |
| 238 | 0, |
| 239 | pkey_scrypt_init, |
| 240 | 0, |
| 241 | pkey_scrypt_cleanup, |
| 242 | |
| 243 | 0, 0, |
| 244 | 0, 0, |
| 245 | |
| 246 | 0, |
| 247 | 0, |
| 248 | |
| 249 | 0, |
| 250 | 0, |
| 251 | |
| 252 | 0, 0, |
| 253 | |
| 254 | 0, 0, 0, 0, |
| 255 | |
| 256 | 0, 0, |
| 257 | |
| 258 | 0, 0, |
| 259 | |
| 260 | 0, |
| 261 | pkey_scrypt_derive, |
| 262 | pkey_scrypt_ctrl, |
| 263 | pkey_scrypt_ctrl_str |
| 264 | }; |
| 265 | |
| 266 | #endif |