lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * This file is in two halves. The first half implements the public API |
| 13 | * to be used by external consumers, and to be used by OpenSSL to store |
| 14 | * data in a "secure arena." The second half implements the secure arena. |
| 15 | * For details on that implementation, see below (look for uppercase |
| 16 | * "SECURE HEAP IMPLEMENTATION"). |
| 17 | */ |
| 18 | #include "e_os.h" |
| 19 | #include <openssl/crypto.h> |
| 20 | |
| 21 | #include <string.h> |
| 22 | |
| 23 | /* e_os.h defines OPENSSL_SECURE_MEMORY if secure memory can be implemented */ |
| 24 | #ifdef OPENSSL_SECURE_MEMORY |
| 25 | # include <stdlib.h> |
| 26 | # include <assert.h> |
| 27 | # include <unistd.h> |
| 28 | # include <sys/types.h> |
| 29 | # include <sys/mman.h> |
| 30 | # if defined(OPENSSL_SYS_LINUX) |
| 31 | # include <sys/syscall.h> |
| 32 | # if defined(SYS_mlock2) |
| 33 | # include <linux/mman.h> |
| 34 | # include <errno.h> |
| 35 | # endif |
| 36 | # endif |
| 37 | # if defined(__FreeBSD__) |
| 38 | # define MADV_DONTDUMP MADV_NOCORE |
| 39 | # endif |
| 40 | # if !defined(MAP_CONCEAL) |
| 41 | # define MAP_CONCEAL 0 |
| 42 | # endif |
| 43 | # include <sys/param.h> |
| 44 | # include <sys/stat.h> |
| 45 | # include <fcntl.h> |
| 46 | #endif |
| 47 | |
| 48 | #define CLEAR(p, s) OPENSSL_cleanse(p, s) |
| 49 | #ifndef PAGE_SIZE |
| 50 | # define PAGE_SIZE 4096 |
| 51 | #endif |
| 52 | #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) |
| 53 | # define MAP_ANON MAP_ANONYMOUS |
| 54 | #endif |
| 55 | |
| 56 | #ifdef OPENSSL_SECURE_MEMORY |
| 57 | static size_t secure_mem_used; |
| 58 | |
| 59 | static int secure_mem_initialized; |
| 60 | |
| 61 | static CRYPTO_RWLOCK *sec_malloc_lock = NULL; |
| 62 | |
| 63 | /* |
| 64 | * These are the functions that must be implemented by a secure heap (sh). |
| 65 | */ |
| 66 | static int sh_init(size_t size, int minsize); |
| 67 | static void *sh_malloc(size_t size); |
| 68 | static void sh_free(void *ptr); |
| 69 | static void sh_done(void); |
| 70 | static size_t sh_actual_size(char *ptr); |
| 71 | static int sh_allocated(const char *ptr); |
| 72 | #endif |
| 73 | |
| 74 | int CRYPTO_secure_malloc_init(size_t size, int minsize) |
| 75 | { |
| 76 | #ifdef OPENSSL_SECURE_MEMORY |
| 77 | int ret = 0; |
| 78 | |
| 79 | if (!secure_mem_initialized) { |
| 80 | sec_malloc_lock = CRYPTO_THREAD_lock_new(); |
| 81 | if (sec_malloc_lock == NULL) |
| 82 | return 0; |
| 83 | if ((ret = sh_init(size, minsize)) != 0) { |
| 84 | secure_mem_initialized = 1; |
| 85 | } else { |
| 86 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
| 87 | sec_malloc_lock = NULL; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | return ret; |
| 92 | #else |
| 93 | return 0; |
| 94 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 95 | } |
| 96 | |
| 97 | int CRYPTO_secure_malloc_done(void) |
| 98 | { |
| 99 | #ifdef OPENSSL_SECURE_MEMORY |
| 100 | if (secure_mem_used == 0) { |
| 101 | sh_done(); |
| 102 | secure_mem_initialized = 0; |
| 103 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
| 104 | sec_malloc_lock = NULL; |
| 105 | return 1; |
| 106 | } |
| 107 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 108 | return 0; |
| 109 | } |
| 110 | |
| 111 | int CRYPTO_secure_malloc_initialized(void) |
| 112 | { |
| 113 | #ifdef OPENSSL_SECURE_MEMORY |
| 114 | return secure_mem_initialized; |
| 115 | #else |
| 116 | return 0; |
| 117 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 118 | } |
| 119 | |
| 120 | void *CRYPTO_secure_malloc(size_t num, const char *file, int line) |
| 121 | { |
| 122 | #ifdef OPENSSL_SECURE_MEMORY |
| 123 | void *ret; |
| 124 | size_t actual_size; |
| 125 | |
| 126 | if (!secure_mem_initialized) { |
| 127 | return CRYPTO_malloc(num, file, line); |
| 128 | } |
| 129 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
| 130 | ret = sh_malloc(num); |
| 131 | actual_size = ret ? sh_actual_size(ret) : 0; |
| 132 | secure_mem_used += actual_size; |
| 133 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
| 134 | return ret; |
| 135 | #else |
| 136 | return CRYPTO_malloc(num, file, line); |
| 137 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 138 | } |
| 139 | |
| 140 | void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) |
| 141 | { |
| 142 | #ifdef OPENSSL_SECURE_MEMORY |
| 143 | if (secure_mem_initialized) |
| 144 | /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */ |
| 145 | return CRYPTO_secure_malloc(num, file, line); |
| 146 | #endif |
| 147 | return CRYPTO_zalloc(num, file, line); |
| 148 | } |
| 149 | |
| 150 | void CRYPTO_secure_free(void *ptr, const char *file, int line) |
| 151 | { |
| 152 | #ifdef OPENSSL_SECURE_MEMORY |
| 153 | size_t actual_size; |
| 154 | |
| 155 | if (ptr == NULL) |
| 156 | return; |
| 157 | if (!CRYPTO_secure_allocated(ptr)) { |
| 158 | CRYPTO_free(ptr, file, line); |
| 159 | return; |
| 160 | } |
| 161 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
| 162 | actual_size = sh_actual_size(ptr); |
| 163 | CLEAR(ptr, actual_size); |
| 164 | secure_mem_used -= actual_size; |
| 165 | sh_free(ptr); |
| 166 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
| 167 | #else |
| 168 | CRYPTO_free(ptr, file, line); |
| 169 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 170 | } |
| 171 | |
| 172 | void CRYPTO_secure_clear_free(void *ptr, size_t num, |
| 173 | const char *file, int line) |
| 174 | { |
| 175 | #ifdef OPENSSL_SECURE_MEMORY |
| 176 | size_t actual_size; |
| 177 | |
| 178 | if (ptr == NULL) |
| 179 | return; |
| 180 | if (!CRYPTO_secure_allocated(ptr)) { |
| 181 | OPENSSL_cleanse(ptr, num); |
| 182 | CRYPTO_free(ptr, file, line); |
| 183 | return; |
| 184 | } |
| 185 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
| 186 | actual_size = sh_actual_size(ptr); |
| 187 | CLEAR(ptr, actual_size); |
| 188 | secure_mem_used -= actual_size; |
| 189 | sh_free(ptr); |
| 190 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
| 191 | #else |
| 192 | if (ptr == NULL) |
| 193 | return; |
| 194 | OPENSSL_cleanse(ptr, num); |
| 195 | CRYPTO_free(ptr, file, line); |
| 196 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 197 | } |
| 198 | |
| 199 | int CRYPTO_secure_allocated(const void *ptr) |
| 200 | { |
| 201 | #ifdef OPENSSL_SECURE_MEMORY |
| 202 | int ret; |
| 203 | |
| 204 | if (!secure_mem_initialized) |
| 205 | return 0; |
| 206 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
| 207 | ret = sh_allocated(ptr); |
| 208 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
| 209 | return ret; |
| 210 | #else |
| 211 | return 0; |
| 212 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 213 | } |
| 214 | |
| 215 | size_t CRYPTO_secure_used(void) |
| 216 | { |
| 217 | #ifdef OPENSSL_SECURE_MEMORY |
| 218 | return secure_mem_used; |
| 219 | #else |
| 220 | return 0; |
| 221 | #endif /* OPENSSL_SECURE_MEMORY */ |
| 222 | } |
| 223 | |
| 224 | size_t CRYPTO_secure_actual_size(void *ptr) |
| 225 | { |
| 226 | #ifdef OPENSSL_SECURE_MEMORY |
| 227 | size_t actual_size; |
| 228 | |
| 229 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
| 230 | actual_size = sh_actual_size(ptr); |
| 231 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
| 232 | return actual_size; |
| 233 | #else |
| 234 | return 0; |
| 235 | #endif |
| 236 | } |
| 237 | /* END OF PAGE ... |
| 238 | |
| 239 | ... START OF PAGE */ |
| 240 | |
| 241 | /* |
| 242 | * SECURE HEAP IMPLEMENTATION |
| 243 | */ |
| 244 | #ifdef OPENSSL_SECURE_MEMORY |
| 245 | |
| 246 | |
| 247 | /* |
| 248 | * The implementation provided here uses a fixed-sized mmap() heap, |
| 249 | * which is locked into memory, not written to core files, and protected |
| 250 | * on either side by an unmapped page, which will catch pointer overruns |
| 251 | * (or underruns) and an attempt to read data out of the secure heap. |
| 252 | * Free'd memory is zero'd or otherwise cleansed. |
| 253 | * |
| 254 | * This is a pretty standard buddy allocator. We keep areas in a multiple |
| 255 | * of "sh.minsize" units. The freelist and bitmaps are kept separately, |
| 256 | * so all (and only) data is kept in the mmap'd heap. |
| 257 | * |
| 258 | * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the |
| 259 | * place. |
| 260 | */ |
| 261 | |
| 262 | #define ONE ((size_t)1) |
| 263 | |
| 264 | # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7))) |
| 265 | # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7))) |
| 266 | # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) |
| 267 | |
| 268 | #define WITHIN_ARENA(p) \ |
| 269 | ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) |
| 270 | #define WITHIN_FREELIST(p) \ |
| 271 | ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) |
| 272 | |
| 273 | |
| 274 | typedef struct sh_list_st |
| 275 | { |
| 276 | struct sh_list_st *next; |
| 277 | struct sh_list_st **p_next; |
| 278 | } SH_LIST; |
| 279 | |
| 280 | typedef struct sh_st |
| 281 | { |
| 282 | char* map_result; |
| 283 | size_t map_size; |
| 284 | char *arena; |
| 285 | size_t arena_size; |
| 286 | char **freelist; |
| 287 | ossl_ssize_t freelist_size; |
| 288 | size_t minsize; |
| 289 | unsigned char *bittable; |
| 290 | unsigned char *bitmalloc; |
| 291 | size_t bittable_size; /* size in bits */ |
| 292 | } SH; |
| 293 | |
| 294 | static SH sh; |
| 295 | |
| 296 | static size_t sh_getlist(char *ptr) |
| 297 | { |
| 298 | ossl_ssize_t list = sh.freelist_size - 1; |
| 299 | size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; |
| 300 | |
| 301 | for (; bit; bit >>= 1, list--) { |
| 302 | if (TESTBIT(sh.bittable, bit)) |
| 303 | break; |
| 304 | OPENSSL_assert((bit & 1) == 0); |
| 305 | } |
| 306 | |
| 307 | return list; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | static int sh_testbit(char *ptr, int list, unsigned char *table) |
| 312 | { |
| 313 | size_t bit; |
| 314 | |
| 315 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
| 316 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
| 317 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
| 318 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
| 319 | return TESTBIT(table, bit); |
| 320 | } |
| 321 | |
| 322 | static void sh_clearbit(char *ptr, int list, unsigned char *table) |
| 323 | { |
| 324 | size_t bit; |
| 325 | |
| 326 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
| 327 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
| 328 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
| 329 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
| 330 | OPENSSL_assert(TESTBIT(table, bit)); |
| 331 | CLEARBIT(table, bit); |
| 332 | } |
| 333 | |
| 334 | static void sh_setbit(char *ptr, int list, unsigned char *table) |
| 335 | { |
| 336 | size_t bit; |
| 337 | |
| 338 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
| 339 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
| 340 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
| 341 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
| 342 | OPENSSL_assert(!TESTBIT(table, bit)); |
| 343 | SETBIT(table, bit); |
| 344 | } |
| 345 | |
| 346 | static void sh_add_to_list(char **list, char *ptr) |
| 347 | { |
| 348 | SH_LIST *temp; |
| 349 | |
| 350 | OPENSSL_assert(WITHIN_FREELIST(list)); |
| 351 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
| 352 | |
| 353 | temp = (SH_LIST *)ptr; |
| 354 | temp->next = *(SH_LIST **)list; |
| 355 | OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); |
| 356 | temp->p_next = (SH_LIST **)list; |
| 357 | |
| 358 | if (temp->next != NULL) { |
| 359 | OPENSSL_assert((char **)temp->next->p_next == list); |
| 360 | temp->next->p_next = &(temp->next); |
| 361 | } |
| 362 | |
| 363 | *list = ptr; |
| 364 | } |
| 365 | |
| 366 | static void sh_remove_from_list(char *ptr) |
| 367 | { |
| 368 | SH_LIST *temp, *temp2; |
| 369 | |
| 370 | temp = (SH_LIST *)ptr; |
| 371 | if (temp->next != NULL) |
| 372 | temp->next->p_next = temp->p_next; |
| 373 | *temp->p_next = temp->next; |
| 374 | if (temp->next == NULL) |
| 375 | return; |
| 376 | |
| 377 | temp2 = temp->next; |
| 378 | OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); |
| 379 | } |
| 380 | |
| 381 | |
| 382 | static int sh_init(size_t size, int minsize) |
| 383 | { |
| 384 | int ret; |
| 385 | size_t i; |
| 386 | size_t pgsize; |
| 387 | size_t aligned; |
| 388 | |
| 389 | memset(&sh, 0, sizeof(sh)); |
| 390 | |
| 391 | /* make sure size and minsize are powers of 2 */ |
| 392 | OPENSSL_assert(size > 0); |
| 393 | OPENSSL_assert((size & (size - 1)) == 0); |
| 394 | OPENSSL_assert(minsize > 0); |
| 395 | OPENSSL_assert((minsize & (minsize - 1)) == 0); |
| 396 | if (size <= 0 || (size & (size - 1)) != 0) |
| 397 | goto err; |
| 398 | if (minsize <= 0 || (minsize & (minsize - 1)) != 0) |
| 399 | goto err; |
| 400 | |
| 401 | while (minsize < (int)sizeof(SH_LIST)) |
| 402 | minsize *= 2; |
| 403 | |
| 404 | sh.arena_size = size; |
| 405 | sh.minsize = minsize; |
| 406 | sh.bittable_size = (sh.arena_size / sh.minsize) * 2; |
| 407 | |
| 408 | /* Prevent allocations of size 0 later on */ |
| 409 | if (sh.bittable_size >> 3 == 0) |
| 410 | goto err; |
| 411 | |
| 412 | sh.freelist_size = -1; |
| 413 | for (i = sh.bittable_size; i; i >>= 1) |
| 414 | sh.freelist_size++; |
| 415 | |
| 416 | sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *)); |
| 417 | OPENSSL_assert(sh.freelist != NULL); |
| 418 | if (sh.freelist == NULL) |
| 419 | goto err; |
| 420 | |
| 421 | sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); |
| 422 | OPENSSL_assert(sh.bittable != NULL); |
| 423 | if (sh.bittable == NULL) |
| 424 | goto err; |
| 425 | |
| 426 | sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); |
| 427 | OPENSSL_assert(sh.bitmalloc != NULL); |
| 428 | if (sh.bitmalloc == NULL) |
| 429 | goto err; |
| 430 | |
| 431 | /* Allocate space for heap, and two extra pages as guards */ |
| 432 | #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) |
| 433 | { |
| 434 | # if defined(_SC_PAGE_SIZE) |
| 435 | long tmppgsize = sysconf(_SC_PAGE_SIZE); |
| 436 | # else |
| 437 | long tmppgsize = sysconf(_SC_PAGESIZE); |
| 438 | # endif |
| 439 | if (tmppgsize < 1) |
| 440 | pgsize = PAGE_SIZE; |
| 441 | else |
| 442 | pgsize = (size_t)tmppgsize; |
| 443 | } |
| 444 | #else |
| 445 | pgsize = PAGE_SIZE; |
| 446 | #endif |
| 447 | sh.map_size = pgsize + sh.arena_size + pgsize; |
| 448 | if (1) { |
| 449 | #ifdef MAP_ANON |
| 450 | sh.map_result = mmap(NULL, sh.map_size, |
| 451 | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE|MAP_CONCEAL, -1, 0); |
| 452 | } else { |
| 453 | #endif |
| 454 | int fd; |
| 455 | |
| 456 | sh.map_result = MAP_FAILED; |
| 457 | if ((fd = open("/dev/zero", O_RDWR)) >= 0) { |
| 458 | sh.map_result = mmap(NULL, sh.map_size, |
| 459 | PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); |
| 460 | close(fd); |
| 461 | } |
| 462 | } |
| 463 | if (sh.map_result == MAP_FAILED) |
| 464 | goto err; |
| 465 | sh.arena = (char *)(sh.map_result + pgsize); |
| 466 | sh_setbit(sh.arena, 0, sh.bittable); |
| 467 | sh_add_to_list(&sh.freelist[0], sh.arena); |
| 468 | |
| 469 | /* Now try to add guard pages and lock into memory. */ |
| 470 | ret = 1; |
| 471 | |
| 472 | /* Starting guard is already aligned from mmap. */ |
| 473 | if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) |
| 474 | ret = 2; |
| 475 | |
| 476 | /* Ending guard page - need to round up to page boundary */ |
| 477 | aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); |
| 478 | if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) |
| 479 | ret = 2; |
| 480 | |
| 481 | #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2) |
| 482 | if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) { |
| 483 | if (errno == ENOSYS) { |
| 484 | if (mlock(sh.arena, sh.arena_size) < 0) |
| 485 | ret = 2; |
| 486 | } else { |
| 487 | ret = 2; |
| 488 | } |
| 489 | } |
| 490 | #else |
| 491 | if (mlock(sh.arena, sh.arena_size) < 0) |
| 492 | ret = 2; |
| 493 | #endif |
| 494 | #ifdef MADV_DONTDUMP |
| 495 | if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) |
| 496 | ret = 2; |
| 497 | #endif |
| 498 | |
| 499 | return ret; |
| 500 | |
| 501 | err: |
| 502 | sh_done(); |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | static void sh_done(void) |
| 507 | { |
| 508 | OPENSSL_free(sh.freelist); |
| 509 | OPENSSL_free(sh.bittable); |
| 510 | OPENSSL_free(sh.bitmalloc); |
| 511 | if (sh.map_result != MAP_FAILED && sh.map_size) |
| 512 | munmap(sh.map_result, sh.map_size); |
| 513 | memset(&sh, 0, sizeof(sh)); |
| 514 | } |
| 515 | |
| 516 | static int sh_allocated(const char *ptr) |
| 517 | { |
| 518 | return WITHIN_ARENA(ptr) ? 1 : 0; |
| 519 | } |
| 520 | |
| 521 | static char *sh_find_my_buddy(char *ptr, int list) |
| 522 | { |
| 523 | size_t bit; |
| 524 | char *chunk = NULL; |
| 525 | |
| 526 | bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); |
| 527 | bit ^= 1; |
| 528 | |
| 529 | if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) |
| 530 | chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); |
| 531 | |
| 532 | return chunk; |
| 533 | } |
| 534 | |
| 535 | static void *sh_malloc(size_t size) |
| 536 | { |
| 537 | ossl_ssize_t list, slist; |
| 538 | size_t i; |
| 539 | char *chunk; |
| 540 | |
| 541 | if (size > sh.arena_size) |
| 542 | return NULL; |
| 543 | |
| 544 | list = sh.freelist_size - 1; |
| 545 | for (i = sh.minsize; i < size; i <<= 1) |
| 546 | list--; |
| 547 | if (list < 0) |
| 548 | return NULL; |
| 549 | |
| 550 | /* try to find a larger entry to split */ |
| 551 | for (slist = list; slist >= 0; slist--) |
| 552 | if (sh.freelist[slist] != NULL) |
| 553 | break; |
| 554 | if (slist < 0) |
| 555 | return NULL; |
| 556 | |
| 557 | /* split larger entry */ |
| 558 | while (slist != list) { |
| 559 | char *temp = sh.freelist[slist]; |
| 560 | |
| 561 | /* remove from bigger list */ |
| 562 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
| 563 | sh_clearbit(temp, slist, sh.bittable); |
| 564 | sh_remove_from_list(temp); |
| 565 | OPENSSL_assert(temp != sh.freelist[slist]); |
| 566 | |
| 567 | /* done with bigger list */ |
| 568 | slist++; |
| 569 | |
| 570 | /* add to smaller list */ |
| 571 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
| 572 | sh_setbit(temp, slist, sh.bittable); |
| 573 | sh_add_to_list(&sh.freelist[slist], temp); |
| 574 | OPENSSL_assert(sh.freelist[slist] == temp); |
| 575 | |
| 576 | /* split in 2 */ |
| 577 | temp += sh.arena_size >> slist; |
| 578 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
| 579 | sh_setbit(temp, slist, sh.bittable); |
| 580 | sh_add_to_list(&sh.freelist[slist], temp); |
| 581 | OPENSSL_assert(sh.freelist[slist] == temp); |
| 582 | |
| 583 | OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); |
| 584 | } |
| 585 | |
| 586 | /* peel off memory to hand back */ |
| 587 | chunk = sh.freelist[list]; |
| 588 | OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); |
| 589 | sh_setbit(chunk, list, sh.bitmalloc); |
| 590 | sh_remove_from_list(chunk); |
| 591 | |
| 592 | OPENSSL_assert(WITHIN_ARENA(chunk)); |
| 593 | |
| 594 | /* zero the free list header as a precaution against information leakage */ |
| 595 | memset(chunk, 0, sizeof(SH_LIST)); |
| 596 | |
| 597 | return chunk; |
| 598 | } |
| 599 | |
| 600 | static void sh_free(void *ptr) |
| 601 | { |
| 602 | size_t list; |
| 603 | void *buddy; |
| 604 | |
| 605 | if (ptr == NULL) |
| 606 | return; |
| 607 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
| 608 | if (!WITHIN_ARENA(ptr)) |
| 609 | return; |
| 610 | |
| 611 | list = sh_getlist(ptr); |
| 612 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
| 613 | sh_clearbit(ptr, list, sh.bitmalloc); |
| 614 | sh_add_to_list(&sh.freelist[list], ptr); |
| 615 | |
| 616 | /* Try to coalesce two adjacent free areas. */ |
| 617 | while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { |
| 618 | OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); |
| 619 | OPENSSL_assert(ptr != NULL); |
| 620 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
| 621 | sh_clearbit(ptr, list, sh.bittable); |
| 622 | sh_remove_from_list(ptr); |
| 623 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
| 624 | sh_clearbit(buddy, list, sh.bittable); |
| 625 | sh_remove_from_list(buddy); |
| 626 | |
| 627 | list--; |
| 628 | |
| 629 | /* Zero the higher addressed block's free list pointers */ |
| 630 | memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST)); |
| 631 | if (ptr > buddy) |
| 632 | ptr = buddy; |
| 633 | |
| 634 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
| 635 | sh_setbit(ptr, list, sh.bittable); |
| 636 | sh_add_to_list(&sh.freelist[list], ptr); |
| 637 | OPENSSL_assert(sh.freelist[list] == ptr); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | static size_t sh_actual_size(char *ptr) |
| 642 | { |
| 643 | int list; |
| 644 | |
| 645 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
| 646 | if (!WITHIN_ARENA(ptr)) |
| 647 | return 0; |
| 648 | list = sh_getlist(ptr); |
| 649 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
| 650 | return sh.arena_size / (ONE << list); |
| 651 | } |
| 652 | #endif /* OPENSSL_SECURE_MEMORY */ |