lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* Machine-dependent ELF dynamic relocation inline functions. Alpha version. |
| 2 | Copyright (C) 1996-2015 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Richard Henderson <rth@tamu.edu>. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library. If not, see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | /* This was written in the absence of an ABI -- don't expect |
| 21 | it to remain unchanged. */ |
| 22 | |
| 23 | #ifndef dl_machine_h |
| 24 | #define dl_machine_h 1 |
| 25 | |
| 26 | #define ELF_MACHINE_NAME "alpha" |
| 27 | |
| 28 | #include <string.h> |
| 29 | |
| 30 | |
| 31 | /* Mask identifying addresses reserved for the user program, |
| 32 | where the dynamic linker should not map anything. */ |
| 33 | #define ELF_MACHINE_USER_ADDRESS_MASK 0x120000000UL |
| 34 | |
| 35 | /* Translate a processor specific dynamic tag to the index in l_info array. */ |
| 36 | #define DT_ALPHA(x) (DT_ALPHA_##x - DT_LOPROC + DT_NUM) |
| 37 | |
| 38 | /* Return nonzero iff ELF header is compatible with the running host. */ |
| 39 | static inline int |
| 40 | elf_machine_matches_host (const Elf64_Ehdr *ehdr) |
| 41 | { |
| 42 | return ehdr->e_machine == EM_ALPHA; |
| 43 | } |
| 44 | |
| 45 | /* Return the link-time address of _DYNAMIC. The multiple-got-capable |
| 46 | linker no longer allocates the first .got entry for this. But not to |
| 47 | worry, no special tricks are needed. */ |
| 48 | static inline Elf64_Addr |
| 49 | elf_machine_dynamic (void) |
| 50 | { |
| 51 | #ifndef NO_AXP_MULTI_GOT_LD |
| 52 | return (Elf64_Addr) &_DYNAMIC; |
| 53 | #else |
| 54 | register Elf64_Addr *gp __asm__ ("$29"); |
| 55 | return gp[-4096]; |
| 56 | #endif |
| 57 | } |
| 58 | |
| 59 | /* Return the run-time load address of the shared object. */ |
| 60 | |
| 61 | static inline Elf64_Addr |
| 62 | elf_machine_load_address (void) |
| 63 | { |
| 64 | /* This relies on the compiler using gp-relative addresses for static symbols. */ |
| 65 | static void *dot = ˙ |
| 66 | return (void *)&dot - dot; |
| 67 | } |
| 68 | |
| 69 | /* Set up the loaded object described by L so its unrelocated PLT |
| 70 | entries will jump to the on-demand fixup code in dl-runtime.c. */ |
| 71 | |
| 72 | static inline int |
| 73 | elf_machine_runtime_setup (struct link_map *map, int lazy, int profile) |
| 74 | { |
| 75 | extern char _dl_runtime_resolve_new[] attribute_hidden; |
| 76 | extern char _dl_runtime_profile_new[] attribute_hidden; |
| 77 | extern char _dl_runtime_resolve_old[] attribute_hidden; |
| 78 | extern char _dl_runtime_profile_old[] attribute_hidden; |
| 79 | |
| 80 | struct pltgot { |
| 81 | char *resolve; |
| 82 | struct link_map *link; |
| 83 | }; |
| 84 | |
| 85 | struct pltgot *pg; |
| 86 | long secureplt; |
| 87 | char *resolve; |
| 88 | |
| 89 | if (map->l_info[DT_JMPREL] == 0 || !lazy) |
| 90 | return lazy; |
| 91 | |
| 92 | /* Check to see if we're using the read-only plt form. */ |
| 93 | secureplt = map->l_info[DT_ALPHA(PLTRO)] != 0; |
| 94 | |
| 95 | /* If the binary uses the read-only secure plt format, PG points to |
| 96 | the .got.plt section, which is the right place for ld.so to place |
| 97 | its hooks. Otherwise, PG is currently pointing at the start of |
| 98 | the plt; the hooks go at offset 16. */ |
| 99 | pg = (struct pltgot *) D_PTR (map, l_info[DT_PLTGOT]); |
| 100 | pg += !secureplt; |
| 101 | |
| 102 | /* This function will be called to perform the relocation. They're |
| 103 | not declared as functions to convince the compiler to use gp |
| 104 | relative relocations for them. */ |
| 105 | if (secureplt) |
| 106 | resolve = _dl_runtime_resolve_new; |
| 107 | else |
| 108 | resolve = _dl_runtime_resolve_old; |
| 109 | |
| 110 | if (__builtin_expect (profile, 0)) |
| 111 | { |
| 112 | if (secureplt) |
| 113 | resolve = _dl_runtime_profile_new; |
| 114 | else |
| 115 | resolve = _dl_runtime_profile_old; |
| 116 | |
| 117 | if (GLRO(dl_profile) && _dl_name_match_p (GLRO(dl_profile), map)) |
| 118 | { |
| 119 | /* This is the object we are looking for. Say that we really |
| 120 | want profiling and the timers are started. */ |
| 121 | GL(dl_profile_map) = map; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | pg->resolve = resolve; |
| 126 | pg->link = map; |
| 127 | |
| 128 | return lazy; |
| 129 | } |
| 130 | |
| 131 | /* Initial entry point code for the dynamic linker. |
| 132 | The C function `_dl_start' is the real entry point; |
| 133 | its return value is the user program's entry point. */ |
| 134 | |
| 135 | #define RTLD_START asm ("\ |
| 136 | .section .text \n\ |
| 137 | .set at \n\ |
| 138 | .globl _start \n\ |
| 139 | .ent _start \n\ |
| 140 | _start: \n\ |
| 141 | .frame $31,0,$31,0 \n\ |
| 142 | br $gp, 0f \n\ |
| 143 | 0: ldgp $gp, 0($gp) \n\ |
| 144 | .prologue 0 \n\ |
| 145 | /* Pass pointer to argument block to _dl_start. */ \n\ |
| 146 | mov $sp, $16 \n\ |
| 147 | bsr $26, _dl_start !samegp \n\ |
| 148 | .end _start \n\ |
| 149 | /* FALLTHRU */ \n\ |
| 150 | .globl _dl_start_user \n\ |
| 151 | .ent _dl_start_user \n\ |
| 152 | _dl_start_user: \n\ |
| 153 | .frame $31,0,$31,0 \n\ |
| 154 | .prologue 0 \n\ |
| 155 | /* Save the user entry point address in s0. */ \n\ |
| 156 | mov $0, $9 \n\ |
| 157 | /* See if we were run as a command with the executable \n\ |
| 158 | file name as an extra leading argument. */ \n\ |
| 159 | ldah $1, _dl_skip_args($gp) !gprelhigh \n\ |
| 160 | ldl $1, _dl_skip_args($1) !gprellow \n\ |
| 161 | bne $1, $fixup_stack \n\ |
| 162 | $fixup_stack_ret: \n\ |
| 163 | /* The special initializer gets called with the stack \n\ |
| 164 | just as the application's entry point will see it; \n\ |
| 165 | it can switch stacks if it moves these contents \n\ |
| 166 | over. */ \n\ |
| 167 | " RTLD_START_SPECIAL_INIT " \n\ |
| 168 | /* Call _dl_init(_dl_loaded, argc, argv, envp) to run \n\ |
| 169 | initializers. */ \n\ |
| 170 | ldah $16, _rtld_local($gp) !gprelhigh \n\ |
| 171 | ldq $16, _rtld_local($16) !gprellow \n\ |
| 172 | ldq $17, 0($sp) \n\ |
| 173 | lda $18, 8($sp) \n\ |
| 174 | s8addq $17, 8, $19 \n\ |
| 175 | addq $19, $18, $19 \n\ |
| 176 | bsr $26, _dl_init !samegp \n\ |
| 177 | /* Pass our finalizer function to the user in $0. */ \n\ |
| 178 | ldah $0, _dl_fini($gp) !gprelhigh \n\ |
| 179 | lda $0, _dl_fini($0) !gprellow \n\ |
| 180 | /* Jump to the user's entry point. */ \n\ |
| 181 | mov $9, $27 \n\ |
| 182 | jmp ($9) \n\ |
| 183 | $fixup_stack: \n\ |
| 184 | /* Adjust the stack pointer to skip _dl_skip_args words.\n\ |
| 185 | This involves copying everything down, since the \n\ |
| 186 | stack pointer must always be 16-byte aligned. */ \n\ |
| 187 | ldah $7, __GI__dl_argv($gp) !gprelhigh \n\ |
| 188 | ldq $2, 0($sp) \n\ |
| 189 | ldq $5, __GI__dl_argv($7) !gprellow \n\ |
| 190 | subq $31, $1, $6 \n\ |
| 191 | subq $2, $1, $2 \n\ |
| 192 | s8addq $6, $5, $5 \n\ |
| 193 | mov $sp, $4 \n\ |
| 194 | s8addq $1, $sp, $3 \n\ |
| 195 | stq $2, 0($sp) \n\ |
| 196 | stq $5, __GI__dl_argv($7) !gprellow \n\ |
| 197 | /* Copy down argv. */ \n\ |
| 198 | 0: ldq $5, 8($3) \n\ |
| 199 | addq $4, 8, $4 \n\ |
| 200 | addq $3, 8, $3 \n\ |
| 201 | stq $5, 0($4) \n\ |
| 202 | bne $5, 0b \n\ |
| 203 | /* Copy down envp. */ \n\ |
| 204 | 1: ldq $5, 8($3) \n\ |
| 205 | addq $4, 8, $4 \n\ |
| 206 | addq $3, 8, $3 \n\ |
| 207 | stq $5, 0($4) \n\ |
| 208 | bne $5, 1b \n\ |
| 209 | /* Copy down auxiliary table. */ \n\ |
| 210 | 2: ldq $5, 8($3) \n\ |
| 211 | ldq $6, 16($3) \n\ |
| 212 | addq $4, 16, $4 \n\ |
| 213 | addq $3, 16, $3 \n\ |
| 214 | stq $5, -8($4) \n\ |
| 215 | stq $6, 0($4) \n\ |
| 216 | bne $5, 2b \n\ |
| 217 | br $fixup_stack_ret \n\ |
| 218 | .end _dl_start_user \n\ |
| 219 | .set noat \n\ |
| 220 | .previous"); |
| 221 | |
| 222 | #ifndef RTLD_START_SPECIAL_INIT |
| 223 | #define RTLD_START_SPECIAL_INIT /* nothing */ |
| 224 | #endif |
| 225 | |
| 226 | /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry |
| 227 | or TLS variables, so undefined references should not be allowed |
| 228 | to define the value. |
| 229 | |
| 230 | ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve |
| 231 | to one of the main executable's symbols, as for a COPY reloc. |
| 232 | This is unused on Alpha. */ |
| 233 | |
| 234 | # define elf_machine_type_class(type) \ |
| 235 | (((type) == R_ALPHA_JMP_SLOT \ |
| 236 | || (type) == R_ALPHA_DTPMOD64 \ |
| 237 | || (type) == R_ALPHA_DTPREL64 \ |
| 238 | || (type) == R_ALPHA_TPREL64) * ELF_RTYPE_CLASS_PLT) |
| 239 | |
| 240 | /* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */ |
| 241 | #define ELF_MACHINE_JMP_SLOT R_ALPHA_JMP_SLOT |
| 242 | |
| 243 | /* The alpha never uses Elf64_Rel relocations. */ |
| 244 | #define ELF_MACHINE_NO_REL 1 |
| 245 | #define ELF_MACHINE_NO_RELA 0 |
| 246 | |
| 247 | /* We define an initialization functions. This is called very early in |
| 248 | * _dl_sysdep_start. */ |
| 249 | #define DL_PLATFORM_INIT dl_platform_init () |
| 250 | |
| 251 | static inline void __attribute__ ((unused)) |
| 252 | dl_platform_init (void) |
| 253 | { |
| 254 | if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0') |
| 255 | /* Avoid an empty string which would disturb us. */ |
| 256 | GLRO(dl_platform) = NULL; |
| 257 | } |
| 258 | |
| 259 | /* Fix up the instructions of a PLT entry to invoke the function |
| 260 | rather than the dynamic linker. */ |
| 261 | static inline Elf64_Addr |
| 262 | elf_machine_fixup_plt (struct link_map *map, lookup_t t, |
| 263 | const Elf64_Rela *reloc, |
| 264 | Elf64_Addr *got_addr, Elf64_Addr value) |
| 265 | { |
| 266 | const Elf64_Rela *rela_plt; |
| 267 | Elf64_Word *plte; |
| 268 | long int edisp; |
| 269 | |
| 270 | /* Store the value we are going to load. */ |
| 271 | *got_addr = value; |
| 272 | |
| 273 | /* If this binary uses the read-only secure plt format, we're done. */ |
| 274 | if (map->l_info[DT_ALPHA(PLTRO)]) |
| 275 | return value; |
| 276 | |
| 277 | /* Otherwise we have to modify the plt entry in place to do the branch. */ |
| 278 | |
| 279 | /* Recover the PLT entry address by calculating reloc's index into the |
| 280 | .rela.plt, and finding that entry in the .plt. */ |
| 281 | rela_plt = (const Elf64_Rela *) D_PTR (map, l_info[DT_JMPREL]); |
| 282 | plte = (Elf64_Word *) (D_PTR (map, l_info[DT_PLTGOT]) + 32); |
| 283 | plte += 3 * (reloc - rela_plt); |
| 284 | |
| 285 | /* Find the displacement from the plt entry to the function. */ |
| 286 | edisp = (long int) (value - (Elf64_Addr)&plte[3]) / 4; |
| 287 | |
| 288 | if (edisp >= -0x100000 && edisp < 0x100000) |
| 289 | { |
| 290 | /* If we are in range, use br to perfect branch prediction and |
| 291 | elide the dependency on the address load. This case happens, |
| 292 | e.g., when a shared library call is resolved to the same library. */ |
| 293 | |
| 294 | int hi, lo; |
| 295 | hi = value - (Elf64_Addr)&plte[0]; |
| 296 | lo = (short int) hi; |
| 297 | hi = (hi - lo) >> 16; |
| 298 | |
| 299 | /* Emit "lda $27,lo($27)" */ |
| 300 | plte[1] = 0x237b0000 | (lo & 0xffff); |
| 301 | |
| 302 | /* Emit "br $31,function" */ |
| 303 | plte[2] = 0xc3e00000 | (edisp & 0x1fffff); |
| 304 | |
| 305 | /* Think about thread-safety -- the previous instructions must be |
| 306 | committed to memory before the first is overwritten. */ |
| 307 | __asm__ __volatile__("wmb" : : : "memory"); |
| 308 | |
| 309 | /* Emit "ldah $27,hi($27)" */ |
| 310 | plte[0] = 0x277b0000 | (hi & 0xffff); |
| 311 | } |
| 312 | else |
| 313 | { |
| 314 | /* Don't bother with the hint since we already know the hint is |
| 315 | wrong. Eliding it prevents the wrong page from getting pulled |
| 316 | into the cache. */ |
| 317 | |
| 318 | int hi, lo; |
| 319 | hi = (Elf64_Addr)got_addr - (Elf64_Addr)&plte[0]; |
| 320 | lo = (short)hi; |
| 321 | hi = (hi - lo) >> 16; |
| 322 | |
| 323 | /* Emit "ldq $27,lo($27)" */ |
| 324 | plte[1] = 0xa77b0000 | (lo & 0xffff); |
| 325 | |
| 326 | /* Emit "jmp $31,($27)" */ |
| 327 | plte[2] = 0x6bfb0000; |
| 328 | |
| 329 | /* Think about thread-safety -- the previous instructions must be |
| 330 | committed to memory before the first is overwritten. */ |
| 331 | __asm__ __volatile__("wmb" : : : "memory"); |
| 332 | |
| 333 | /* Emit "ldah $27,hi($27)" */ |
| 334 | plte[0] = 0x277b0000 | (hi & 0xffff); |
| 335 | } |
| 336 | |
| 337 | /* At this point, if we've been doing runtime resolution, Icache is dirty. |
| 338 | This will be taken care of in _dl_runtime_resolve. If instead we are |
| 339 | doing this as part of non-lazy startup relocation, that bit of code |
| 340 | hasn't made it into Icache yet, so there's nothing to clean up. */ |
| 341 | |
| 342 | return value; |
| 343 | } |
| 344 | |
| 345 | /* Return the final value of a plt relocation. */ |
| 346 | static inline Elf64_Addr |
| 347 | elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc, |
| 348 | Elf64_Addr value) |
| 349 | { |
| 350 | return value + reloc->r_addend; |
| 351 | } |
| 352 | |
| 353 | /* Names of the architecture-specific auditing callback functions. */ |
| 354 | #define ARCH_LA_PLTENTER alpha_gnu_pltenter |
| 355 | #define ARCH_LA_PLTEXIT alpha_gnu_pltexit |
| 356 | |
| 357 | #endif /* !dl_machine_h */ |
| 358 | |
| 359 | #ifdef RESOLVE_MAP |
| 360 | |
| 361 | /* Perform the relocation specified by RELOC and SYM (which is fully resolved). |
| 362 | MAP is the object containing the reloc. */ |
| 363 | auto inline void |
| 364 | __attribute__ ((always_inline)) |
| 365 | elf_machine_rela (struct link_map *map, |
| 366 | const Elf64_Rela *reloc, |
| 367 | const Elf64_Sym *sym, |
| 368 | const struct r_found_version *version, |
| 369 | void *const reloc_addr_arg, |
| 370 | int skip_ifunc) |
| 371 | { |
| 372 | Elf64_Addr *const reloc_addr = reloc_addr_arg; |
| 373 | unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info); |
| 374 | |
| 375 | #if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED |
| 376 | /* This is defined in rtld.c, but nowhere in the static libc.a; make the |
| 377 | reference weak so static programs can still link. This declaration |
| 378 | cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP) |
| 379 | because rtld.c contains the common defn for _dl_rtld_map, which is |
| 380 | incompatible with a weak decl in the same file. */ |
| 381 | weak_extern (_dl_rtld_map); |
| 382 | #endif |
| 383 | |
| 384 | /* We cannot use a switch here because we cannot locate the switch |
| 385 | jump table until we've self-relocated. */ |
| 386 | |
| 387 | #if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC |
| 388 | if (__builtin_expect (r_type == R_ALPHA_RELATIVE, 0)) |
| 389 | { |
| 390 | # if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC |
| 391 | /* Already done in dynamic linker. */ |
| 392 | if (map != &GL(dl_rtld_map)) |
| 393 | # endif |
| 394 | { |
| 395 | /* XXX Make some timings. Maybe it's preferable to test for |
| 396 | unaligned access and only do it the complex way if necessary. */ |
| 397 | Elf64_Addr reloc_addr_val; |
| 398 | |
| 399 | /* Load value without causing unaligned trap. */ |
| 400 | memcpy (&reloc_addr_val, reloc_addr_arg, 8); |
| 401 | reloc_addr_val += map->l_addr; |
| 402 | |
| 403 | /* Store value without causing unaligned trap. */ |
| 404 | memcpy (reloc_addr_arg, &reloc_addr_val, 8); |
| 405 | } |
| 406 | } |
| 407 | else |
| 408 | #endif |
| 409 | if (__builtin_expect (r_type == R_ALPHA_NONE, 0)) |
| 410 | return; |
| 411 | else |
| 412 | { |
| 413 | struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type); |
| 414 | Elf64_Addr sym_value; |
| 415 | Elf64_Addr sym_raw_value; |
| 416 | |
| 417 | sym_raw_value = sym_value = reloc->r_addend; |
| 418 | if (sym_map) |
| 419 | { |
| 420 | sym_raw_value += sym->st_value; |
| 421 | sym_value = sym_raw_value + sym_map->l_addr; |
| 422 | } |
| 423 | |
| 424 | if (r_type == R_ALPHA_GLOB_DAT) |
| 425 | *reloc_addr = sym_value; |
| 426 | #ifdef RESOLVE_CONFLICT_FIND_MAP |
| 427 | /* In .gnu.conflict section, R_ALPHA_JMP_SLOT relocations have |
| 428 | R_ALPHA_JMP_SLOT in lower 8 bits and the remaining 24 bits |
| 429 | are .rela.plt index. */ |
| 430 | else if ((r_type & 0xff) == R_ALPHA_JMP_SLOT) |
| 431 | { |
| 432 | /* elf_machine_fixup_plt needs the map reloc_addr points into, |
| 433 | while in _dl_resolve_conflicts map is _dl_loaded. */ |
| 434 | RESOLVE_CONFLICT_FIND_MAP (map, reloc_addr); |
| 435 | reloc = ((const Elf64_Rela *) D_PTR (map, l_info[DT_JMPREL])) |
| 436 | + (r_type >> 8); |
| 437 | elf_machine_fixup_plt (map, 0, reloc, reloc_addr, sym_value); |
| 438 | } |
| 439 | #else |
| 440 | else if (r_type == R_ALPHA_JMP_SLOT) |
| 441 | elf_machine_fixup_plt (map, 0, reloc, reloc_addr, sym_value); |
| 442 | #endif |
| 443 | #ifndef RTLD_BOOTSTRAP |
| 444 | else if (r_type == R_ALPHA_REFQUAD) |
| 445 | { |
| 446 | /* Store value without causing unaligned trap. */ |
| 447 | memcpy (reloc_addr_arg, &sym_value, 8); |
| 448 | } |
| 449 | #endif |
| 450 | else if (r_type == R_ALPHA_DTPMOD64) |
| 451 | { |
| 452 | # ifdef RTLD_BOOTSTRAP |
| 453 | /* During startup the dynamic linker is always index 1. */ |
| 454 | *reloc_addr = 1; |
| 455 | # else |
| 456 | /* Get the information from the link map returned by the |
| 457 | resolv function. */ |
| 458 | if (sym_map != NULL) |
| 459 | *reloc_addr = sym_map->l_tls_modid; |
| 460 | # endif |
| 461 | } |
| 462 | else if (r_type == R_ALPHA_DTPREL64) |
| 463 | { |
| 464 | # ifndef RTLD_BOOTSTRAP |
| 465 | /* During relocation all TLS symbols are defined and used. |
| 466 | Therefore the offset is already correct. */ |
| 467 | *reloc_addr = sym_raw_value; |
| 468 | # endif |
| 469 | } |
| 470 | else if (r_type == R_ALPHA_TPREL64) |
| 471 | { |
| 472 | # ifdef RTLD_BOOTSTRAP |
| 473 | *reloc_addr = sym_raw_value + map->l_tls_offset; |
| 474 | # else |
| 475 | if (sym_map) |
| 476 | { |
| 477 | CHECK_STATIC_TLS (map, sym_map); |
| 478 | *reloc_addr = sym_raw_value + sym_map->l_tls_offset; |
| 479 | } |
| 480 | # endif |
| 481 | } |
| 482 | else |
| 483 | _dl_reloc_bad_type (map, r_type, 0); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /* Let do-rel.h know that on Alpha if l_addr is 0, all RELATIVE relocs |
| 488 | can be skipped. */ |
| 489 | #define ELF_MACHINE_REL_RELATIVE 1 |
| 490 | |
| 491 | auto inline void |
| 492 | __attribute__ ((always_inline)) |
| 493 | elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc, |
| 494 | void *const reloc_addr_arg) |
| 495 | { |
| 496 | /* XXX Make some timings. Maybe it's preferable to test for |
| 497 | unaligned access and only do it the complex way if necessary. */ |
| 498 | Elf64_Addr reloc_addr_val; |
| 499 | |
| 500 | /* Load value without causing unaligned trap. */ |
| 501 | memcpy (&reloc_addr_val, reloc_addr_arg, 8); |
| 502 | reloc_addr_val += l_addr; |
| 503 | |
| 504 | /* Store value without causing unaligned trap. */ |
| 505 | memcpy (reloc_addr_arg, &reloc_addr_val, 8); |
| 506 | } |
| 507 | |
| 508 | auto inline void |
| 509 | __attribute__ ((always_inline)) |
| 510 | elf_machine_lazy_rel (struct link_map *map, |
| 511 | Elf64_Addr l_addr, const Elf64_Rela *reloc, |
| 512 | int skip_ifunc) |
| 513 | { |
| 514 | Elf64_Addr * const reloc_addr = (void *)(l_addr + reloc->r_offset); |
| 515 | unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info); |
| 516 | |
| 517 | if (r_type == R_ALPHA_JMP_SLOT) |
| 518 | { |
| 519 | /* Perform a RELATIVE reloc on the .got entry that transfers |
| 520 | to the .plt. */ |
| 521 | *reloc_addr += l_addr; |
| 522 | } |
| 523 | else if (r_type == R_ALPHA_NONE) |
| 524 | return; |
| 525 | else |
| 526 | _dl_reloc_bad_type (map, r_type, 1); |
| 527 | } |
| 528 | |
| 529 | #endif /* RESOLVE_MAP */ |