lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #undef SECONDS |
| 12 | #define SECONDS 3 |
| 13 | #define RSA_SECONDS 10 |
| 14 | #define DSA_SECONDS 10 |
| 15 | #define ECDSA_SECONDS 10 |
| 16 | #define ECDH_SECONDS 10 |
| 17 | #define EdDSA_SECONDS 10 |
| 18 | |
| 19 | #include <stdio.h> |
| 20 | #include <stdlib.h> |
| 21 | #include <string.h> |
| 22 | #include <math.h> |
| 23 | #include "apps.h" |
| 24 | #include "progs.h" |
| 25 | #include <openssl/crypto.h> |
| 26 | #include <openssl/rand.h> |
| 27 | #include <openssl/err.h> |
| 28 | #include <openssl/evp.h> |
| 29 | #include <openssl/objects.h> |
| 30 | #include <openssl/async.h> |
| 31 | #if !defined(OPENSSL_SYS_MSDOS) |
| 32 | # include OPENSSL_UNISTD |
| 33 | #endif |
| 34 | |
| 35 | #if defined(_WIN32) |
| 36 | # include <windows.h> |
| 37 | #endif |
| 38 | |
| 39 | #include <openssl/bn.h> |
| 40 | #ifndef OPENSSL_NO_DES |
| 41 | # include <openssl/des.h> |
| 42 | #endif |
| 43 | #include <openssl/aes.h> |
| 44 | #ifndef OPENSSL_NO_CAMELLIA |
| 45 | # include <openssl/camellia.h> |
| 46 | #endif |
| 47 | #ifndef OPENSSL_NO_MD2 |
| 48 | # include <openssl/md2.h> |
| 49 | #endif |
| 50 | #ifndef OPENSSL_NO_MDC2 |
| 51 | # include <openssl/mdc2.h> |
| 52 | #endif |
| 53 | #ifndef OPENSSL_NO_MD4 |
| 54 | # include <openssl/md4.h> |
| 55 | #endif |
| 56 | #ifndef OPENSSL_NO_MD5 |
| 57 | # include <openssl/md5.h> |
| 58 | #endif |
| 59 | #include <openssl/hmac.h> |
| 60 | #include <openssl/sha.h> |
| 61 | #ifndef OPENSSL_NO_RMD160 |
| 62 | # include <openssl/ripemd.h> |
| 63 | #endif |
| 64 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 65 | # include <openssl/whrlpool.h> |
| 66 | #endif |
| 67 | #ifndef OPENSSL_NO_RC4 |
| 68 | # include <openssl/rc4.h> |
| 69 | #endif |
| 70 | #ifndef OPENSSL_NO_RC5 |
| 71 | # include <openssl/rc5.h> |
| 72 | #endif |
| 73 | #ifndef OPENSSL_NO_RC2 |
| 74 | # include <openssl/rc2.h> |
| 75 | #endif |
| 76 | #ifndef OPENSSL_NO_IDEA |
| 77 | # include <openssl/idea.h> |
| 78 | #endif |
| 79 | #ifndef OPENSSL_NO_SEED |
| 80 | # include <openssl/seed.h> |
| 81 | #endif |
| 82 | #ifndef OPENSSL_NO_BF |
| 83 | # include <openssl/blowfish.h> |
| 84 | #endif |
| 85 | #ifndef OPENSSL_NO_CAST |
| 86 | # include <openssl/cast.h> |
| 87 | #endif |
| 88 | #ifndef OPENSSL_NO_RSA |
| 89 | # include <openssl/rsa.h> |
| 90 | # include "./testrsa.h" |
| 91 | #endif |
| 92 | #include <openssl/x509.h> |
| 93 | #ifndef OPENSSL_NO_DSA |
| 94 | # include <openssl/dsa.h> |
| 95 | # include "./testdsa.h" |
| 96 | #endif |
| 97 | #ifndef OPENSSL_NO_EC |
| 98 | # include <openssl/ec.h> |
| 99 | #endif |
| 100 | #include <openssl/modes.h> |
| 101 | |
| 102 | #ifndef HAVE_FORK |
| 103 | # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) |
| 104 | # define HAVE_FORK 0 |
| 105 | # else |
| 106 | # define HAVE_FORK 1 |
| 107 | # endif |
| 108 | #endif |
| 109 | |
| 110 | #if HAVE_FORK |
| 111 | # undef NO_FORK |
| 112 | #else |
| 113 | # define NO_FORK |
| 114 | #endif |
| 115 | |
| 116 | #define MAX_MISALIGNMENT 63 |
| 117 | #define MAX_ECDH_SIZE 256 |
| 118 | #define MISALIGN 64 |
| 119 | |
| 120 | typedef struct openssl_speed_sec_st { |
| 121 | int sym; |
| 122 | int rsa; |
| 123 | int dsa; |
| 124 | int ecdsa; |
| 125 | int ecdh; |
| 126 | int eddsa; |
| 127 | } openssl_speed_sec_t; |
| 128 | |
| 129 | static volatile int run = 0; |
| 130 | |
| 131 | static int mr = 0; |
| 132 | static int usertime = 1; |
| 133 | |
| 134 | #ifndef OPENSSL_NO_MD2 |
| 135 | static int EVP_Digest_MD2_loop(void *args); |
| 136 | #endif |
| 137 | |
| 138 | #ifndef OPENSSL_NO_MDC2 |
| 139 | static int EVP_Digest_MDC2_loop(void *args); |
| 140 | #endif |
| 141 | #ifndef OPENSSL_NO_MD4 |
| 142 | static int EVP_Digest_MD4_loop(void *args); |
| 143 | #endif |
| 144 | #ifndef OPENSSL_NO_MD5 |
| 145 | static int MD5_loop(void *args); |
| 146 | static int HMAC_loop(void *args); |
| 147 | #endif |
| 148 | static int SHA1_loop(void *args); |
| 149 | static int SHA256_loop(void *args); |
| 150 | static int SHA512_loop(void *args); |
| 151 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 152 | static int WHIRLPOOL_loop(void *args); |
| 153 | #endif |
| 154 | #ifndef OPENSSL_NO_RMD160 |
| 155 | static int EVP_Digest_RMD160_loop(void *args); |
| 156 | #endif |
| 157 | #ifndef OPENSSL_NO_RC4 |
| 158 | static int RC4_loop(void *args); |
| 159 | #endif |
| 160 | #ifndef OPENSSL_NO_DES |
| 161 | static int DES_ncbc_encrypt_loop(void *args); |
| 162 | static int DES_ede3_cbc_encrypt_loop(void *args); |
| 163 | #endif |
| 164 | static int AES_cbc_128_encrypt_loop(void *args); |
| 165 | static int AES_cbc_192_encrypt_loop(void *args); |
| 166 | static int AES_ige_128_encrypt_loop(void *args); |
| 167 | static int AES_cbc_256_encrypt_loop(void *args); |
| 168 | static int AES_ige_192_encrypt_loop(void *args); |
| 169 | static int AES_ige_256_encrypt_loop(void *args); |
| 170 | static int CRYPTO_gcm128_aad_loop(void *args); |
| 171 | static int RAND_bytes_loop(void *args); |
| 172 | static int EVP_Update_loop(void *args); |
| 173 | static int EVP_Update_loop_ccm(void *args); |
| 174 | static int EVP_Update_loop_aead(void *args); |
| 175 | static int EVP_Digest_loop(void *args); |
| 176 | #ifndef OPENSSL_NO_RSA |
| 177 | static int RSA_sign_loop(void *args); |
| 178 | static int RSA_verify_loop(void *args); |
| 179 | #endif |
| 180 | #ifndef OPENSSL_NO_DSA |
| 181 | static int DSA_sign_loop(void *args); |
| 182 | static int DSA_verify_loop(void *args); |
| 183 | #endif |
| 184 | #ifndef OPENSSL_NO_EC |
| 185 | static int ECDSA_sign_loop(void *args); |
| 186 | static int ECDSA_verify_loop(void *args); |
| 187 | static int EdDSA_sign_loop(void *args); |
| 188 | static int EdDSA_verify_loop(void *args); |
| 189 | #endif |
| 190 | |
| 191 | static double Time_F(int s); |
| 192 | static void print_message(const char *s, long num, int length, int tm); |
| 193 | static void pkey_print_message(const char *str, const char *str2, |
| 194 | long num, unsigned int bits, int sec); |
| 195 | static void print_result(int alg, int run_no, int count, double time_used); |
| 196 | #ifndef NO_FORK |
| 197 | static int do_multi(int multi, int size_num); |
| 198 | #endif |
| 199 | |
| 200 | static const int lengths_list[] = { |
| 201 | 16, 64, 256, 1024, 8 * 1024, 16 * 1024 |
| 202 | }; |
| 203 | static const int *lengths = lengths_list; |
| 204 | |
| 205 | static const int aead_lengths_list[] = { |
| 206 | 2, 31, 136, 1024, 8 * 1024, 16 * 1024 |
| 207 | }; |
| 208 | |
| 209 | #define START 0 |
| 210 | #define STOP 1 |
| 211 | |
| 212 | #ifdef SIGALRM |
| 213 | |
| 214 | static void alarmed(int sig) |
| 215 | { |
| 216 | signal(SIGALRM, alarmed); |
| 217 | run = 0; |
| 218 | } |
| 219 | |
| 220 | static double Time_F(int s) |
| 221 | { |
| 222 | double ret = app_tminterval(s, usertime); |
| 223 | if (s == STOP) |
| 224 | alarm(0); |
| 225 | return ret; |
| 226 | } |
| 227 | |
| 228 | #elif defined(_WIN32) |
| 229 | |
| 230 | # define SIGALRM -1 |
| 231 | |
| 232 | static unsigned int lapse; |
| 233 | static volatile unsigned int schlock; |
| 234 | static void alarm_win32(unsigned int secs) |
| 235 | { |
| 236 | lapse = secs * 1000; |
| 237 | } |
| 238 | |
| 239 | # define alarm alarm_win32 |
| 240 | |
| 241 | static DWORD WINAPI sleepy(VOID * arg) |
| 242 | { |
| 243 | schlock = 1; |
| 244 | Sleep(lapse); |
| 245 | run = 0; |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | static double Time_F(int s) |
| 250 | { |
| 251 | double ret; |
| 252 | static HANDLE thr; |
| 253 | |
| 254 | if (s == START) { |
| 255 | schlock = 0; |
| 256 | thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); |
| 257 | if (thr == NULL) { |
| 258 | DWORD err = GetLastError(); |
| 259 | BIO_printf(bio_err, "unable to CreateThread (%lu)", err); |
| 260 | ExitProcess(err); |
| 261 | } |
| 262 | while (!schlock) |
| 263 | Sleep(0); /* scheduler spinlock */ |
| 264 | ret = app_tminterval(s, usertime); |
| 265 | } else { |
| 266 | ret = app_tminterval(s, usertime); |
| 267 | if (run) |
| 268 | TerminateThread(thr, 0); |
| 269 | CloseHandle(thr); |
| 270 | } |
| 271 | |
| 272 | return ret; |
| 273 | } |
| 274 | #else |
| 275 | static double Time_F(int s) |
| 276 | { |
| 277 | return app_tminterval(s, usertime); |
| 278 | } |
| 279 | #endif |
| 280 | |
| 281 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, |
| 282 | const openssl_speed_sec_t *seconds); |
| 283 | |
| 284 | #define found(value, pairs, result)\ |
| 285 | opt_found(value, result, pairs, OSSL_NELEM(pairs)) |
| 286 | static int opt_found(const char *name, unsigned int *result, |
| 287 | const OPT_PAIR pairs[], unsigned int nbelem) |
| 288 | { |
| 289 | unsigned int idx; |
| 290 | |
| 291 | for (idx = 0; idx < nbelem; ++idx, pairs++) |
| 292 | if (strcmp(name, pairs->name) == 0) { |
| 293 | *result = pairs->retval; |
| 294 | return 1; |
| 295 | } |
| 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | typedef enum OPTION_choice { |
| 300 | OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, |
| 301 | OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, |
| 302 | OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, |
| 303 | OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD |
| 304 | } OPTION_CHOICE; |
| 305 | |
| 306 | const OPTIONS speed_options[] = { |
| 307 | {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, |
| 308 | {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, |
| 309 | {"help", OPT_HELP, '-', "Display this summary"}, |
| 310 | {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, |
| 311 | {"decrypt", OPT_DECRYPT, '-', |
| 312 | "Time decryption instead of encryption (only EVP)"}, |
| 313 | {"aead", OPT_AEAD, '-', |
| 314 | "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, |
| 315 | {"mb", OPT_MB, '-', |
| 316 | "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, |
| 317 | {"mr", OPT_MR, '-', "Produce machine readable output"}, |
| 318 | #ifndef NO_FORK |
| 319 | {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, |
| 320 | #endif |
| 321 | #ifndef OPENSSL_NO_ASYNC |
| 322 | {"async_jobs", OPT_ASYNCJOBS, 'p', |
| 323 | "Enable async mode and start specified number of jobs"}, |
| 324 | #endif |
| 325 | OPT_R_OPTIONS, |
| 326 | #ifndef OPENSSL_NO_ENGINE |
| 327 | {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, |
| 328 | #endif |
| 329 | {"elapsed", OPT_ELAPSED, '-', |
| 330 | "Use wall-clock time instead of CPU user time as divisor"}, |
| 331 | {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, |
| 332 | {"seconds", OPT_SECONDS, 'p', |
| 333 | "Run benchmarks for specified amount of seconds"}, |
| 334 | {"bytes", OPT_BYTES, 'p', |
| 335 | "Run [non-PKI] benchmarks on custom-sized buffer"}, |
| 336 | {"misalign", OPT_MISALIGN, 'p', |
| 337 | "Use specified offset to mis-align buffers"}, |
| 338 | {NULL} |
| 339 | }; |
| 340 | |
| 341 | #define D_MD2 0 |
| 342 | #define D_MDC2 1 |
| 343 | #define D_MD4 2 |
| 344 | #define D_MD5 3 |
| 345 | #define D_HMAC 4 |
| 346 | #define D_SHA1 5 |
| 347 | #define D_RMD160 6 |
| 348 | #define D_RC4 7 |
| 349 | #define D_CBC_DES 8 |
| 350 | #define D_EDE3_DES 9 |
| 351 | #define D_CBC_IDEA 10 |
| 352 | #define D_CBC_SEED 11 |
| 353 | #define D_CBC_RC2 12 |
| 354 | #define D_CBC_RC5 13 |
| 355 | #define D_CBC_BF 14 |
| 356 | #define D_CBC_CAST 15 |
| 357 | #define D_CBC_128_AES 16 |
| 358 | #define D_CBC_192_AES 17 |
| 359 | #define D_CBC_256_AES 18 |
| 360 | #define D_CBC_128_CML 19 |
| 361 | #define D_CBC_192_CML 20 |
| 362 | #define D_CBC_256_CML 21 |
| 363 | #define D_EVP 22 |
| 364 | #define D_SHA256 23 |
| 365 | #define D_SHA512 24 |
| 366 | #define D_WHIRLPOOL 25 |
| 367 | #define D_IGE_128_AES 26 |
| 368 | #define D_IGE_192_AES 27 |
| 369 | #define D_IGE_256_AES 28 |
| 370 | #define D_GHASH 29 |
| 371 | #define D_RAND 30 |
| 372 | /* name of algorithms to test */ |
| 373 | static const char *names[] = { |
| 374 | "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", |
| 375 | "des cbc", "des ede3", "idea cbc", "seed cbc", |
| 376 | "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
| 377 | "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
| 378 | "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
| 379 | "evp", "sha256", "sha512", "whirlpool", |
| 380 | "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", |
| 381 | "rand" |
| 382 | }; |
| 383 | #define ALGOR_NUM OSSL_NELEM(names) |
| 384 | |
| 385 | /* list of configured algorithm (remaining) */ |
| 386 | static const OPT_PAIR doit_choices[] = { |
| 387 | #ifndef OPENSSL_NO_MD2 |
| 388 | {"md2", D_MD2}, |
| 389 | #endif |
| 390 | #ifndef OPENSSL_NO_MDC2 |
| 391 | {"mdc2", D_MDC2}, |
| 392 | #endif |
| 393 | #ifndef OPENSSL_NO_MD4 |
| 394 | {"md4", D_MD4}, |
| 395 | #endif |
| 396 | #ifndef OPENSSL_NO_MD5 |
| 397 | {"md5", D_MD5}, |
| 398 | {"hmac", D_HMAC}, |
| 399 | #endif |
| 400 | {"sha1", D_SHA1}, |
| 401 | {"sha256", D_SHA256}, |
| 402 | {"sha512", D_SHA512}, |
| 403 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 404 | {"whirlpool", D_WHIRLPOOL}, |
| 405 | #endif |
| 406 | #ifndef OPENSSL_NO_RMD160 |
| 407 | {"ripemd", D_RMD160}, |
| 408 | {"rmd160", D_RMD160}, |
| 409 | {"ripemd160", D_RMD160}, |
| 410 | #endif |
| 411 | #ifndef OPENSSL_NO_RC4 |
| 412 | {"rc4", D_RC4}, |
| 413 | #endif |
| 414 | #ifndef OPENSSL_NO_DES |
| 415 | {"des-cbc", D_CBC_DES}, |
| 416 | {"des-ede3", D_EDE3_DES}, |
| 417 | #endif |
| 418 | {"aes-128-cbc", D_CBC_128_AES}, |
| 419 | {"aes-192-cbc", D_CBC_192_AES}, |
| 420 | {"aes-256-cbc", D_CBC_256_AES}, |
| 421 | {"aes-128-ige", D_IGE_128_AES}, |
| 422 | {"aes-192-ige", D_IGE_192_AES}, |
| 423 | {"aes-256-ige", D_IGE_256_AES}, |
| 424 | #ifndef OPENSSL_NO_RC2 |
| 425 | {"rc2-cbc", D_CBC_RC2}, |
| 426 | {"rc2", D_CBC_RC2}, |
| 427 | #endif |
| 428 | #ifndef OPENSSL_NO_RC5 |
| 429 | {"rc5-cbc", D_CBC_RC5}, |
| 430 | {"rc5", D_CBC_RC5}, |
| 431 | #endif |
| 432 | #ifndef OPENSSL_NO_IDEA |
| 433 | {"idea-cbc", D_CBC_IDEA}, |
| 434 | {"idea", D_CBC_IDEA}, |
| 435 | #endif |
| 436 | #ifndef OPENSSL_NO_SEED |
| 437 | {"seed-cbc", D_CBC_SEED}, |
| 438 | {"seed", D_CBC_SEED}, |
| 439 | #endif |
| 440 | #ifndef OPENSSL_NO_BF |
| 441 | {"bf-cbc", D_CBC_BF}, |
| 442 | {"blowfish", D_CBC_BF}, |
| 443 | {"bf", D_CBC_BF}, |
| 444 | #endif |
| 445 | #ifndef OPENSSL_NO_CAST |
| 446 | {"cast-cbc", D_CBC_CAST}, |
| 447 | {"cast", D_CBC_CAST}, |
| 448 | {"cast5", D_CBC_CAST}, |
| 449 | #endif |
| 450 | {"ghash", D_GHASH}, |
| 451 | {"rand", D_RAND} |
| 452 | }; |
| 453 | |
| 454 | static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)]; |
| 455 | |
| 456 | #ifndef OPENSSL_NO_DSA |
| 457 | # define R_DSA_512 0 |
| 458 | # define R_DSA_1024 1 |
| 459 | # define R_DSA_2048 2 |
| 460 | static const OPT_PAIR dsa_choices[] = { |
| 461 | {"dsa512", R_DSA_512}, |
| 462 | {"dsa1024", R_DSA_1024}, |
| 463 | {"dsa2048", R_DSA_2048} |
| 464 | }; |
| 465 | # define DSA_NUM OSSL_NELEM(dsa_choices) |
| 466 | |
| 467 | static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */ |
| 468 | #endif /* OPENSSL_NO_DSA */ |
| 469 | |
| 470 | #define R_RSA_512 0 |
| 471 | #define R_RSA_1024 1 |
| 472 | #define R_RSA_2048 2 |
| 473 | #define R_RSA_3072 3 |
| 474 | #define R_RSA_4096 4 |
| 475 | #define R_RSA_7680 5 |
| 476 | #define R_RSA_15360 6 |
| 477 | #ifndef OPENSSL_NO_RSA |
| 478 | static const OPT_PAIR rsa_choices[] = { |
| 479 | {"rsa512", R_RSA_512}, |
| 480 | {"rsa1024", R_RSA_1024}, |
| 481 | {"rsa2048", R_RSA_2048}, |
| 482 | {"rsa3072", R_RSA_3072}, |
| 483 | {"rsa4096", R_RSA_4096}, |
| 484 | {"rsa7680", R_RSA_7680}, |
| 485 | {"rsa15360", R_RSA_15360} |
| 486 | }; |
| 487 | # define RSA_NUM OSSL_NELEM(rsa_choices) |
| 488 | |
| 489 | static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */ |
| 490 | #endif /* OPENSSL_NO_RSA */ |
| 491 | |
| 492 | enum { |
| 493 | R_EC_P160, |
| 494 | R_EC_P192, |
| 495 | R_EC_P224, |
| 496 | R_EC_P256, |
| 497 | R_EC_P384, |
| 498 | R_EC_P521, |
| 499 | #ifndef OPENSSL_NO_EC2M |
| 500 | R_EC_K163, |
| 501 | R_EC_K233, |
| 502 | R_EC_K283, |
| 503 | R_EC_K409, |
| 504 | R_EC_K571, |
| 505 | R_EC_B163, |
| 506 | R_EC_B233, |
| 507 | R_EC_B283, |
| 508 | R_EC_B409, |
| 509 | R_EC_B571, |
| 510 | #endif |
| 511 | R_EC_BRP256R1, |
| 512 | R_EC_BRP256T1, |
| 513 | R_EC_BRP384R1, |
| 514 | R_EC_BRP384T1, |
| 515 | R_EC_BRP512R1, |
| 516 | R_EC_BRP512T1, |
| 517 | R_EC_X25519, |
| 518 | R_EC_X448 |
| 519 | }; |
| 520 | |
| 521 | #ifndef OPENSSL_NO_EC |
| 522 | static OPT_PAIR ecdsa_choices[] = { |
| 523 | {"ecdsap160", R_EC_P160}, |
| 524 | {"ecdsap192", R_EC_P192}, |
| 525 | {"ecdsap224", R_EC_P224}, |
| 526 | {"ecdsap256", R_EC_P256}, |
| 527 | {"ecdsap384", R_EC_P384}, |
| 528 | {"ecdsap521", R_EC_P521}, |
| 529 | # ifndef OPENSSL_NO_EC2M |
| 530 | {"ecdsak163", R_EC_K163}, |
| 531 | {"ecdsak233", R_EC_K233}, |
| 532 | {"ecdsak283", R_EC_K283}, |
| 533 | {"ecdsak409", R_EC_K409}, |
| 534 | {"ecdsak571", R_EC_K571}, |
| 535 | {"ecdsab163", R_EC_B163}, |
| 536 | {"ecdsab233", R_EC_B233}, |
| 537 | {"ecdsab283", R_EC_B283}, |
| 538 | {"ecdsab409", R_EC_B409}, |
| 539 | {"ecdsab571", R_EC_B571}, |
| 540 | # endif |
| 541 | {"ecdsabrp256r1", R_EC_BRP256R1}, |
| 542 | {"ecdsabrp256t1", R_EC_BRP256T1}, |
| 543 | {"ecdsabrp384r1", R_EC_BRP384R1}, |
| 544 | {"ecdsabrp384t1", R_EC_BRP384T1}, |
| 545 | {"ecdsabrp512r1", R_EC_BRP512R1}, |
| 546 | {"ecdsabrp512t1", R_EC_BRP512T1} |
| 547 | }; |
| 548 | # define ECDSA_NUM OSSL_NELEM(ecdsa_choices) |
| 549 | |
| 550 | static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */ |
| 551 | |
| 552 | static const OPT_PAIR ecdh_choices[] = { |
| 553 | {"ecdhp160", R_EC_P160}, |
| 554 | {"ecdhp192", R_EC_P192}, |
| 555 | {"ecdhp224", R_EC_P224}, |
| 556 | {"ecdhp256", R_EC_P256}, |
| 557 | {"ecdhp384", R_EC_P384}, |
| 558 | {"ecdhp521", R_EC_P521}, |
| 559 | # ifndef OPENSSL_NO_EC2M |
| 560 | {"ecdhk163", R_EC_K163}, |
| 561 | {"ecdhk233", R_EC_K233}, |
| 562 | {"ecdhk283", R_EC_K283}, |
| 563 | {"ecdhk409", R_EC_K409}, |
| 564 | {"ecdhk571", R_EC_K571}, |
| 565 | {"ecdhb163", R_EC_B163}, |
| 566 | {"ecdhb233", R_EC_B233}, |
| 567 | {"ecdhb283", R_EC_B283}, |
| 568 | {"ecdhb409", R_EC_B409}, |
| 569 | {"ecdhb571", R_EC_B571}, |
| 570 | # endif |
| 571 | {"ecdhbrp256r1", R_EC_BRP256R1}, |
| 572 | {"ecdhbrp256t1", R_EC_BRP256T1}, |
| 573 | {"ecdhbrp384r1", R_EC_BRP384R1}, |
| 574 | {"ecdhbrp384t1", R_EC_BRP384T1}, |
| 575 | {"ecdhbrp512r1", R_EC_BRP512R1}, |
| 576 | {"ecdhbrp512t1", R_EC_BRP512T1}, |
| 577 | {"ecdhx25519", R_EC_X25519}, |
| 578 | {"ecdhx448", R_EC_X448} |
| 579 | }; |
| 580 | # define EC_NUM OSSL_NELEM(ecdh_choices) |
| 581 | |
| 582 | static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */ |
| 583 | |
| 584 | #define R_EC_Ed25519 0 |
| 585 | #define R_EC_Ed448 1 |
| 586 | static OPT_PAIR eddsa_choices[] = { |
| 587 | {"ed25519", R_EC_Ed25519}, |
| 588 | {"ed448", R_EC_Ed448} |
| 589 | }; |
| 590 | # define EdDSA_NUM OSSL_NELEM(eddsa_choices) |
| 591 | |
| 592 | static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */ |
| 593 | #endif /* OPENSSL_NO_EC */ |
| 594 | |
| 595 | #ifndef SIGALRM |
| 596 | # define COND(d) (count < (d)) |
| 597 | # define COUNT(d) (d) |
| 598 | #else |
| 599 | # define COND(unused_cond) (run && count<0x7fffffff) |
| 600 | # define COUNT(d) (count) |
| 601 | #endif /* SIGALRM */ |
| 602 | |
| 603 | typedef struct loopargs_st { |
| 604 | ASYNC_JOB *inprogress_job; |
| 605 | ASYNC_WAIT_CTX *wait_ctx; |
| 606 | unsigned char *buf; |
| 607 | unsigned char *buf2; |
| 608 | unsigned char *buf_malloc; |
| 609 | unsigned char *buf2_malloc; |
| 610 | unsigned char *key; |
| 611 | unsigned int siglen; |
| 612 | size_t sigsize; |
| 613 | #ifndef OPENSSL_NO_RSA |
| 614 | RSA *rsa_key[RSA_NUM]; |
| 615 | #endif |
| 616 | #ifndef OPENSSL_NO_DSA |
| 617 | DSA *dsa_key[DSA_NUM]; |
| 618 | #endif |
| 619 | #ifndef OPENSSL_NO_EC |
| 620 | EC_KEY *ecdsa[ECDSA_NUM]; |
| 621 | EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; |
| 622 | EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; |
| 623 | unsigned char *secret_a; |
| 624 | unsigned char *secret_b; |
| 625 | size_t outlen[EC_NUM]; |
| 626 | #endif |
| 627 | EVP_CIPHER_CTX *ctx; |
| 628 | HMAC_CTX *hctx; |
| 629 | GCM128_CONTEXT *gcm_ctx; |
| 630 | } loopargs_t; |
| 631 | static int run_benchmark(int async_jobs, int (*loop_function) (void *), |
| 632 | loopargs_t * loopargs); |
| 633 | |
| 634 | static unsigned int testnum; |
| 635 | |
| 636 | /* Nb of iterations to do per algorithm and key-size */ |
| 637 | static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)]; |
| 638 | |
| 639 | #ifndef OPENSSL_NO_MD2 |
| 640 | static int EVP_Digest_MD2_loop(void *args) |
| 641 | { |
| 642 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 643 | unsigned char *buf = tempargs->buf; |
| 644 | unsigned char md2[MD2_DIGEST_LENGTH]; |
| 645 | int count; |
| 646 | |
| 647 | for (count = 0; COND(c[D_MD2][testnum]); count++) { |
| 648 | if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), |
| 649 | NULL)) |
| 650 | return -1; |
| 651 | } |
| 652 | return count; |
| 653 | } |
| 654 | #endif |
| 655 | |
| 656 | #ifndef OPENSSL_NO_MDC2 |
| 657 | static int EVP_Digest_MDC2_loop(void *args) |
| 658 | { |
| 659 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 660 | unsigned char *buf = tempargs->buf; |
| 661 | unsigned char mdc2[MDC2_DIGEST_LENGTH]; |
| 662 | int count; |
| 663 | |
| 664 | for (count = 0; COND(c[D_MDC2][testnum]); count++) { |
| 665 | if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), |
| 666 | NULL)) |
| 667 | return -1; |
| 668 | } |
| 669 | return count; |
| 670 | } |
| 671 | #endif |
| 672 | |
| 673 | #ifndef OPENSSL_NO_MD4 |
| 674 | static int EVP_Digest_MD4_loop(void *args) |
| 675 | { |
| 676 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 677 | unsigned char *buf = tempargs->buf; |
| 678 | unsigned char md4[MD4_DIGEST_LENGTH]; |
| 679 | int count; |
| 680 | |
| 681 | for (count = 0; COND(c[D_MD4][testnum]); count++) { |
| 682 | if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), |
| 683 | NULL)) |
| 684 | return -1; |
| 685 | } |
| 686 | return count; |
| 687 | } |
| 688 | #endif |
| 689 | |
| 690 | #ifndef OPENSSL_NO_MD5 |
| 691 | static int MD5_loop(void *args) |
| 692 | { |
| 693 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 694 | unsigned char *buf = tempargs->buf; |
| 695 | unsigned char md5[MD5_DIGEST_LENGTH]; |
| 696 | int count; |
| 697 | for (count = 0; COND(c[D_MD5][testnum]); count++) |
| 698 | MD5(buf, lengths[testnum], md5); |
| 699 | return count; |
| 700 | } |
| 701 | |
| 702 | static int HMAC_loop(void *args) |
| 703 | { |
| 704 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 705 | unsigned char *buf = tempargs->buf; |
| 706 | HMAC_CTX *hctx = tempargs->hctx; |
| 707 | unsigned char hmac[MD5_DIGEST_LENGTH]; |
| 708 | int count; |
| 709 | |
| 710 | for (count = 0; COND(c[D_HMAC][testnum]); count++) { |
| 711 | HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); |
| 712 | HMAC_Update(hctx, buf, lengths[testnum]); |
| 713 | HMAC_Final(hctx, hmac, NULL); |
| 714 | } |
| 715 | return count; |
| 716 | } |
| 717 | #endif |
| 718 | |
| 719 | static int SHA1_loop(void *args) |
| 720 | { |
| 721 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 722 | unsigned char *buf = tempargs->buf; |
| 723 | unsigned char sha[SHA_DIGEST_LENGTH]; |
| 724 | int count; |
| 725 | for (count = 0; COND(c[D_SHA1][testnum]); count++) |
| 726 | SHA1(buf, lengths[testnum], sha); |
| 727 | return count; |
| 728 | } |
| 729 | |
| 730 | static int SHA256_loop(void *args) |
| 731 | { |
| 732 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 733 | unsigned char *buf = tempargs->buf; |
| 734 | unsigned char sha256[SHA256_DIGEST_LENGTH]; |
| 735 | int count; |
| 736 | for (count = 0; COND(c[D_SHA256][testnum]); count++) |
| 737 | SHA256(buf, lengths[testnum], sha256); |
| 738 | return count; |
| 739 | } |
| 740 | |
| 741 | static int SHA512_loop(void *args) |
| 742 | { |
| 743 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 744 | unsigned char *buf = tempargs->buf; |
| 745 | unsigned char sha512[SHA512_DIGEST_LENGTH]; |
| 746 | int count; |
| 747 | for (count = 0; COND(c[D_SHA512][testnum]); count++) |
| 748 | SHA512(buf, lengths[testnum], sha512); |
| 749 | return count; |
| 750 | } |
| 751 | |
| 752 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 753 | static int WHIRLPOOL_loop(void *args) |
| 754 | { |
| 755 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 756 | unsigned char *buf = tempargs->buf; |
| 757 | unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; |
| 758 | int count; |
| 759 | for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) |
| 760 | WHIRLPOOL(buf, lengths[testnum], whirlpool); |
| 761 | return count; |
| 762 | } |
| 763 | #endif |
| 764 | |
| 765 | #ifndef OPENSSL_NO_RMD160 |
| 766 | static int EVP_Digest_RMD160_loop(void *args) |
| 767 | { |
| 768 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 769 | unsigned char *buf = tempargs->buf; |
| 770 | unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; |
| 771 | int count; |
| 772 | for (count = 0; COND(c[D_RMD160][testnum]); count++) { |
| 773 | if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), |
| 774 | NULL, EVP_ripemd160(), NULL)) |
| 775 | return -1; |
| 776 | } |
| 777 | return count; |
| 778 | } |
| 779 | #endif |
| 780 | |
| 781 | #ifndef OPENSSL_NO_RC4 |
| 782 | static RC4_KEY rc4_ks; |
| 783 | static int RC4_loop(void *args) |
| 784 | { |
| 785 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 786 | unsigned char *buf = tempargs->buf; |
| 787 | int count; |
| 788 | for (count = 0; COND(c[D_RC4][testnum]); count++) |
| 789 | RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); |
| 790 | return count; |
| 791 | } |
| 792 | #endif |
| 793 | |
| 794 | #ifndef OPENSSL_NO_DES |
| 795 | static unsigned char DES_iv[8]; |
| 796 | static DES_key_schedule sch; |
| 797 | static DES_key_schedule sch2; |
| 798 | static DES_key_schedule sch3; |
| 799 | static int DES_ncbc_encrypt_loop(void *args) |
| 800 | { |
| 801 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 802 | unsigned char *buf = tempargs->buf; |
| 803 | int count; |
| 804 | for (count = 0; COND(c[D_CBC_DES][testnum]); count++) |
| 805 | DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, |
| 806 | &DES_iv, DES_ENCRYPT); |
| 807 | return count; |
| 808 | } |
| 809 | |
| 810 | static int DES_ede3_cbc_encrypt_loop(void *args) |
| 811 | { |
| 812 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 813 | unsigned char *buf = tempargs->buf; |
| 814 | int count; |
| 815 | for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) |
| 816 | DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], |
| 817 | &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); |
| 818 | return count; |
| 819 | } |
| 820 | #endif |
| 821 | |
| 822 | #define MAX_BLOCK_SIZE 128 |
| 823 | |
| 824 | static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; |
| 825 | static AES_KEY aes_ks1, aes_ks2, aes_ks3; |
| 826 | static int AES_cbc_128_encrypt_loop(void *args) |
| 827 | { |
| 828 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 829 | unsigned char *buf = tempargs->buf; |
| 830 | int count; |
| 831 | for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) |
| 832 | AES_cbc_encrypt(buf, buf, |
| 833 | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); |
| 834 | return count; |
| 835 | } |
| 836 | |
| 837 | static int AES_cbc_192_encrypt_loop(void *args) |
| 838 | { |
| 839 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 840 | unsigned char *buf = tempargs->buf; |
| 841 | int count; |
| 842 | for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) |
| 843 | AES_cbc_encrypt(buf, buf, |
| 844 | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); |
| 845 | return count; |
| 846 | } |
| 847 | |
| 848 | static int AES_cbc_256_encrypt_loop(void *args) |
| 849 | { |
| 850 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 851 | unsigned char *buf = tempargs->buf; |
| 852 | int count; |
| 853 | for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) |
| 854 | AES_cbc_encrypt(buf, buf, |
| 855 | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); |
| 856 | return count; |
| 857 | } |
| 858 | |
| 859 | static int AES_ige_128_encrypt_loop(void *args) |
| 860 | { |
| 861 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 862 | unsigned char *buf = tempargs->buf; |
| 863 | unsigned char *buf2 = tempargs->buf2; |
| 864 | int count; |
| 865 | for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) |
| 866 | AES_ige_encrypt(buf, buf2, |
| 867 | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); |
| 868 | return count; |
| 869 | } |
| 870 | |
| 871 | static int AES_ige_192_encrypt_loop(void *args) |
| 872 | { |
| 873 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 874 | unsigned char *buf = tempargs->buf; |
| 875 | unsigned char *buf2 = tempargs->buf2; |
| 876 | int count; |
| 877 | for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) |
| 878 | AES_ige_encrypt(buf, buf2, |
| 879 | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); |
| 880 | return count; |
| 881 | } |
| 882 | |
| 883 | static int AES_ige_256_encrypt_loop(void *args) |
| 884 | { |
| 885 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 886 | unsigned char *buf = tempargs->buf; |
| 887 | unsigned char *buf2 = tempargs->buf2; |
| 888 | int count; |
| 889 | for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) |
| 890 | AES_ige_encrypt(buf, buf2, |
| 891 | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); |
| 892 | return count; |
| 893 | } |
| 894 | |
| 895 | static int CRYPTO_gcm128_aad_loop(void *args) |
| 896 | { |
| 897 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 898 | unsigned char *buf = tempargs->buf; |
| 899 | GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; |
| 900 | int count; |
| 901 | for (count = 0; COND(c[D_GHASH][testnum]); count++) |
| 902 | CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); |
| 903 | return count; |
| 904 | } |
| 905 | |
| 906 | static int RAND_bytes_loop(void *args) |
| 907 | { |
| 908 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 909 | unsigned char *buf = tempargs->buf; |
| 910 | int count; |
| 911 | |
| 912 | for (count = 0; COND(c[D_RAND][testnum]); count++) |
| 913 | RAND_bytes(buf, lengths[testnum]); |
| 914 | return count; |
| 915 | } |
| 916 | |
| 917 | static long save_count = 0; |
| 918 | static int decrypt = 0; |
| 919 | static int EVP_Update_loop(void *args) |
| 920 | { |
| 921 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 922 | unsigned char *buf = tempargs->buf; |
| 923 | EVP_CIPHER_CTX *ctx = tempargs->ctx; |
| 924 | int outl, count, rc; |
| 925 | #ifndef SIGALRM |
| 926 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; |
| 927 | #endif |
| 928 | if (decrypt) { |
| 929 | for (count = 0; COND(nb_iter); count++) { |
| 930 | rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 931 | if (rc != 1) { |
| 932 | /* reset iv in case of counter overflow */ |
| 933 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); |
| 934 | } |
| 935 | } |
| 936 | } else { |
| 937 | for (count = 0; COND(nb_iter); count++) { |
| 938 | rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 939 | if (rc != 1) { |
| 940 | /* reset iv in case of counter overflow */ |
| 941 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); |
| 942 | } |
| 943 | } |
| 944 | } |
| 945 | if (decrypt) |
| 946 | EVP_DecryptFinal_ex(ctx, buf, &outl); |
| 947 | else |
| 948 | EVP_EncryptFinal_ex(ctx, buf, &outl); |
| 949 | return count; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * CCM does not support streaming. For the purpose of performance measurement, |
| 954 | * each message is encrypted using the same (key,iv)-pair. Do not use this |
| 955 | * code in your application. |
| 956 | */ |
| 957 | static int EVP_Update_loop_ccm(void *args) |
| 958 | { |
| 959 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 960 | unsigned char *buf = tempargs->buf; |
| 961 | EVP_CIPHER_CTX *ctx = tempargs->ctx; |
| 962 | int outl, count; |
| 963 | unsigned char tag[12]; |
| 964 | #ifndef SIGALRM |
| 965 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; |
| 966 | #endif |
| 967 | if (decrypt) { |
| 968 | for (count = 0; COND(nb_iter); count++) { |
| 969 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag); |
| 970 | /* reset iv */ |
| 971 | EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); |
| 972 | /* counter is reset on every update */ |
| 973 | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 974 | } |
| 975 | } else { |
| 976 | for (count = 0; COND(nb_iter); count++) { |
| 977 | /* restore iv length field */ |
| 978 | EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]); |
| 979 | /* counter is reset on every update */ |
| 980 | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 981 | } |
| 982 | } |
| 983 | if (decrypt) |
| 984 | EVP_DecryptFinal_ex(ctx, buf, &outl); |
| 985 | else |
| 986 | EVP_EncryptFinal_ex(ctx, buf, &outl); |
| 987 | return count; |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * To make AEAD benchmarking more relevant perform TLS-like operations, |
| 992 | * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as |
| 993 | * payload length is not actually limited by 16KB... |
| 994 | */ |
| 995 | static int EVP_Update_loop_aead(void *args) |
| 996 | { |
| 997 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 998 | unsigned char *buf = tempargs->buf; |
| 999 | EVP_CIPHER_CTX *ctx = tempargs->ctx; |
| 1000 | int outl, count; |
| 1001 | unsigned char aad[13] = { 0xcc }; |
| 1002 | unsigned char faketag[16] = { 0xcc }; |
| 1003 | #ifndef SIGALRM |
| 1004 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; |
| 1005 | #endif |
| 1006 | if (decrypt) { |
| 1007 | for (count = 0; COND(nb_iter); count++) { |
| 1008 | EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); |
| 1009 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, |
| 1010 | sizeof(faketag), faketag); |
| 1011 | EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); |
| 1012 | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 1013 | EVP_DecryptFinal_ex(ctx, buf + outl, &outl); |
| 1014 | } |
| 1015 | } else { |
| 1016 | for (count = 0; COND(nb_iter); count++) { |
| 1017 | EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv); |
| 1018 | EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); |
| 1019 | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| 1020 | EVP_EncryptFinal_ex(ctx, buf + outl, &outl); |
| 1021 | } |
| 1022 | } |
| 1023 | return count; |
| 1024 | } |
| 1025 | |
| 1026 | static const EVP_MD *evp_md = NULL; |
| 1027 | static int EVP_Digest_loop(void *args) |
| 1028 | { |
| 1029 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1030 | unsigned char *buf = tempargs->buf; |
| 1031 | unsigned char md[EVP_MAX_MD_SIZE]; |
| 1032 | int count; |
| 1033 | #ifndef SIGALRM |
| 1034 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; |
| 1035 | #endif |
| 1036 | |
| 1037 | for (count = 0; COND(nb_iter); count++) { |
| 1038 | if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) |
| 1039 | return -1; |
| 1040 | } |
| 1041 | return count; |
| 1042 | } |
| 1043 | |
| 1044 | #ifndef OPENSSL_NO_RSA |
| 1045 | static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ |
| 1046 | |
| 1047 | static int RSA_sign_loop(void *args) |
| 1048 | { |
| 1049 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1050 | unsigned char *buf = tempargs->buf; |
| 1051 | unsigned char *buf2 = tempargs->buf2; |
| 1052 | unsigned int *rsa_num = &tempargs->siglen; |
| 1053 | RSA **rsa_key = tempargs->rsa_key; |
| 1054 | int ret, count; |
| 1055 | for (count = 0; COND(rsa_c[testnum][0]); count++) { |
| 1056 | ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); |
| 1057 | if (ret == 0) { |
| 1058 | BIO_printf(bio_err, "RSA sign failure\n"); |
| 1059 | ERR_print_errors(bio_err); |
| 1060 | count = -1; |
| 1061 | break; |
| 1062 | } |
| 1063 | } |
| 1064 | return count; |
| 1065 | } |
| 1066 | |
| 1067 | static int RSA_verify_loop(void *args) |
| 1068 | { |
| 1069 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1070 | unsigned char *buf = tempargs->buf; |
| 1071 | unsigned char *buf2 = tempargs->buf2; |
| 1072 | unsigned int rsa_num = tempargs->siglen; |
| 1073 | RSA **rsa_key = tempargs->rsa_key; |
| 1074 | int ret, count; |
| 1075 | for (count = 0; COND(rsa_c[testnum][1]); count++) { |
| 1076 | ret = |
| 1077 | RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); |
| 1078 | if (ret <= 0) { |
| 1079 | BIO_printf(bio_err, "RSA verify failure\n"); |
| 1080 | ERR_print_errors(bio_err); |
| 1081 | count = -1; |
| 1082 | break; |
| 1083 | } |
| 1084 | } |
| 1085 | return count; |
| 1086 | } |
| 1087 | #endif |
| 1088 | |
| 1089 | #ifndef OPENSSL_NO_DSA |
| 1090 | static long dsa_c[DSA_NUM][2]; |
| 1091 | static int DSA_sign_loop(void *args) |
| 1092 | { |
| 1093 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1094 | unsigned char *buf = tempargs->buf; |
| 1095 | unsigned char *buf2 = tempargs->buf2; |
| 1096 | DSA **dsa_key = tempargs->dsa_key; |
| 1097 | unsigned int *siglen = &tempargs->siglen; |
| 1098 | int ret, count; |
| 1099 | for (count = 0; COND(dsa_c[testnum][0]); count++) { |
| 1100 | ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); |
| 1101 | if (ret == 0) { |
| 1102 | BIO_printf(bio_err, "DSA sign failure\n"); |
| 1103 | ERR_print_errors(bio_err); |
| 1104 | count = -1; |
| 1105 | break; |
| 1106 | } |
| 1107 | } |
| 1108 | return count; |
| 1109 | } |
| 1110 | |
| 1111 | static int DSA_verify_loop(void *args) |
| 1112 | { |
| 1113 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1114 | unsigned char *buf = tempargs->buf; |
| 1115 | unsigned char *buf2 = tempargs->buf2; |
| 1116 | DSA **dsa_key = tempargs->dsa_key; |
| 1117 | unsigned int siglen = tempargs->siglen; |
| 1118 | int ret, count; |
| 1119 | for (count = 0; COND(dsa_c[testnum][1]); count++) { |
| 1120 | ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); |
| 1121 | if (ret <= 0) { |
| 1122 | BIO_printf(bio_err, "DSA verify failure\n"); |
| 1123 | ERR_print_errors(bio_err); |
| 1124 | count = -1; |
| 1125 | break; |
| 1126 | } |
| 1127 | } |
| 1128 | return count; |
| 1129 | } |
| 1130 | #endif |
| 1131 | |
| 1132 | #ifndef OPENSSL_NO_EC |
| 1133 | static long ecdsa_c[ECDSA_NUM][2]; |
| 1134 | static int ECDSA_sign_loop(void *args) |
| 1135 | { |
| 1136 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1137 | unsigned char *buf = tempargs->buf; |
| 1138 | EC_KEY **ecdsa = tempargs->ecdsa; |
| 1139 | unsigned char *ecdsasig = tempargs->buf2; |
| 1140 | unsigned int *ecdsasiglen = &tempargs->siglen; |
| 1141 | int ret, count; |
| 1142 | for (count = 0; COND(ecdsa_c[testnum][0]); count++) { |
| 1143 | ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); |
| 1144 | if (ret == 0) { |
| 1145 | BIO_printf(bio_err, "ECDSA sign failure\n"); |
| 1146 | ERR_print_errors(bio_err); |
| 1147 | count = -1; |
| 1148 | break; |
| 1149 | } |
| 1150 | } |
| 1151 | return count; |
| 1152 | } |
| 1153 | |
| 1154 | static int ECDSA_verify_loop(void *args) |
| 1155 | { |
| 1156 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1157 | unsigned char *buf = tempargs->buf; |
| 1158 | EC_KEY **ecdsa = tempargs->ecdsa; |
| 1159 | unsigned char *ecdsasig = tempargs->buf2; |
| 1160 | unsigned int ecdsasiglen = tempargs->siglen; |
| 1161 | int ret, count; |
| 1162 | for (count = 0; COND(ecdsa_c[testnum][1]); count++) { |
| 1163 | ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); |
| 1164 | if (ret != 1) { |
| 1165 | BIO_printf(bio_err, "ECDSA verify failure\n"); |
| 1166 | ERR_print_errors(bio_err); |
| 1167 | count = -1; |
| 1168 | break; |
| 1169 | } |
| 1170 | } |
| 1171 | return count; |
| 1172 | } |
| 1173 | |
| 1174 | /* ******************************************************************** */ |
| 1175 | static long ecdh_c[EC_NUM][1]; |
| 1176 | |
| 1177 | static int ECDH_EVP_derive_key_loop(void *args) |
| 1178 | { |
| 1179 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1180 | EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; |
| 1181 | unsigned char *derived_secret = tempargs->secret_a; |
| 1182 | int count; |
| 1183 | size_t *outlen = &(tempargs->outlen[testnum]); |
| 1184 | |
| 1185 | for (count = 0; COND(ecdh_c[testnum][0]); count++) |
| 1186 | EVP_PKEY_derive(ctx, derived_secret, outlen); |
| 1187 | |
| 1188 | return count; |
| 1189 | } |
| 1190 | |
| 1191 | static long eddsa_c[EdDSA_NUM][2]; |
| 1192 | static int EdDSA_sign_loop(void *args) |
| 1193 | { |
| 1194 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1195 | unsigned char *buf = tempargs->buf; |
| 1196 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx; |
| 1197 | unsigned char *eddsasig = tempargs->buf2; |
| 1198 | size_t *eddsasigsize = &tempargs->sigsize; |
| 1199 | int ret, count; |
| 1200 | |
| 1201 | for (count = 0; COND(eddsa_c[testnum][0]); count++) { |
| 1202 | ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); |
| 1203 | if (ret == 0) { |
| 1204 | BIO_printf(bio_err, "EdDSA sign failure\n"); |
| 1205 | ERR_print_errors(bio_err); |
| 1206 | count = -1; |
| 1207 | break; |
| 1208 | } |
| 1209 | } |
| 1210 | return count; |
| 1211 | } |
| 1212 | |
| 1213 | static int EdDSA_verify_loop(void *args) |
| 1214 | { |
| 1215 | loopargs_t *tempargs = *(loopargs_t **) args; |
| 1216 | unsigned char *buf = tempargs->buf; |
| 1217 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx; |
| 1218 | unsigned char *eddsasig = tempargs->buf2; |
| 1219 | size_t eddsasigsize = tempargs->sigsize; |
| 1220 | int ret, count; |
| 1221 | |
| 1222 | for (count = 0; COND(eddsa_c[testnum][1]); count++) { |
| 1223 | ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); |
| 1224 | if (ret != 1) { |
| 1225 | BIO_printf(bio_err, "EdDSA verify failure\n"); |
| 1226 | ERR_print_errors(bio_err); |
| 1227 | count = -1; |
| 1228 | break; |
| 1229 | } |
| 1230 | } |
| 1231 | return count; |
| 1232 | } |
| 1233 | #endif /* OPENSSL_NO_EC */ |
| 1234 | |
| 1235 | static int run_benchmark(int async_jobs, |
| 1236 | int (*loop_function) (void *), loopargs_t * loopargs) |
| 1237 | { |
| 1238 | int job_op_count = 0; |
| 1239 | int total_op_count = 0; |
| 1240 | int num_inprogress = 0; |
| 1241 | int error = 0, i = 0, ret = 0; |
| 1242 | OSSL_ASYNC_FD job_fd = 0; |
| 1243 | size_t num_job_fds = 0; |
| 1244 | |
| 1245 | if (async_jobs == 0) { |
| 1246 | return loop_function((void *)&loopargs); |
| 1247 | } |
| 1248 | |
| 1249 | for (i = 0; i < async_jobs && !error; i++) { |
| 1250 | loopargs_t *looparg_item = loopargs + i; |
| 1251 | |
| 1252 | /* Copy pointer content (looparg_t item address) into async context */ |
| 1253 | ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, |
| 1254 | &job_op_count, loop_function, |
| 1255 | (void *)&looparg_item, sizeof(looparg_item)); |
| 1256 | switch (ret) { |
| 1257 | case ASYNC_PAUSE: |
| 1258 | ++num_inprogress; |
| 1259 | break; |
| 1260 | case ASYNC_FINISH: |
| 1261 | if (job_op_count == -1) { |
| 1262 | error = 1; |
| 1263 | } else { |
| 1264 | total_op_count += job_op_count; |
| 1265 | } |
| 1266 | break; |
| 1267 | case ASYNC_NO_JOBS: |
| 1268 | case ASYNC_ERR: |
| 1269 | BIO_printf(bio_err, "Failure in the job\n"); |
| 1270 | ERR_print_errors(bio_err); |
| 1271 | error = 1; |
| 1272 | break; |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | while (num_inprogress > 0) { |
| 1277 | #if defined(OPENSSL_SYS_WINDOWS) |
| 1278 | DWORD avail = 0; |
| 1279 | #elif defined(OPENSSL_SYS_UNIX) |
| 1280 | int select_result = 0; |
| 1281 | OSSL_ASYNC_FD max_fd = 0; |
| 1282 | fd_set waitfdset; |
| 1283 | |
| 1284 | FD_ZERO(&waitfdset); |
| 1285 | |
| 1286 | for (i = 0; i < async_jobs && num_inprogress > 0; i++) { |
| 1287 | if (loopargs[i].inprogress_job == NULL) |
| 1288 | continue; |
| 1289 | |
| 1290 | if (!ASYNC_WAIT_CTX_get_all_fds |
| 1291 | (loopargs[i].wait_ctx, NULL, &num_job_fds) |
| 1292 | || num_job_fds > 1) { |
| 1293 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); |
| 1294 | ERR_print_errors(bio_err); |
| 1295 | error = 1; |
| 1296 | break; |
| 1297 | } |
| 1298 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, |
| 1299 | &num_job_fds); |
| 1300 | FD_SET(job_fd, &waitfdset); |
| 1301 | if (job_fd > max_fd) |
| 1302 | max_fd = job_fd; |
| 1303 | } |
| 1304 | |
| 1305 | if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { |
| 1306 | BIO_printf(bio_err, |
| 1307 | "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " |
| 1308 | "Decrease the value of async_jobs\n", |
| 1309 | max_fd, FD_SETSIZE); |
| 1310 | ERR_print_errors(bio_err); |
| 1311 | error = 1; |
| 1312 | break; |
| 1313 | } |
| 1314 | |
| 1315 | select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); |
| 1316 | if (select_result == -1 && errno == EINTR) |
| 1317 | continue; |
| 1318 | |
| 1319 | if (select_result == -1) { |
| 1320 | BIO_printf(bio_err, "Failure in the select\n"); |
| 1321 | ERR_print_errors(bio_err); |
| 1322 | error = 1; |
| 1323 | break; |
| 1324 | } |
| 1325 | |
| 1326 | if (select_result == 0) |
| 1327 | continue; |
| 1328 | #endif |
| 1329 | |
| 1330 | for (i = 0; i < async_jobs; i++) { |
| 1331 | if (loopargs[i].inprogress_job == NULL) |
| 1332 | continue; |
| 1333 | |
| 1334 | if (!ASYNC_WAIT_CTX_get_all_fds |
| 1335 | (loopargs[i].wait_ctx, NULL, &num_job_fds) |
| 1336 | || num_job_fds > 1) { |
| 1337 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); |
| 1338 | ERR_print_errors(bio_err); |
| 1339 | error = 1; |
| 1340 | break; |
| 1341 | } |
| 1342 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, |
| 1343 | &num_job_fds); |
| 1344 | |
| 1345 | #if defined(OPENSSL_SYS_UNIX) |
| 1346 | if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) |
| 1347 | continue; |
| 1348 | #elif defined(OPENSSL_SYS_WINDOWS) |
| 1349 | if (num_job_fds == 1 |
| 1350 | && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) |
| 1351 | && avail > 0) |
| 1352 | continue; |
| 1353 | #endif |
| 1354 | |
| 1355 | ret = ASYNC_start_job(&loopargs[i].inprogress_job, |
| 1356 | loopargs[i].wait_ctx, &job_op_count, |
| 1357 | loop_function, (void *)(loopargs + i), |
| 1358 | sizeof(loopargs_t)); |
| 1359 | switch (ret) { |
| 1360 | case ASYNC_PAUSE: |
| 1361 | break; |
| 1362 | case ASYNC_FINISH: |
| 1363 | if (job_op_count == -1) { |
| 1364 | error = 1; |
| 1365 | } else { |
| 1366 | total_op_count += job_op_count; |
| 1367 | } |
| 1368 | --num_inprogress; |
| 1369 | loopargs[i].inprogress_job = NULL; |
| 1370 | break; |
| 1371 | case ASYNC_NO_JOBS: |
| 1372 | case ASYNC_ERR: |
| 1373 | --num_inprogress; |
| 1374 | loopargs[i].inprogress_job = NULL; |
| 1375 | BIO_printf(bio_err, "Failure in the job\n"); |
| 1376 | ERR_print_errors(bio_err); |
| 1377 | error = 1; |
| 1378 | break; |
| 1379 | } |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | return error ? -1 : total_op_count; |
| 1384 | } |
| 1385 | |
| 1386 | int speed_main(int argc, char **argv) |
| 1387 | { |
| 1388 | ENGINE *e = NULL; |
| 1389 | loopargs_t *loopargs = NULL; |
| 1390 | const char *prog; |
| 1391 | const char *engine_id = NULL; |
| 1392 | const EVP_CIPHER *evp_cipher = NULL; |
| 1393 | double d = 0.0; |
| 1394 | OPTION_CHOICE o; |
| 1395 | int async_init = 0, multiblock = 0, pr_header = 0; |
| 1396 | int doit[ALGOR_NUM] = { 0 }; |
| 1397 | int ret = 1, misalign = 0, lengths_single = 0, aead = 0; |
| 1398 | long count = 0; |
| 1399 | unsigned int size_num = OSSL_NELEM(lengths_list); |
| 1400 | unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0; |
| 1401 | int keylen; |
| 1402 | int buflen; |
| 1403 | #ifndef NO_FORK |
| 1404 | int multi = 0; |
| 1405 | #endif |
| 1406 | #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ |
| 1407 | || !defined(OPENSSL_NO_EC) |
| 1408 | long rsa_count = 1; |
| 1409 | #endif |
| 1410 | openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, |
| 1411 | ECDSA_SECONDS, ECDH_SECONDS, |
| 1412 | EdDSA_SECONDS }; |
| 1413 | |
| 1414 | /* What follows are the buffers and key material. */ |
| 1415 | #ifndef OPENSSL_NO_RC5 |
| 1416 | RC5_32_KEY rc5_ks; |
| 1417 | #endif |
| 1418 | #ifndef OPENSSL_NO_RC2 |
| 1419 | RC2_KEY rc2_ks; |
| 1420 | #endif |
| 1421 | #ifndef OPENSSL_NO_IDEA |
| 1422 | IDEA_KEY_SCHEDULE idea_ks; |
| 1423 | #endif |
| 1424 | #ifndef OPENSSL_NO_SEED |
| 1425 | SEED_KEY_SCHEDULE seed_ks; |
| 1426 | #endif |
| 1427 | #ifndef OPENSSL_NO_BF |
| 1428 | BF_KEY bf_ks; |
| 1429 | #endif |
| 1430 | #ifndef OPENSSL_NO_CAST |
| 1431 | CAST_KEY cast_ks; |
| 1432 | #endif |
| 1433 | static const unsigned char key16[16] = { |
| 1434 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 1435 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
| 1436 | }; |
| 1437 | static const unsigned char key24[24] = { |
| 1438 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 1439 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 1440 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| 1441 | }; |
| 1442 | static const unsigned char key32[32] = { |
| 1443 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 1444 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 1445 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 1446 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| 1447 | }; |
| 1448 | #ifndef OPENSSL_NO_CAMELLIA |
| 1449 | static const unsigned char ckey24[24] = { |
| 1450 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 1451 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 1452 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| 1453 | }; |
| 1454 | static const unsigned char ckey32[32] = { |
| 1455 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 1456 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 1457 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 1458 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| 1459 | }; |
| 1460 | CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
| 1461 | #endif |
| 1462 | #ifndef OPENSSL_NO_DES |
| 1463 | static DES_cblock key = { |
| 1464 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 |
| 1465 | }; |
| 1466 | static DES_cblock key2 = { |
| 1467 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
| 1468 | }; |
| 1469 | static DES_cblock key3 = { |
| 1470 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| 1471 | }; |
| 1472 | #endif |
| 1473 | #ifndef OPENSSL_NO_RSA |
| 1474 | static const unsigned int rsa_bits[RSA_NUM] = { |
| 1475 | 512, 1024, 2048, 3072, 4096, 7680, 15360 |
| 1476 | }; |
| 1477 | static const unsigned char *rsa_data[RSA_NUM] = { |
| 1478 | test512, test1024, test2048, test3072, test4096, test7680, test15360 |
| 1479 | }; |
| 1480 | static const int rsa_data_length[RSA_NUM] = { |
| 1481 | sizeof(test512), sizeof(test1024), |
| 1482 | sizeof(test2048), sizeof(test3072), |
| 1483 | sizeof(test4096), sizeof(test7680), |
| 1484 | sizeof(test15360) |
| 1485 | }; |
| 1486 | int rsa_doit[RSA_NUM] = { 0 }; |
| 1487 | int primes = RSA_DEFAULT_PRIME_NUM; |
| 1488 | #endif |
| 1489 | #ifndef OPENSSL_NO_DSA |
| 1490 | static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; |
| 1491 | int dsa_doit[DSA_NUM] = { 0 }; |
| 1492 | #endif |
| 1493 | #ifndef OPENSSL_NO_EC |
| 1494 | /* |
| 1495 | * We only test over the following curves as they are representative, To |
| 1496 | * add tests over more curves, simply add the curve NID and curve name to |
| 1497 | * the following arrays and increase the |ecdh_choices| list accordingly. |
| 1498 | */ |
| 1499 | static const struct { |
| 1500 | const char *name; |
| 1501 | unsigned int nid; |
| 1502 | unsigned int bits; |
| 1503 | } test_curves[] = { |
| 1504 | /* Prime Curves */ |
| 1505 | {"secp160r1", NID_secp160r1, 160}, |
| 1506 | {"nistp192", NID_X9_62_prime192v1, 192}, |
| 1507 | {"nistp224", NID_secp224r1, 224}, |
| 1508 | {"nistp256", NID_X9_62_prime256v1, 256}, |
| 1509 | {"nistp384", NID_secp384r1, 384}, |
| 1510 | {"nistp521", NID_secp521r1, 521}, |
| 1511 | # ifndef OPENSSL_NO_EC2M |
| 1512 | /* Binary Curves */ |
| 1513 | {"nistk163", NID_sect163k1, 163}, |
| 1514 | {"nistk233", NID_sect233k1, 233}, |
| 1515 | {"nistk283", NID_sect283k1, 283}, |
| 1516 | {"nistk409", NID_sect409k1, 409}, |
| 1517 | {"nistk571", NID_sect571k1, 571}, |
| 1518 | {"nistb163", NID_sect163r2, 163}, |
| 1519 | {"nistb233", NID_sect233r1, 233}, |
| 1520 | {"nistb283", NID_sect283r1, 283}, |
| 1521 | {"nistb409", NID_sect409r1, 409}, |
| 1522 | {"nistb571", NID_sect571r1, 571}, |
| 1523 | # endif |
| 1524 | {"brainpoolP256r1", NID_brainpoolP256r1, 256}, |
| 1525 | {"brainpoolP256t1", NID_brainpoolP256t1, 256}, |
| 1526 | {"brainpoolP384r1", NID_brainpoolP384r1, 384}, |
| 1527 | {"brainpoolP384t1", NID_brainpoolP384t1, 384}, |
| 1528 | {"brainpoolP512r1", NID_brainpoolP512r1, 512}, |
| 1529 | {"brainpoolP512t1", NID_brainpoolP512t1, 512}, |
| 1530 | /* Other and ECDH only ones */ |
| 1531 | {"X25519", NID_X25519, 253}, |
| 1532 | {"X448", NID_X448, 448} |
| 1533 | }; |
| 1534 | static const struct { |
| 1535 | const char *name; |
| 1536 | unsigned int nid; |
| 1537 | unsigned int bits; |
| 1538 | size_t sigsize; |
| 1539 | } test_ed_curves[] = { |
| 1540 | /* EdDSA */ |
| 1541 | {"Ed25519", NID_ED25519, 253, 64}, |
| 1542 | {"Ed448", NID_ED448, 456, 114} |
| 1543 | }; |
| 1544 | int ecdsa_doit[ECDSA_NUM] = { 0 }; |
| 1545 | int ecdh_doit[EC_NUM] = { 0 }; |
| 1546 | int eddsa_doit[EdDSA_NUM] = { 0 }; |
| 1547 | OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM); |
| 1548 | OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM); |
| 1549 | #endif /* ndef OPENSSL_NO_EC */ |
| 1550 | |
| 1551 | prog = opt_init(argc, argv, speed_options); |
| 1552 | while ((o = opt_next()) != OPT_EOF) { |
| 1553 | switch (o) { |
| 1554 | case OPT_EOF: |
| 1555 | case OPT_ERR: |
| 1556 | opterr: |
| 1557 | BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); |
| 1558 | goto end; |
| 1559 | case OPT_HELP: |
| 1560 | opt_help(speed_options); |
| 1561 | ret = 0; |
| 1562 | goto end; |
| 1563 | case OPT_ELAPSED: |
| 1564 | usertime = 0; |
| 1565 | break; |
| 1566 | case OPT_EVP: |
| 1567 | evp_md = NULL; |
| 1568 | evp_cipher = EVP_get_cipherbyname(opt_arg()); |
| 1569 | if (evp_cipher == NULL) |
| 1570 | evp_md = EVP_get_digestbyname(opt_arg()); |
| 1571 | if (evp_cipher == NULL && evp_md == NULL) { |
| 1572 | BIO_printf(bio_err, |
| 1573 | "%s: %s is an unknown cipher or digest\n", |
| 1574 | prog, opt_arg()); |
| 1575 | goto end; |
| 1576 | } |
| 1577 | doit[D_EVP] = 1; |
| 1578 | break; |
| 1579 | case OPT_DECRYPT: |
| 1580 | decrypt = 1; |
| 1581 | break; |
| 1582 | case OPT_ENGINE: |
| 1583 | /* |
| 1584 | * In a forked execution, an engine might need to be |
| 1585 | * initialised by each child process, not by the parent. |
| 1586 | * So store the name here and run setup_engine() later on. |
| 1587 | */ |
| 1588 | engine_id = opt_arg(); |
| 1589 | break; |
| 1590 | case OPT_MULTI: |
| 1591 | #ifndef NO_FORK |
| 1592 | multi = atoi(opt_arg()); |
| 1593 | if (multi >= INT_MAX / (int)sizeof(int)) { |
| 1594 | BIO_printf(bio_err, "%s: multi argument too large\n", prog); |
| 1595 | return 0; |
| 1596 | } |
| 1597 | #endif |
| 1598 | break; |
| 1599 | case OPT_ASYNCJOBS: |
| 1600 | #ifndef OPENSSL_NO_ASYNC |
| 1601 | async_jobs = atoi(opt_arg()); |
| 1602 | if (!ASYNC_is_capable()) { |
| 1603 | BIO_printf(bio_err, |
| 1604 | "%s: async_jobs specified but async not supported\n", |
| 1605 | prog); |
| 1606 | goto opterr; |
| 1607 | } |
| 1608 | if (async_jobs > 99999) { |
| 1609 | BIO_printf(bio_err, "%s: too many async_jobs\n", prog); |
| 1610 | goto opterr; |
| 1611 | } |
| 1612 | #endif |
| 1613 | break; |
| 1614 | case OPT_MISALIGN: |
| 1615 | if (!opt_int(opt_arg(), &misalign)) |
| 1616 | goto end; |
| 1617 | if (misalign > MISALIGN) { |
| 1618 | BIO_printf(bio_err, |
| 1619 | "%s: Maximum offset is %d\n", prog, MISALIGN); |
| 1620 | goto opterr; |
| 1621 | } |
| 1622 | break; |
| 1623 | case OPT_MR: |
| 1624 | mr = 1; |
| 1625 | break; |
| 1626 | case OPT_MB: |
| 1627 | multiblock = 1; |
| 1628 | #ifdef OPENSSL_NO_MULTIBLOCK |
| 1629 | BIO_printf(bio_err, |
| 1630 | "%s: -mb specified but multi-block support is disabled\n", |
| 1631 | prog); |
| 1632 | goto end; |
| 1633 | #endif |
| 1634 | break; |
| 1635 | case OPT_R_CASES: |
| 1636 | if (!opt_rand(o)) |
| 1637 | goto end; |
| 1638 | break; |
| 1639 | case OPT_PRIMES: |
| 1640 | if (!opt_int(opt_arg(), &primes)) |
| 1641 | goto end; |
| 1642 | break; |
| 1643 | case OPT_SECONDS: |
| 1644 | seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa |
| 1645 | = seconds.ecdh = seconds.eddsa = atoi(opt_arg()); |
| 1646 | break; |
| 1647 | case OPT_BYTES: |
| 1648 | lengths_single = atoi(opt_arg()); |
| 1649 | lengths = &lengths_single; |
| 1650 | size_num = 1; |
| 1651 | break; |
| 1652 | case OPT_AEAD: |
| 1653 | aead = 1; |
| 1654 | break; |
| 1655 | } |
| 1656 | } |
| 1657 | argc = opt_num_rest(); |
| 1658 | argv = opt_rest(); |
| 1659 | |
| 1660 | /* Remaining arguments are algorithms. */ |
| 1661 | for (; *argv; argv++) { |
| 1662 | if (found(*argv, doit_choices, &i)) { |
| 1663 | doit[i] = 1; |
| 1664 | continue; |
| 1665 | } |
| 1666 | #ifndef OPENSSL_NO_DES |
| 1667 | if (strcmp(*argv, "des") == 0) { |
| 1668 | doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; |
| 1669 | continue; |
| 1670 | } |
| 1671 | #endif |
| 1672 | if (strcmp(*argv, "sha") == 0) { |
| 1673 | doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; |
| 1674 | continue; |
| 1675 | } |
| 1676 | #ifndef OPENSSL_NO_RSA |
| 1677 | if (strcmp(*argv, "openssl") == 0) |
| 1678 | continue; |
| 1679 | if (strcmp(*argv, "rsa") == 0) { |
| 1680 | for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++) |
| 1681 | rsa_doit[loop] = 1; |
| 1682 | continue; |
| 1683 | } |
| 1684 | if (found(*argv, rsa_choices, &i)) { |
| 1685 | rsa_doit[i] = 1; |
| 1686 | continue; |
| 1687 | } |
| 1688 | #endif |
| 1689 | #ifndef OPENSSL_NO_DSA |
| 1690 | if (strcmp(*argv, "dsa") == 0) { |
| 1691 | dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = |
| 1692 | dsa_doit[R_DSA_2048] = 1; |
| 1693 | continue; |
| 1694 | } |
| 1695 | if (found(*argv, dsa_choices, &i)) { |
| 1696 | dsa_doit[i] = 2; |
| 1697 | continue; |
| 1698 | } |
| 1699 | #endif |
| 1700 | if (strcmp(*argv, "aes") == 0) { |
| 1701 | doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; |
| 1702 | continue; |
| 1703 | } |
| 1704 | #ifndef OPENSSL_NO_CAMELLIA |
| 1705 | if (strcmp(*argv, "camellia") == 0) { |
| 1706 | doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; |
| 1707 | continue; |
| 1708 | } |
| 1709 | #endif |
| 1710 | #ifndef OPENSSL_NO_EC |
| 1711 | if (strcmp(*argv, "ecdsa") == 0) { |
| 1712 | for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) |
| 1713 | ecdsa_doit[loop] = 1; |
| 1714 | continue; |
| 1715 | } |
| 1716 | if (found(*argv, ecdsa_choices, &i)) { |
| 1717 | ecdsa_doit[i] = 2; |
| 1718 | continue; |
| 1719 | } |
| 1720 | if (strcmp(*argv, "ecdh") == 0) { |
| 1721 | for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) |
| 1722 | ecdh_doit[loop] = 1; |
| 1723 | continue; |
| 1724 | } |
| 1725 | if (found(*argv, ecdh_choices, &i)) { |
| 1726 | ecdh_doit[i] = 2; |
| 1727 | continue; |
| 1728 | } |
| 1729 | if (strcmp(*argv, "eddsa") == 0) { |
| 1730 | for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) |
| 1731 | eddsa_doit[loop] = 1; |
| 1732 | continue; |
| 1733 | } |
| 1734 | if (found(*argv, eddsa_choices, &i)) { |
| 1735 | eddsa_doit[i] = 2; |
| 1736 | continue; |
| 1737 | } |
| 1738 | #endif |
| 1739 | BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); |
| 1740 | goto end; |
| 1741 | } |
| 1742 | |
| 1743 | /* Sanity checks */ |
| 1744 | if (aead) { |
| 1745 | if (evp_cipher == NULL) { |
| 1746 | BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); |
| 1747 | goto end; |
| 1748 | } else if (!(EVP_CIPHER_flags(evp_cipher) & |
| 1749 | EVP_CIPH_FLAG_AEAD_CIPHER)) { |
| 1750 | BIO_printf(bio_err, "%s is not an AEAD cipher\n", |
| 1751 | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); |
| 1752 | goto end; |
| 1753 | } |
| 1754 | } |
| 1755 | if (multiblock) { |
| 1756 | if (evp_cipher == NULL) { |
| 1757 | BIO_printf(bio_err,"-mb can be used only with a multi-block" |
| 1758 | " capable cipher\n"); |
| 1759 | goto end; |
| 1760 | } else if (!(EVP_CIPHER_flags(evp_cipher) & |
| 1761 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { |
| 1762 | BIO_printf(bio_err, "%s is not a multi-block capable\n", |
| 1763 | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); |
| 1764 | goto end; |
| 1765 | } else if (async_jobs > 0) { |
| 1766 | BIO_printf(bio_err, "Async mode is not supported with -mb"); |
| 1767 | goto end; |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | /* Initialize the job pool if async mode is enabled */ |
| 1772 | if (async_jobs > 0) { |
| 1773 | async_init = ASYNC_init_thread(async_jobs, async_jobs); |
| 1774 | if (!async_init) { |
| 1775 | BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); |
| 1776 | goto end; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | loopargs_len = (async_jobs == 0 ? 1 : async_jobs); |
| 1781 | loopargs = |
| 1782 | app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); |
| 1783 | memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); |
| 1784 | |
| 1785 | for (i = 0; i < loopargs_len; i++) { |
| 1786 | if (async_jobs > 0) { |
| 1787 | loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); |
| 1788 | if (loopargs[i].wait_ctx == NULL) { |
| 1789 | BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); |
| 1790 | goto end; |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | buflen = lengths[size_num - 1]; |
| 1795 | if (buflen < 36) /* size of random vector in RSA benchmark */ |
| 1796 | buflen = 36; |
| 1797 | buflen += MAX_MISALIGNMENT + 1; |
| 1798 | loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); |
| 1799 | loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); |
| 1800 | memset(loopargs[i].buf_malloc, 0, buflen); |
| 1801 | memset(loopargs[i].buf2_malloc, 0, buflen); |
| 1802 | |
| 1803 | /* Align the start of buffers on a 64 byte boundary */ |
| 1804 | loopargs[i].buf = loopargs[i].buf_malloc + misalign; |
| 1805 | loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; |
| 1806 | #ifndef OPENSSL_NO_EC |
| 1807 | loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); |
| 1808 | loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); |
| 1809 | #endif |
| 1810 | } |
| 1811 | |
| 1812 | #ifndef NO_FORK |
| 1813 | if (multi && do_multi(multi, size_num)) |
| 1814 | goto show_res; |
| 1815 | #endif |
| 1816 | |
| 1817 | /* Initialize the engine after the fork */ |
| 1818 | e = setup_engine(engine_id, 0); |
| 1819 | |
| 1820 | /* No parameters; turn on everything. */ |
| 1821 | if ((argc == 0) && !doit[D_EVP]) { |
| 1822 | for (i = 0; i < ALGOR_NUM; i++) |
| 1823 | if (i != D_EVP) |
| 1824 | doit[i] = 1; |
| 1825 | #ifndef OPENSSL_NO_RSA |
| 1826 | for (i = 0; i < RSA_NUM; i++) |
| 1827 | rsa_doit[i] = 1; |
| 1828 | #endif |
| 1829 | #ifndef OPENSSL_NO_DSA |
| 1830 | for (i = 0; i < DSA_NUM; i++) |
| 1831 | dsa_doit[i] = 1; |
| 1832 | #endif |
| 1833 | #ifndef OPENSSL_NO_EC |
| 1834 | for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) |
| 1835 | ecdsa_doit[loop] = 1; |
| 1836 | for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) |
| 1837 | ecdh_doit[loop] = 1; |
| 1838 | for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) |
| 1839 | eddsa_doit[loop] = 1; |
| 1840 | #endif |
| 1841 | } |
| 1842 | for (i = 0; i < ALGOR_NUM; i++) |
| 1843 | if (doit[i]) |
| 1844 | pr_header++; |
| 1845 | |
| 1846 | if (usertime == 0 && !mr) |
| 1847 | BIO_printf(bio_err, |
| 1848 | "You have chosen to measure elapsed time " |
| 1849 | "instead of user CPU time.\n"); |
| 1850 | |
| 1851 | #ifndef OPENSSL_NO_RSA |
| 1852 | for (i = 0; i < loopargs_len; i++) { |
| 1853 | if (primes > RSA_DEFAULT_PRIME_NUM) { |
| 1854 | /* for multi-prime RSA, skip this */ |
| 1855 | break; |
| 1856 | } |
| 1857 | for (k = 0; k < RSA_NUM; k++) { |
| 1858 | const unsigned char *p; |
| 1859 | |
| 1860 | p = rsa_data[k]; |
| 1861 | loopargs[i].rsa_key[k] = |
| 1862 | d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); |
| 1863 | if (loopargs[i].rsa_key[k] == NULL) { |
| 1864 | BIO_printf(bio_err, |
| 1865 | "internal error loading RSA key number %d\n", k); |
| 1866 | goto end; |
| 1867 | } |
| 1868 | } |
| 1869 | } |
| 1870 | #endif |
| 1871 | #ifndef OPENSSL_NO_DSA |
| 1872 | for (i = 0; i < loopargs_len; i++) { |
| 1873 | loopargs[i].dsa_key[0] = get_dsa(512); |
| 1874 | loopargs[i].dsa_key[1] = get_dsa(1024); |
| 1875 | loopargs[i].dsa_key[2] = get_dsa(2048); |
| 1876 | } |
| 1877 | #endif |
| 1878 | #ifndef OPENSSL_NO_DES |
| 1879 | DES_set_key_unchecked(&key, &sch); |
| 1880 | DES_set_key_unchecked(&key2, &sch2); |
| 1881 | DES_set_key_unchecked(&key3, &sch3); |
| 1882 | #endif |
| 1883 | AES_set_encrypt_key(key16, 128, &aes_ks1); |
| 1884 | AES_set_encrypt_key(key24, 192, &aes_ks2); |
| 1885 | AES_set_encrypt_key(key32, 256, &aes_ks3); |
| 1886 | #ifndef OPENSSL_NO_CAMELLIA |
| 1887 | Camellia_set_key(key16, 128, &camellia_ks1); |
| 1888 | Camellia_set_key(ckey24, 192, &camellia_ks2); |
| 1889 | Camellia_set_key(ckey32, 256, &camellia_ks3); |
| 1890 | #endif |
| 1891 | #ifndef OPENSSL_NO_IDEA |
| 1892 | IDEA_set_encrypt_key(key16, &idea_ks); |
| 1893 | #endif |
| 1894 | #ifndef OPENSSL_NO_SEED |
| 1895 | SEED_set_key(key16, &seed_ks); |
| 1896 | #endif |
| 1897 | #ifndef OPENSSL_NO_RC4 |
| 1898 | RC4_set_key(&rc4_ks, 16, key16); |
| 1899 | #endif |
| 1900 | #ifndef OPENSSL_NO_RC2 |
| 1901 | RC2_set_key(&rc2_ks, 16, key16, 128); |
| 1902 | #endif |
| 1903 | #ifndef OPENSSL_NO_RC5 |
| 1904 | RC5_32_set_key(&rc5_ks, 16, key16, 12); |
| 1905 | #endif |
| 1906 | #ifndef OPENSSL_NO_BF |
| 1907 | BF_set_key(&bf_ks, 16, key16); |
| 1908 | #endif |
| 1909 | #ifndef OPENSSL_NO_CAST |
| 1910 | CAST_set_key(&cast_ks, 16, key16); |
| 1911 | #endif |
| 1912 | #ifndef SIGALRM |
| 1913 | # ifndef OPENSSL_NO_DES |
| 1914 | BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); |
| 1915 | count = 10; |
| 1916 | do { |
| 1917 | long it; |
| 1918 | count *= 2; |
| 1919 | Time_F(START); |
| 1920 | for (it = count; it; it--) |
| 1921 | DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, |
| 1922 | (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); |
| 1923 | d = Time_F(STOP); |
| 1924 | } while (d < 3); |
| 1925 | save_count = count; |
| 1926 | c[D_MD2][0] = count / 10; |
| 1927 | c[D_MDC2][0] = count / 10; |
| 1928 | c[D_MD4][0] = count; |
| 1929 | c[D_MD5][0] = count; |
| 1930 | c[D_HMAC][0] = count; |
| 1931 | c[D_SHA1][0] = count; |
| 1932 | c[D_RMD160][0] = count; |
| 1933 | c[D_RC4][0] = count * 5; |
| 1934 | c[D_CBC_DES][0] = count; |
| 1935 | c[D_EDE3_DES][0] = count / 3; |
| 1936 | c[D_CBC_IDEA][0] = count; |
| 1937 | c[D_CBC_SEED][0] = count; |
| 1938 | c[D_CBC_RC2][0] = count; |
| 1939 | c[D_CBC_RC5][0] = count; |
| 1940 | c[D_CBC_BF][0] = count; |
| 1941 | c[D_CBC_CAST][0] = count; |
| 1942 | c[D_CBC_128_AES][0] = count; |
| 1943 | c[D_CBC_192_AES][0] = count; |
| 1944 | c[D_CBC_256_AES][0] = count; |
| 1945 | c[D_CBC_128_CML][0] = count; |
| 1946 | c[D_CBC_192_CML][0] = count; |
| 1947 | c[D_CBC_256_CML][0] = count; |
| 1948 | c[D_SHA256][0] = count; |
| 1949 | c[D_SHA512][0] = count; |
| 1950 | c[D_WHIRLPOOL][0] = count; |
| 1951 | c[D_IGE_128_AES][0] = count; |
| 1952 | c[D_IGE_192_AES][0] = count; |
| 1953 | c[D_IGE_256_AES][0] = count; |
| 1954 | c[D_GHASH][0] = count; |
| 1955 | c[D_RAND][0] = count; |
| 1956 | |
| 1957 | for (i = 1; i < size_num; i++) { |
| 1958 | long l0, l1; |
| 1959 | |
| 1960 | l0 = (long)lengths[0]; |
| 1961 | l1 = (long)lengths[i]; |
| 1962 | |
| 1963 | c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; |
| 1964 | c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; |
| 1965 | c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; |
| 1966 | c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; |
| 1967 | c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; |
| 1968 | c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; |
| 1969 | c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; |
| 1970 | c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; |
| 1971 | c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; |
| 1972 | c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; |
| 1973 | c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; |
| 1974 | c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1; |
| 1975 | |
| 1976 | l0 = (long)lengths[i - 1]; |
| 1977 | |
| 1978 | c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; |
| 1979 | c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; |
| 1980 | c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; |
| 1981 | c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; |
| 1982 | c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; |
| 1983 | c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; |
| 1984 | c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; |
| 1985 | c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; |
| 1986 | c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; |
| 1987 | c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; |
| 1988 | c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; |
| 1989 | c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; |
| 1990 | c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; |
| 1991 | c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; |
| 1992 | c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; |
| 1993 | c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; |
| 1994 | c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; |
| 1995 | c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; |
| 1996 | } |
| 1997 | |
| 1998 | # ifndef OPENSSL_NO_RSA |
| 1999 | rsa_c[R_RSA_512][0] = count / 2000; |
| 2000 | rsa_c[R_RSA_512][1] = count / 400; |
| 2001 | for (i = 1; i < RSA_NUM; i++) { |
| 2002 | rsa_c[i][0] = rsa_c[i - 1][0] / 8; |
| 2003 | rsa_c[i][1] = rsa_c[i - 1][1] / 4; |
| 2004 | if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) |
| 2005 | rsa_doit[i] = 0; |
| 2006 | else { |
| 2007 | if (rsa_c[i][0] == 0) { |
| 2008 | rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ |
| 2009 | rsa_c[i][1] = 20; |
| 2010 | } |
| 2011 | } |
| 2012 | } |
| 2013 | # endif |
| 2014 | |
| 2015 | # ifndef OPENSSL_NO_DSA |
| 2016 | dsa_c[R_DSA_512][0] = count / 1000; |
| 2017 | dsa_c[R_DSA_512][1] = count / 1000 / 2; |
| 2018 | for (i = 1; i < DSA_NUM; i++) { |
| 2019 | dsa_c[i][0] = dsa_c[i - 1][0] / 4; |
| 2020 | dsa_c[i][1] = dsa_c[i - 1][1] / 4; |
| 2021 | if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) |
| 2022 | dsa_doit[i] = 0; |
| 2023 | else { |
| 2024 | if (dsa_c[i][0] == 0) { |
| 2025 | dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ |
| 2026 | dsa_c[i][1] = 1; |
| 2027 | } |
| 2028 | } |
| 2029 | } |
| 2030 | # endif |
| 2031 | |
| 2032 | # ifndef OPENSSL_NO_EC |
| 2033 | ecdsa_c[R_EC_P160][0] = count / 1000; |
| 2034 | ecdsa_c[R_EC_P160][1] = count / 1000 / 2; |
| 2035 | for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| 2036 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| 2037 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| 2038 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) |
| 2039 | ecdsa_doit[i] = 0; |
| 2040 | else { |
| 2041 | if (ecdsa_c[i][0] == 0) { |
| 2042 | ecdsa_c[i][0] = 1; |
| 2043 | ecdsa_c[i][1] = 1; |
| 2044 | } |
| 2045 | } |
| 2046 | } |
| 2047 | # ifndef OPENSSL_NO_EC2M |
| 2048 | ecdsa_c[R_EC_K163][0] = count / 1000; |
| 2049 | ecdsa_c[R_EC_K163][1] = count / 1000 / 2; |
| 2050 | for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| 2051 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| 2052 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| 2053 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) |
| 2054 | ecdsa_doit[i] = 0; |
| 2055 | else { |
| 2056 | if (ecdsa_c[i][0] == 0) { |
| 2057 | ecdsa_c[i][0] = 1; |
| 2058 | ecdsa_c[i][1] = 1; |
| 2059 | } |
| 2060 | } |
| 2061 | } |
| 2062 | ecdsa_c[R_EC_B163][0] = count / 1000; |
| 2063 | ecdsa_c[R_EC_B163][1] = count / 1000 / 2; |
| 2064 | for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| 2065 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| 2066 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| 2067 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) |
| 2068 | ecdsa_doit[i] = 0; |
| 2069 | else { |
| 2070 | if (ecdsa_c[i][0] == 0) { |
| 2071 | ecdsa_c[i][0] = 1; |
| 2072 | ecdsa_c[i][1] = 1; |
| 2073 | } |
| 2074 | } |
| 2075 | } |
| 2076 | # endif |
| 2077 | |
| 2078 | ecdh_c[R_EC_P160][0] = count / 1000; |
| 2079 | for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| 2080 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| 2081 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) |
| 2082 | ecdh_doit[i] = 0; |
| 2083 | else { |
| 2084 | if (ecdh_c[i][0] == 0) { |
| 2085 | ecdh_c[i][0] = 1; |
| 2086 | } |
| 2087 | } |
| 2088 | } |
| 2089 | # ifndef OPENSSL_NO_EC2M |
| 2090 | ecdh_c[R_EC_K163][0] = count / 1000; |
| 2091 | for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| 2092 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| 2093 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) |
| 2094 | ecdh_doit[i] = 0; |
| 2095 | else { |
| 2096 | if (ecdh_c[i][0] == 0) { |
| 2097 | ecdh_c[i][0] = 1; |
| 2098 | } |
| 2099 | } |
| 2100 | } |
| 2101 | ecdh_c[R_EC_B163][0] = count / 1000; |
| 2102 | for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| 2103 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| 2104 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) |
| 2105 | ecdh_doit[i] = 0; |
| 2106 | else { |
| 2107 | if (ecdh_c[i][0] == 0) { |
| 2108 | ecdh_c[i][0] = 1; |
| 2109 | } |
| 2110 | } |
| 2111 | } |
| 2112 | # endif |
| 2113 | /* repeated code good to factorize */ |
| 2114 | ecdh_c[R_EC_BRP256R1][0] = count / 1000; |
| 2115 | for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) { |
| 2116 | ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; |
| 2117 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) |
| 2118 | ecdh_doit[i] = 0; |
| 2119 | else { |
| 2120 | if (ecdh_c[i][0] == 0) { |
| 2121 | ecdh_c[i][0] = 1; |
| 2122 | } |
| 2123 | } |
| 2124 | } |
| 2125 | ecdh_c[R_EC_BRP256T1][0] = count / 1000; |
| 2126 | for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) { |
| 2127 | ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; |
| 2128 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) |
| 2129 | ecdh_doit[i] = 0; |
| 2130 | else { |
| 2131 | if (ecdh_c[i][0] == 0) { |
| 2132 | ecdh_c[i][0] = 1; |
| 2133 | } |
| 2134 | } |
| 2135 | } |
| 2136 | /* default iteration count for the last two EC Curves */ |
| 2137 | ecdh_c[R_EC_X25519][0] = count / 1800; |
| 2138 | ecdh_c[R_EC_X448][0] = count / 7200; |
| 2139 | |
| 2140 | eddsa_c[R_EC_Ed25519][0] = count / 1800; |
| 2141 | eddsa_c[R_EC_Ed448][0] = count / 7200; |
| 2142 | # endif |
| 2143 | |
| 2144 | # else |
| 2145 | /* not worth fixing */ |
| 2146 | # error "You cannot disable DES on systems without SIGALRM." |
| 2147 | # endif /* OPENSSL_NO_DES */ |
| 2148 | #elif SIGALRM > 0 |
| 2149 | signal(SIGALRM, alarmed); |
| 2150 | #endif /* SIGALRM */ |
| 2151 | |
| 2152 | #ifndef OPENSSL_NO_MD2 |
| 2153 | if (doit[D_MD2]) { |
| 2154 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2155 | print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum], |
| 2156 | seconds.sym); |
| 2157 | Time_F(START); |
| 2158 | count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); |
| 2159 | d = Time_F(STOP); |
| 2160 | print_result(D_MD2, testnum, count, d); |
| 2161 | } |
| 2162 | } |
| 2163 | #endif |
| 2164 | #ifndef OPENSSL_NO_MDC2 |
| 2165 | if (doit[D_MDC2]) { |
| 2166 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2167 | print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum], |
| 2168 | seconds.sym); |
| 2169 | Time_F(START); |
| 2170 | count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); |
| 2171 | d = Time_F(STOP); |
| 2172 | print_result(D_MDC2, testnum, count, d); |
| 2173 | } |
| 2174 | } |
| 2175 | #endif |
| 2176 | |
| 2177 | #ifndef OPENSSL_NO_MD4 |
| 2178 | if (doit[D_MD4]) { |
| 2179 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2180 | print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum], |
| 2181 | seconds.sym); |
| 2182 | Time_F(START); |
| 2183 | count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); |
| 2184 | d = Time_F(STOP); |
| 2185 | print_result(D_MD4, testnum, count, d); |
| 2186 | } |
| 2187 | } |
| 2188 | #endif |
| 2189 | |
| 2190 | #ifndef OPENSSL_NO_MD5 |
| 2191 | if (doit[D_MD5]) { |
| 2192 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2193 | print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum], |
| 2194 | seconds.sym); |
| 2195 | Time_F(START); |
| 2196 | count = run_benchmark(async_jobs, MD5_loop, loopargs); |
| 2197 | d = Time_F(STOP); |
| 2198 | print_result(D_MD5, testnum, count, d); |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | if (doit[D_HMAC]) { |
| 2203 | static const char hmac_key[] = "This is a key..."; |
| 2204 | int len = strlen(hmac_key); |
| 2205 | |
| 2206 | for (i = 0; i < loopargs_len; i++) { |
| 2207 | loopargs[i].hctx = HMAC_CTX_new(); |
| 2208 | if (loopargs[i].hctx == NULL) { |
| 2209 | BIO_printf(bio_err, "HMAC malloc failure, exiting..."); |
| 2210 | exit(1); |
| 2211 | } |
| 2212 | |
| 2213 | HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); |
| 2214 | } |
| 2215 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2216 | print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum], |
| 2217 | seconds.sym); |
| 2218 | Time_F(START); |
| 2219 | count = run_benchmark(async_jobs, HMAC_loop, loopargs); |
| 2220 | d = Time_F(STOP); |
| 2221 | print_result(D_HMAC, testnum, count, d); |
| 2222 | } |
| 2223 | for (i = 0; i < loopargs_len; i++) { |
| 2224 | HMAC_CTX_free(loopargs[i].hctx); |
| 2225 | } |
| 2226 | } |
| 2227 | #endif |
| 2228 | if (doit[D_SHA1]) { |
| 2229 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2230 | print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum], |
| 2231 | seconds.sym); |
| 2232 | Time_F(START); |
| 2233 | count = run_benchmark(async_jobs, SHA1_loop, loopargs); |
| 2234 | d = Time_F(STOP); |
| 2235 | print_result(D_SHA1, testnum, count, d); |
| 2236 | } |
| 2237 | } |
| 2238 | if (doit[D_SHA256]) { |
| 2239 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2240 | print_message(names[D_SHA256], c[D_SHA256][testnum], |
| 2241 | lengths[testnum], seconds.sym); |
| 2242 | Time_F(START); |
| 2243 | count = run_benchmark(async_jobs, SHA256_loop, loopargs); |
| 2244 | d = Time_F(STOP); |
| 2245 | print_result(D_SHA256, testnum, count, d); |
| 2246 | } |
| 2247 | } |
| 2248 | if (doit[D_SHA512]) { |
| 2249 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2250 | print_message(names[D_SHA512], c[D_SHA512][testnum], |
| 2251 | lengths[testnum], seconds.sym); |
| 2252 | Time_F(START); |
| 2253 | count = run_benchmark(async_jobs, SHA512_loop, loopargs); |
| 2254 | d = Time_F(STOP); |
| 2255 | print_result(D_SHA512, testnum, count, d); |
| 2256 | } |
| 2257 | } |
| 2258 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 2259 | if (doit[D_WHIRLPOOL]) { |
| 2260 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2261 | print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], |
| 2262 | lengths[testnum], seconds.sym); |
| 2263 | Time_F(START); |
| 2264 | count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); |
| 2265 | d = Time_F(STOP); |
| 2266 | print_result(D_WHIRLPOOL, testnum, count, d); |
| 2267 | } |
| 2268 | } |
| 2269 | #endif |
| 2270 | |
| 2271 | #ifndef OPENSSL_NO_RMD160 |
| 2272 | if (doit[D_RMD160]) { |
| 2273 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2274 | print_message(names[D_RMD160], c[D_RMD160][testnum], |
| 2275 | lengths[testnum], seconds.sym); |
| 2276 | Time_F(START); |
| 2277 | count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); |
| 2278 | d = Time_F(STOP); |
| 2279 | print_result(D_RMD160, testnum, count, d); |
| 2280 | } |
| 2281 | } |
| 2282 | #endif |
| 2283 | #ifndef OPENSSL_NO_RC4 |
| 2284 | if (doit[D_RC4]) { |
| 2285 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2286 | print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum], |
| 2287 | seconds.sym); |
| 2288 | Time_F(START); |
| 2289 | count = run_benchmark(async_jobs, RC4_loop, loopargs); |
| 2290 | d = Time_F(STOP); |
| 2291 | print_result(D_RC4, testnum, count, d); |
| 2292 | } |
| 2293 | } |
| 2294 | #endif |
| 2295 | #ifndef OPENSSL_NO_DES |
| 2296 | if (doit[D_CBC_DES]) { |
| 2297 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2298 | print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], |
| 2299 | lengths[testnum], seconds.sym); |
| 2300 | Time_F(START); |
| 2301 | count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); |
| 2302 | d = Time_F(STOP); |
| 2303 | print_result(D_CBC_DES, testnum, count, d); |
| 2304 | } |
| 2305 | } |
| 2306 | |
| 2307 | if (doit[D_EDE3_DES]) { |
| 2308 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2309 | print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], |
| 2310 | lengths[testnum], seconds.sym); |
| 2311 | Time_F(START); |
| 2312 | count = |
| 2313 | run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); |
| 2314 | d = Time_F(STOP); |
| 2315 | print_result(D_EDE3_DES, testnum, count, d); |
| 2316 | } |
| 2317 | } |
| 2318 | #endif |
| 2319 | |
| 2320 | if (doit[D_CBC_128_AES]) { |
| 2321 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2322 | print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], |
| 2323 | lengths[testnum], seconds.sym); |
| 2324 | Time_F(START); |
| 2325 | count = |
| 2326 | run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); |
| 2327 | d = Time_F(STOP); |
| 2328 | print_result(D_CBC_128_AES, testnum, count, d); |
| 2329 | } |
| 2330 | } |
| 2331 | if (doit[D_CBC_192_AES]) { |
| 2332 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2333 | print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], |
| 2334 | lengths[testnum], seconds.sym); |
| 2335 | Time_F(START); |
| 2336 | count = |
| 2337 | run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); |
| 2338 | d = Time_F(STOP); |
| 2339 | print_result(D_CBC_192_AES, testnum, count, d); |
| 2340 | } |
| 2341 | } |
| 2342 | if (doit[D_CBC_256_AES]) { |
| 2343 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2344 | print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], |
| 2345 | lengths[testnum], seconds.sym); |
| 2346 | Time_F(START); |
| 2347 | count = |
| 2348 | run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); |
| 2349 | d = Time_F(STOP); |
| 2350 | print_result(D_CBC_256_AES, testnum, count, d); |
| 2351 | } |
| 2352 | } |
| 2353 | |
| 2354 | if (doit[D_IGE_128_AES]) { |
| 2355 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2356 | print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], |
| 2357 | lengths[testnum], seconds.sym); |
| 2358 | Time_F(START); |
| 2359 | count = |
| 2360 | run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); |
| 2361 | d = Time_F(STOP); |
| 2362 | print_result(D_IGE_128_AES, testnum, count, d); |
| 2363 | } |
| 2364 | } |
| 2365 | if (doit[D_IGE_192_AES]) { |
| 2366 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2367 | print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], |
| 2368 | lengths[testnum], seconds.sym); |
| 2369 | Time_F(START); |
| 2370 | count = |
| 2371 | run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); |
| 2372 | d = Time_F(STOP); |
| 2373 | print_result(D_IGE_192_AES, testnum, count, d); |
| 2374 | } |
| 2375 | } |
| 2376 | if (doit[D_IGE_256_AES]) { |
| 2377 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2378 | print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], |
| 2379 | lengths[testnum], seconds.sym); |
| 2380 | Time_F(START); |
| 2381 | count = |
| 2382 | run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); |
| 2383 | d = Time_F(STOP); |
| 2384 | print_result(D_IGE_256_AES, testnum, count, d); |
| 2385 | } |
| 2386 | } |
| 2387 | if (doit[D_GHASH]) { |
| 2388 | for (i = 0; i < loopargs_len; i++) { |
| 2389 | loopargs[i].gcm_ctx = |
| 2390 | CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
| 2391 | CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, |
| 2392 | (unsigned char *)"0123456789ab", 12); |
| 2393 | } |
| 2394 | |
| 2395 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2396 | print_message(names[D_GHASH], c[D_GHASH][testnum], |
| 2397 | lengths[testnum], seconds.sym); |
| 2398 | Time_F(START); |
| 2399 | count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); |
| 2400 | d = Time_F(STOP); |
| 2401 | print_result(D_GHASH, testnum, count, d); |
| 2402 | } |
| 2403 | for (i = 0; i < loopargs_len; i++) |
| 2404 | CRYPTO_gcm128_release(loopargs[i].gcm_ctx); |
| 2405 | } |
| 2406 | #ifndef OPENSSL_NO_CAMELLIA |
| 2407 | if (doit[D_CBC_128_CML]) { |
| 2408 | if (async_jobs > 0) { |
| 2409 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2410 | names[D_CBC_128_CML]); |
| 2411 | doit[D_CBC_128_CML] = 0; |
| 2412 | } |
| 2413 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2414 | print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], |
| 2415 | lengths[testnum], seconds.sym); |
| 2416 | Time_F(START); |
| 2417 | for (count = 0; COND(c[D_CBC_128_CML][testnum]); count++) |
| 2418 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2419 | (size_t)lengths[testnum], &camellia_ks1, |
| 2420 | iv, CAMELLIA_ENCRYPT); |
| 2421 | d = Time_F(STOP); |
| 2422 | print_result(D_CBC_128_CML, testnum, count, d); |
| 2423 | } |
| 2424 | } |
| 2425 | if (doit[D_CBC_192_CML]) { |
| 2426 | if (async_jobs > 0) { |
| 2427 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2428 | names[D_CBC_192_CML]); |
| 2429 | doit[D_CBC_192_CML] = 0; |
| 2430 | } |
| 2431 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2432 | print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], |
| 2433 | lengths[testnum], seconds.sym); |
| 2434 | if (async_jobs > 0) { |
| 2435 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| 2436 | exit(1); |
| 2437 | } |
| 2438 | Time_F(START); |
| 2439 | for (count = 0; COND(c[D_CBC_192_CML][testnum]); count++) |
| 2440 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2441 | (size_t)lengths[testnum], &camellia_ks2, |
| 2442 | iv, CAMELLIA_ENCRYPT); |
| 2443 | d = Time_F(STOP); |
| 2444 | print_result(D_CBC_192_CML, testnum, count, d); |
| 2445 | } |
| 2446 | } |
| 2447 | if (doit[D_CBC_256_CML]) { |
| 2448 | if (async_jobs > 0) { |
| 2449 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2450 | names[D_CBC_256_CML]); |
| 2451 | doit[D_CBC_256_CML] = 0; |
| 2452 | } |
| 2453 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2454 | print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], |
| 2455 | lengths[testnum], seconds.sym); |
| 2456 | Time_F(START); |
| 2457 | for (count = 0; COND(c[D_CBC_256_CML][testnum]); count++) |
| 2458 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2459 | (size_t)lengths[testnum], &camellia_ks3, |
| 2460 | iv, CAMELLIA_ENCRYPT); |
| 2461 | d = Time_F(STOP); |
| 2462 | print_result(D_CBC_256_CML, testnum, count, d); |
| 2463 | } |
| 2464 | } |
| 2465 | #endif |
| 2466 | #ifndef OPENSSL_NO_IDEA |
| 2467 | if (doit[D_CBC_IDEA]) { |
| 2468 | if (async_jobs > 0) { |
| 2469 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2470 | names[D_CBC_IDEA]); |
| 2471 | doit[D_CBC_IDEA] = 0; |
| 2472 | } |
| 2473 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2474 | print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], |
| 2475 | lengths[testnum], seconds.sym); |
| 2476 | Time_F(START); |
| 2477 | for (count = 0; COND(c[D_CBC_IDEA][testnum]); count++) |
| 2478 | IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2479 | (size_t)lengths[testnum], &idea_ks, |
| 2480 | iv, IDEA_ENCRYPT); |
| 2481 | d = Time_F(STOP); |
| 2482 | print_result(D_CBC_IDEA, testnum, count, d); |
| 2483 | } |
| 2484 | } |
| 2485 | #endif |
| 2486 | #ifndef OPENSSL_NO_SEED |
| 2487 | if (doit[D_CBC_SEED]) { |
| 2488 | if (async_jobs > 0) { |
| 2489 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2490 | names[D_CBC_SEED]); |
| 2491 | doit[D_CBC_SEED] = 0; |
| 2492 | } |
| 2493 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2494 | print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], |
| 2495 | lengths[testnum], seconds.sym); |
| 2496 | Time_F(START); |
| 2497 | for (count = 0; COND(c[D_CBC_SEED][testnum]); count++) |
| 2498 | SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2499 | (size_t)lengths[testnum], &seed_ks, iv, 1); |
| 2500 | d = Time_F(STOP); |
| 2501 | print_result(D_CBC_SEED, testnum, count, d); |
| 2502 | } |
| 2503 | } |
| 2504 | #endif |
| 2505 | #ifndef OPENSSL_NO_RC2 |
| 2506 | if (doit[D_CBC_RC2]) { |
| 2507 | if (async_jobs > 0) { |
| 2508 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2509 | names[D_CBC_RC2]); |
| 2510 | doit[D_CBC_RC2] = 0; |
| 2511 | } |
| 2512 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2513 | print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], |
| 2514 | lengths[testnum], seconds.sym); |
| 2515 | if (async_jobs > 0) { |
| 2516 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| 2517 | exit(1); |
| 2518 | } |
| 2519 | Time_F(START); |
| 2520 | for (count = 0; COND(c[D_CBC_RC2][testnum]); count++) |
| 2521 | RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2522 | (size_t)lengths[testnum], &rc2_ks, |
| 2523 | iv, RC2_ENCRYPT); |
| 2524 | d = Time_F(STOP); |
| 2525 | print_result(D_CBC_RC2, testnum, count, d); |
| 2526 | } |
| 2527 | } |
| 2528 | #endif |
| 2529 | #ifndef OPENSSL_NO_RC5 |
| 2530 | if (doit[D_CBC_RC5]) { |
| 2531 | if (async_jobs > 0) { |
| 2532 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2533 | names[D_CBC_RC5]); |
| 2534 | doit[D_CBC_RC5] = 0; |
| 2535 | } |
| 2536 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2537 | print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], |
| 2538 | lengths[testnum], seconds.sym); |
| 2539 | if (async_jobs > 0) { |
| 2540 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| 2541 | exit(1); |
| 2542 | } |
| 2543 | Time_F(START); |
| 2544 | for (count = 0; COND(c[D_CBC_RC5][testnum]); count++) |
| 2545 | RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2546 | (size_t)lengths[testnum], &rc5_ks, |
| 2547 | iv, RC5_ENCRYPT); |
| 2548 | d = Time_F(STOP); |
| 2549 | print_result(D_CBC_RC5, testnum, count, d); |
| 2550 | } |
| 2551 | } |
| 2552 | #endif |
| 2553 | #ifndef OPENSSL_NO_BF |
| 2554 | if (doit[D_CBC_BF]) { |
| 2555 | if (async_jobs > 0) { |
| 2556 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2557 | names[D_CBC_BF]); |
| 2558 | doit[D_CBC_BF] = 0; |
| 2559 | } |
| 2560 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2561 | print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], |
| 2562 | lengths[testnum], seconds.sym); |
| 2563 | Time_F(START); |
| 2564 | for (count = 0; COND(c[D_CBC_BF][testnum]); count++) |
| 2565 | BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2566 | (size_t)lengths[testnum], &bf_ks, |
| 2567 | iv, BF_ENCRYPT); |
| 2568 | d = Time_F(STOP); |
| 2569 | print_result(D_CBC_BF, testnum, count, d); |
| 2570 | } |
| 2571 | } |
| 2572 | #endif |
| 2573 | #ifndef OPENSSL_NO_CAST |
| 2574 | if (doit[D_CBC_CAST]) { |
| 2575 | if (async_jobs > 0) { |
| 2576 | BIO_printf(bio_err, "Async mode is not supported with %s\n", |
| 2577 | names[D_CBC_CAST]); |
| 2578 | doit[D_CBC_CAST] = 0; |
| 2579 | } |
| 2580 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { |
| 2581 | print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], |
| 2582 | lengths[testnum], seconds.sym); |
| 2583 | Time_F(START); |
| 2584 | for (count = 0; COND(c[D_CBC_CAST][testnum]); count++) |
| 2585 | CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| 2586 | (size_t)lengths[testnum], &cast_ks, |
| 2587 | iv, CAST_ENCRYPT); |
| 2588 | d = Time_F(STOP); |
| 2589 | print_result(D_CBC_CAST, testnum, count, d); |
| 2590 | } |
| 2591 | } |
| 2592 | #endif |
| 2593 | if (doit[D_RAND]) { |
| 2594 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2595 | print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum], |
| 2596 | seconds.sym); |
| 2597 | Time_F(START); |
| 2598 | count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); |
| 2599 | d = Time_F(STOP); |
| 2600 | print_result(D_RAND, testnum, count, d); |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | if (doit[D_EVP]) { |
| 2605 | if (evp_cipher != NULL) { |
| 2606 | int (*loopfunc)(void *args) = EVP_Update_loop; |
| 2607 | |
| 2608 | if (multiblock && (EVP_CIPHER_flags(evp_cipher) & |
| 2609 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { |
| 2610 | multiblock_speed(evp_cipher, lengths_single, &seconds); |
| 2611 | ret = 0; |
| 2612 | goto end; |
| 2613 | } |
| 2614 | |
| 2615 | names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); |
| 2616 | |
| 2617 | if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { |
| 2618 | loopfunc = EVP_Update_loop_ccm; |
| 2619 | } else if (aead && (EVP_CIPHER_flags(evp_cipher) & |
| 2620 | EVP_CIPH_FLAG_AEAD_CIPHER)) { |
| 2621 | loopfunc = EVP_Update_loop_aead; |
| 2622 | if (lengths == lengths_list) { |
| 2623 | lengths = aead_lengths_list; |
| 2624 | size_num = OSSL_NELEM(aead_lengths_list); |
| 2625 | } |
| 2626 | } |
| 2627 | |
| 2628 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2629 | print_message(names[D_EVP], save_count, lengths[testnum], |
| 2630 | seconds.sym); |
| 2631 | |
| 2632 | for (k = 0; k < loopargs_len; k++) { |
| 2633 | loopargs[k].ctx = EVP_CIPHER_CTX_new(); |
| 2634 | if (loopargs[k].ctx == NULL) { |
| 2635 | BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n"); |
| 2636 | exit(1); |
| 2637 | } |
| 2638 | if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, |
| 2639 | NULL, iv, decrypt ? 0 : 1)) { |
| 2640 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); |
| 2641 | ERR_print_errors(bio_err); |
| 2642 | exit(1); |
| 2643 | } |
| 2644 | |
| 2645 | EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); |
| 2646 | |
| 2647 | keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx); |
| 2648 | loopargs[k].key = app_malloc(keylen, "evp_cipher key"); |
| 2649 | EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); |
| 2650 | if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, |
| 2651 | loopargs[k].key, NULL, -1)) { |
| 2652 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); |
| 2653 | ERR_print_errors(bio_err); |
| 2654 | exit(1); |
| 2655 | } |
| 2656 | OPENSSL_clear_free(loopargs[k].key, keylen); |
| 2657 | } |
| 2658 | |
| 2659 | Time_F(START); |
| 2660 | count = run_benchmark(async_jobs, loopfunc, loopargs); |
| 2661 | d = Time_F(STOP); |
| 2662 | for (k = 0; k < loopargs_len; k++) { |
| 2663 | EVP_CIPHER_CTX_free(loopargs[k].ctx); |
| 2664 | } |
| 2665 | print_result(D_EVP, testnum, count, d); |
| 2666 | } |
| 2667 | } else if (evp_md != NULL) { |
| 2668 | names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); |
| 2669 | |
| 2670 | for (testnum = 0; testnum < size_num; testnum++) { |
| 2671 | print_message(names[D_EVP], save_count, lengths[testnum], |
| 2672 | seconds.sym); |
| 2673 | Time_F(START); |
| 2674 | count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); |
| 2675 | d = Time_F(STOP); |
| 2676 | print_result(D_EVP, testnum, count, d); |
| 2677 | } |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | for (i = 0; i < loopargs_len; i++) |
| 2682 | if (RAND_bytes(loopargs[i].buf, 36) <= 0) |
| 2683 | goto end; |
| 2684 | |
| 2685 | #ifndef OPENSSL_NO_RSA |
| 2686 | for (testnum = 0; testnum < RSA_NUM; testnum++) { |
| 2687 | int st = 0; |
| 2688 | if (!rsa_doit[testnum]) |
| 2689 | continue; |
| 2690 | for (i = 0; i < loopargs_len; i++) { |
| 2691 | if (primes > 2) { |
| 2692 | /* we haven't set keys yet, generate multi-prime RSA keys */ |
| 2693 | BIGNUM *bn = BN_new(); |
| 2694 | |
| 2695 | if (bn == NULL) |
| 2696 | goto end; |
| 2697 | if (!BN_set_word(bn, RSA_F4)) { |
| 2698 | BN_free(bn); |
| 2699 | goto end; |
| 2700 | } |
| 2701 | |
| 2702 | BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n", |
| 2703 | rsa_choices[testnum].name); |
| 2704 | |
| 2705 | loopargs[i].rsa_key[testnum] = RSA_new(); |
| 2706 | if (loopargs[i].rsa_key[testnum] == NULL) { |
| 2707 | BN_free(bn); |
| 2708 | goto end; |
| 2709 | } |
| 2710 | |
| 2711 | if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum], |
| 2712 | rsa_bits[testnum], |
| 2713 | primes, bn, NULL)) { |
| 2714 | BN_free(bn); |
| 2715 | goto end; |
| 2716 | } |
| 2717 | BN_free(bn); |
| 2718 | } |
| 2719 | st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, |
| 2720 | &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); |
| 2721 | if (st == 0) |
| 2722 | break; |
| 2723 | } |
| 2724 | if (st == 0) { |
| 2725 | BIO_printf(bio_err, |
| 2726 | "RSA sign failure. No RSA sign will be done.\n"); |
| 2727 | ERR_print_errors(bio_err); |
| 2728 | rsa_count = 1; |
| 2729 | } else { |
| 2730 | pkey_print_message("private", "rsa", |
| 2731 | rsa_c[testnum][0], rsa_bits[testnum], |
| 2732 | seconds.rsa); |
| 2733 | /* RSA_blinding_on(rsa_key[testnum],NULL); */ |
| 2734 | Time_F(START); |
| 2735 | count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); |
| 2736 | d = Time_F(STOP); |
| 2737 | BIO_printf(bio_err, |
| 2738 | mr ? "+R1:%ld:%d:%.2f\n" |
| 2739 | : "%ld %u bits private RSA's in %.2fs\n", |
| 2740 | count, rsa_bits[testnum], d); |
| 2741 | rsa_results[testnum][0] = (double)count / d; |
| 2742 | rsa_count = count; |
| 2743 | } |
| 2744 | |
| 2745 | for (i = 0; i < loopargs_len; i++) { |
| 2746 | st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, |
| 2747 | loopargs[i].siglen, loopargs[i].rsa_key[testnum]); |
| 2748 | if (st <= 0) |
| 2749 | break; |
| 2750 | } |
| 2751 | if (st <= 0) { |
| 2752 | BIO_printf(bio_err, |
| 2753 | "RSA verify failure. No RSA verify will be done.\n"); |
| 2754 | ERR_print_errors(bio_err); |
| 2755 | rsa_doit[testnum] = 0; |
| 2756 | } else { |
| 2757 | pkey_print_message("public", "rsa", |
| 2758 | rsa_c[testnum][1], rsa_bits[testnum], |
| 2759 | seconds.rsa); |
| 2760 | Time_F(START); |
| 2761 | count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); |
| 2762 | d = Time_F(STOP); |
| 2763 | BIO_printf(bio_err, |
| 2764 | mr ? "+R2:%ld:%d:%.2f\n" |
| 2765 | : "%ld %u bits public RSA's in %.2fs\n", |
| 2766 | count, rsa_bits[testnum], d); |
| 2767 | rsa_results[testnum][1] = (double)count / d; |
| 2768 | } |
| 2769 | |
| 2770 | if (rsa_count <= 1) { |
| 2771 | /* if longer than 10s, don't do any more */ |
| 2772 | for (testnum++; testnum < RSA_NUM; testnum++) |
| 2773 | rsa_doit[testnum] = 0; |
| 2774 | } |
| 2775 | } |
| 2776 | #endif /* OPENSSL_NO_RSA */ |
| 2777 | |
| 2778 | for (i = 0; i < loopargs_len; i++) |
| 2779 | if (RAND_bytes(loopargs[i].buf, 36) <= 0) |
| 2780 | goto end; |
| 2781 | |
| 2782 | #ifndef OPENSSL_NO_DSA |
| 2783 | for (testnum = 0; testnum < DSA_NUM; testnum++) { |
| 2784 | int st = 0; |
| 2785 | if (!dsa_doit[testnum]) |
| 2786 | continue; |
| 2787 | |
| 2788 | /* DSA_generate_key(dsa_key[testnum]); */ |
| 2789 | /* DSA_sign_setup(dsa_key[testnum],NULL); */ |
| 2790 | for (i = 0; i < loopargs_len; i++) { |
| 2791 | st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| 2792 | &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); |
| 2793 | if (st == 0) |
| 2794 | break; |
| 2795 | } |
| 2796 | if (st == 0) { |
| 2797 | BIO_printf(bio_err, |
| 2798 | "DSA sign failure. No DSA sign will be done.\n"); |
| 2799 | ERR_print_errors(bio_err); |
| 2800 | rsa_count = 1; |
| 2801 | } else { |
| 2802 | pkey_print_message("sign", "dsa", |
| 2803 | dsa_c[testnum][0], dsa_bits[testnum], |
| 2804 | seconds.dsa); |
| 2805 | Time_F(START); |
| 2806 | count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); |
| 2807 | d = Time_F(STOP); |
| 2808 | BIO_printf(bio_err, |
| 2809 | mr ? "+R3:%ld:%u:%.2f\n" |
| 2810 | : "%ld %u bits DSA signs in %.2fs\n", |
| 2811 | count, dsa_bits[testnum], d); |
| 2812 | dsa_results[testnum][0] = (double)count / d; |
| 2813 | rsa_count = count; |
| 2814 | } |
| 2815 | |
| 2816 | for (i = 0; i < loopargs_len; i++) { |
| 2817 | st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| 2818 | loopargs[i].siglen, loopargs[i].dsa_key[testnum]); |
| 2819 | if (st <= 0) |
| 2820 | break; |
| 2821 | } |
| 2822 | if (st <= 0) { |
| 2823 | BIO_printf(bio_err, |
| 2824 | "DSA verify failure. No DSA verify will be done.\n"); |
| 2825 | ERR_print_errors(bio_err); |
| 2826 | dsa_doit[testnum] = 0; |
| 2827 | } else { |
| 2828 | pkey_print_message("verify", "dsa", |
| 2829 | dsa_c[testnum][1], dsa_bits[testnum], |
| 2830 | seconds.dsa); |
| 2831 | Time_F(START); |
| 2832 | count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); |
| 2833 | d = Time_F(STOP); |
| 2834 | BIO_printf(bio_err, |
| 2835 | mr ? "+R4:%ld:%u:%.2f\n" |
| 2836 | : "%ld %u bits DSA verify in %.2fs\n", |
| 2837 | count, dsa_bits[testnum], d); |
| 2838 | dsa_results[testnum][1] = (double)count / d; |
| 2839 | } |
| 2840 | |
| 2841 | if (rsa_count <= 1) { |
| 2842 | /* if longer than 10s, don't do any more */ |
| 2843 | for (testnum++; testnum < DSA_NUM; testnum++) |
| 2844 | dsa_doit[testnum] = 0; |
| 2845 | } |
| 2846 | } |
| 2847 | #endif /* OPENSSL_NO_DSA */ |
| 2848 | |
| 2849 | #ifndef OPENSSL_NO_EC |
| 2850 | for (testnum = 0; testnum < ECDSA_NUM; testnum++) { |
| 2851 | int st = 1; |
| 2852 | |
| 2853 | if (!ecdsa_doit[testnum]) |
| 2854 | continue; /* Ignore Curve */ |
| 2855 | for (i = 0; i < loopargs_len; i++) { |
| 2856 | loopargs[i].ecdsa[testnum] = |
| 2857 | EC_KEY_new_by_curve_name(test_curves[testnum].nid); |
| 2858 | if (loopargs[i].ecdsa[testnum] == NULL) { |
| 2859 | st = 0; |
| 2860 | break; |
| 2861 | } |
| 2862 | } |
| 2863 | if (st == 0) { |
| 2864 | BIO_printf(bio_err, "ECDSA failure.\n"); |
| 2865 | ERR_print_errors(bio_err); |
| 2866 | rsa_count = 1; |
| 2867 | } else { |
| 2868 | for (i = 0; i < loopargs_len; i++) { |
| 2869 | EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); |
| 2870 | /* Perform ECDSA signature test */ |
| 2871 | EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); |
| 2872 | st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| 2873 | &loopargs[i].siglen, |
| 2874 | loopargs[i].ecdsa[testnum]); |
| 2875 | if (st == 0) |
| 2876 | break; |
| 2877 | } |
| 2878 | if (st == 0) { |
| 2879 | BIO_printf(bio_err, |
| 2880 | "ECDSA sign failure. No ECDSA sign will be done.\n"); |
| 2881 | ERR_print_errors(bio_err); |
| 2882 | rsa_count = 1; |
| 2883 | } else { |
| 2884 | pkey_print_message("sign", "ecdsa", |
| 2885 | ecdsa_c[testnum][0], |
| 2886 | test_curves[testnum].bits, seconds.ecdsa); |
| 2887 | Time_F(START); |
| 2888 | count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); |
| 2889 | d = Time_F(STOP); |
| 2890 | |
| 2891 | BIO_printf(bio_err, |
| 2892 | mr ? "+R5:%ld:%u:%.2f\n" : |
| 2893 | "%ld %u bits ECDSA signs in %.2fs \n", |
| 2894 | count, test_curves[testnum].bits, d); |
| 2895 | ecdsa_results[testnum][0] = (double)count / d; |
| 2896 | rsa_count = count; |
| 2897 | } |
| 2898 | |
| 2899 | /* Perform ECDSA verification test */ |
| 2900 | for (i = 0; i < loopargs_len; i++) { |
| 2901 | st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| 2902 | loopargs[i].siglen, |
| 2903 | loopargs[i].ecdsa[testnum]); |
| 2904 | if (st != 1) |
| 2905 | break; |
| 2906 | } |
| 2907 | if (st != 1) { |
| 2908 | BIO_printf(bio_err, |
| 2909 | "ECDSA verify failure. No ECDSA verify will be done.\n"); |
| 2910 | ERR_print_errors(bio_err); |
| 2911 | ecdsa_doit[testnum] = 0; |
| 2912 | } else { |
| 2913 | pkey_print_message("verify", "ecdsa", |
| 2914 | ecdsa_c[testnum][1], |
| 2915 | test_curves[testnum].bits, seconds.ecdsa); |
| 2916 | Time_F(START); |
| 2917 | count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); |
| 2918 | d = Time_F(STOP); |
| 2919 | BIO_printf(bio_err, |
| 2920 | mr ? "+R6:%ld:%u:%.2f\n" |
| 2921 | : "%ld %u bits ECDSA verify in %.2fs\n", |
| 2922 | count, test_curves[testnum].bits, d); |
| 2923 | ecdsa_results[testnum][1] = (double)count / d; |
| 2924 | } |
| 2925 | |
| 2926 | if (rsa_count <= 1) { |
| 2927 | /* if longer than 10s, don't do any more */ |
| 2928 | for (testnum++; testnum < ECDSA_NUM; testnum++) |
| 2929 | ecdsa_doit[testnum] = 0; |
| 2930 | } |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | for (testnum = 0; testnum < EC_NUM; testnum++) { |
| 2935 | int ecdh_checks = 1; |
| 2936 | |
| 2937 | if (!ecdh_doit[testnum]) |
| 2938 | continue; |
| 2939 | |
| 2940 | for (i = 0; i < loopargs_len; i++) { |
| 2941 | EVP_PKEY_CTX *kctx = NULL; |
| 2942 | EVP_PKEY_CTX *test_ctx = NULL; |
| 2943 | EVP_PKEY_CTX *ctx = NULL; |
| 2944 | EVP_PKEY *key_A = NULL; |
| 2945 | EVP_PKEY *key_B = NULL; |
| 2946 | size_t outlen; |
| 2947 | size_t test_outlen; |
| 2948 | |
| 2949 | /* Ensure that the error queue is empty */ |
| 2950 | if (ERR_peek_error()) { |
| 2951 | BIO_printf(bio_err, |
| 2952 | "WARNING: the error queue contains previous unhandled errors.\n"); |
| 2953 | ERR_print_errors(bio_err); |
| 2954 | } |
| 2955 | |
| 2956 | /* Let's try to create a ctx directly from the NID: this works for |
| 2957 | * curves like Curve25519 that are not implemented through the low |
| 2958 | * level EC interface. |
| 2959 | * If this fails we try creating a EVP_PKEY_EC generic param ctx, |
| 2960 | * then we set the curve by NID before deriving the actual keygen |
| 2961 | * ctx for that specific curve. */ |
| 2962 | kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */ |
| 2963 | if (!kctx) { |
| 2964 | EVP_PKEY_CTX *pctx = NULL; |
| 2965 | EVP_PKEY *params = NULL; |
| 2966 | |
| 2967 | /* If we reach this code EVP_PKEY_CTX_new_id() failed and a |
| 2968 | * "int_ctx_new:unsupported algorithm" error was added to the |
| 2969 | * error queue. |
| 2970 | * We remove it from the error queue as we are handling it. */ |
| 2971 | unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ |
| 2972 | if (error == ERR_peek_last_error() && /* oldest and latest errors match */ |
| 2973 | /* check that the error origin matches */ |
| 2974 | ERR_GET_LIB(error) == ERR_LIB_EVP && |
| 2975 | ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW && |
| 2976 | ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) |
| 2977 | ERR_get_error(); /* pop error from queue */ |
| 2978 | if (ERR_peek_error()) { |
| 2979 | BIO_printf(bio_err, |
| 2980 | "Unhandled error in the error queue during ECDH init.\n"); |
| 2981 | ERR_print_errors(bio_err); |
| 2982 | rsa_count = 1; |
| 2983 | break; |
| 2984 | } |
| 2985 | |
| 2986 | if ( /* Create the context for parameter generation */ |
| 2987 | !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || |
| 2988 | /* Initialise the parameter generation */ |
| 2989 | !EVP_PKEY_paramgen_init(pctx) || |
| 2990 | /* Set the curve by NID */ |
| 2991 | !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, |
| 2992 | test_curves |
| 2993 | [testnum].nid) || |
| 2994 | /* Create the parameter object params */ |
| 2995 | !EVP_PKEY_paramgen(pctx, ¶ms)) { |
| 2996 | ecdh_checks = 0; |
| 2997 | BIO_printf(bio_err, "ECDH EC params init failure.\n"); |
| 2998 | ERR_print_errors(bio_err); |
| 2999 | rsa_count = 1; |
| 3000 | break; |
| 3001 | } |
| 3002 | /* Create the context for the key generation */ |
| 3003 | kctx = EVP_PKEY_CTX_new(params, NULL); |
| 3004 | |
| 3005 | EVP_PKEY_free(params); |
| 3006 | params = NULL; |
| 3007 | EVP_PKEY_CTX_free(pctx); |
| 3008 | pctx = NULL; |
| 3009 | } |
| 3010 | if (kctx == NULL || /* keygen ctx is not null */ |
| 3011 | EVP_PKEY_keygen_init(kctx) <= 0/* init keygen ctx */ ) { |
| 3012 | ecdh_checks = 0; |
| 3013 | BIO_printf(bio_err, "ECDH keygen failure.\n"); |
| 3014 | ERR_print_errors(bio_err); |
| 3015 | rsa_count = 1; |
| 3016 | break; |
| 3017 | } |
| 3018 | |
| 3019 | if (EVP_PKEY_keygen(kctx, &key_A) <= 0 || /* generate secret key A */ |
| 3020 | EVP_PKEY_keygen(kctx, &key_B) <= 0 || /* generate secret key B */ |
| 3021 | !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ |
| 3022 | EVP_PKEY_derive_init(ctx) <= 0 || /* init derivation ctx */ |
| 3023 | EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 || /* set peer pubkey in ctx */ |
| 3024 | EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 || /* determine max length */ |
| 3025 | outlen == 0 || /* ensure outlen is a valid size */ |
| 3026 | outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { |
| 3027 | ecdh_checks = 0; |
| 3028 | BIO_printf(bio_err, "ECDH key generation failure.\n"); |
| 3029 | ERR_print_errors(bio_err); |
| 3030 | rsa_count = 1; |
| 3031 | break; |
| 3032 | } |
| 3033 | |
| 3034 | /* Here we perform a test run, comparing the output of a*B and b*A; |
| 3035 | * we try this here and assume that further EVP_PKEY_derive calls |
| 3036 | * never fail, so we can skip checks in the actually benchmarked |
| 3037 | * code, for maximum performance. */ |
| 3038 | if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ |
| 3039 | !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ |
| 3040 | !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ |
| 3041 | !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ |
| 3042 | !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ |
| 3043 | !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ |
| 3044 | test_outlen != outlen /* compare output length */ ) { |
| 3045 | ecdh_checks = 0; |
| 3046 | BIO_printf(bio_err, "ECDH computation failure.\n"); |
| 3047 | ERR_print_errors(bio_err); |
| 3048 | rsa_count = 1; |
| 3049 | break; |
| 3050 | } |
| 3051 | |
| 3052 | /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ |
| 3053 | if (CRYPTO_memcmp(loopargs[i].secret_a, |
| 3054 | loopargs[i].secret_b, outlen)) { |
| 3055 | ecdh_checks = 0; |
| 3056 | BIO_printf(bio_err, "ECDH computations don't match.\n"); |
| 3057 | ERR_print_errors(bio_err); |
| 3058 | rsa_count = 1; |
| 3059 | break; |
| 3060 | } |
| 3061 | |
| 3062 | loopargs[i].ecdh_ctx[testnum] = ctx; |
| 3063 | loopargs[i].outlen[testnum] = outlen; |
| 3064 | |
| 3065 | EVP_PKEY_free(key_A); |
| 3066 | EVP_PKEY_free(key_B); |
| 3067 | EVP_PKEY_CTX_free(kctx); |
| 3068 | kctx = NULL; |
| 3069 | EVP_PKEY_CTX_free(test_ctx); |
| 3070 | test_ctx = NULL; |
| 3071 | } |
| 3072 | if (ecdh_checks != 0) { |
| 3073 | pkey_print_message("", "ecdh", |
| 3074 | ecdh_c[testnum][0], |
| 3075 | test_curves[testnum].bits, seconds.ecdh); |
| 3076 | Time_F(START); |
| 3077 | count = |
| 3078 | run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); |
| 3079 | d = Time_F(STOP); |
| 3080 | BIO_printf(bio_err, |
| 3081 | mr ? "+R7:%ld:%d:%.2f\n" : |
| 3082 | "%ld %u-bits ECDH ops in %.2fs\n", count, |
| 3083 | test_curves[testnum].bits, d); |
| 3084 | ecdh_results[testnum][0] = (double)count / d; |
| 3085 | rsa_count = count; |
| 3086 | } |
| 3087 | |
| 3088 | if (rsa_count <= 1) { |
| 3089 | /* if longer than 10s, don't do any more */ |
| 3090 | for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++) |
| 3091 | ecdh_doit[testnum] = 0; |
| 3092 | } |
| 3093 | } |
| 3094 | |
| 3095 | for (testnum = 0; testnum < EdDSA_NUM; testnum++) { |
| 3096 | int st = 1; |
| 3097 | EVP_PKEY *ed_pkey = NULL; |
| 3098 | EVP_PKEY_CTX *ed_pctx = NULL; |
| 3099 | |
| 3100 | if (!eddsa_doit[testnum]) |
| 3101 | continue; /* Ignore Curve */ |
| 3102 | for (i = 0; i < loopargs_len; i++) { |
| 3103 | loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); |
| 3104 | if (loopargs[i].eddsa_ctx[testnum] == NULL) { |
| 3105 | st = 0; |
| 3106 | break; |
| 3107 | } |
| 3108 | |
| 3109 | if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL)) |
| 3110 | == NULL |
| 3111 | || EVP_PKEY_keygen_init(ed_pctx) <= 0 |
| 3112 | || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) { |
| 3113 | st = 0; |
| 3114 | EVP_PKEY_CTX_free(ed_pctx); |
| 3115 | break; |
| 3116 | } |
| 3117 | EVP_PKEY_CTX_free(ed_pctx); |
| 3118 | |
| 3119 | if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, |
| 3120 | NULL, ed_pkey)) { |
| 3121 | st = 0; |
| 3122 | EVP_PKEY_free(ed_pkey); |
| 3123 | break; |
| 3124 | } |
| 3125 | EVP_PKEY_free(ed_pkey); |
| 3126 | } |
| 3127 | if (st == 0) { |
| 3128 | BIO_printf(bio_err, "EdDSA failure.\n"); |
| 3129 | ERR_print_errors(bio_err); |
| 3130 | rsa_count = 1; |
| 3131 | } else { |
| 3132 | for (i = 0; i < loopargs_len; i++) { |
| 3133 | /* Perform EdDSA signature test */ |
| 3134 | loopargs[i].sigsize = test_ed_curves[testnum].sigsize; |
| 3135 | st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], |
| 3136 | loopargs[i].buf2, &loopargs[i].sigsize, |
| 3137 | loopargs[i].buf, 20); |
| 3138 | if (st == 0) |
| 3139 | break; |
| 3140 | } |
| 3141 | if (st == 0) { |
| 3142 | BIO_printf(bio_err, |
| 3143 | "EdDSA sign failure. No EdDSA sign will be done.\n"); |
| 3144 | ERR_print_errors(bio_err); |
| 3145 | rsa_count = 1; |
| 3146 | } else { |
| 3147 | pkey_print_message("sign", test_ed_curves[testnum].name, |
| 3148 | eddsa_c[testnum][0], |
| 3149 | test_ed_curves[testnum].bits, seconds.eddsa); |
| 3150 | Time_F(START); |
| 3151 | count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); |
| 3152 | d = Time_F(STOP); |
| 3153 | |
| 3154 | BIO_printf(bio_err, |
| 3155 | mr ? "+R8:%ld:%u:%s:%.2f\n" : |
| 3156 | "%ld %u bits %s signs in %.2fs \n", |
| 3157 | count, test_ed_curves[testnum].bits, |
| 3158 | test_ed_curves[testnum].name, d); |
| 3159 | eddsa_results[testnum][0] = (double)count / d; |
| 3160 | rsa_count = count; |
| 3161 | } |
| 3162 | |
| 3163 | /* Perform EdDSA verification test */ |
| 3164 | for (i = 0; i < loopargs_len; i++) { |
| 3165 | st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum], |
| 3166 | loopargs[i].buf2, loopargs[i].sigsize, |
| 3167 | loopargs[i].buf, 20); |
| 3168 | if (st != 1) |
| 3169 | break; |
| 3170 | } |
| 3171 | if (st != 1) { |
| 3172 | BIO_printf(bio_err, |
| 3173 | "EdDSA verify failure. No EdDSA verify will be done.\n"); |
| 3174 | ERR_print_errors(bio_err); |
| 3175 | eddsa_doit[testnum] = 0; |
| 3176 | } else { |
| 3177 | pkey_print_message("verify", test_ed_curves[testnum].name, |
| 3178 | eddsa_c[testnum][1], |
| 3179 | test_ed_curves[testnum].bits, seconds.eddsa); |
| 3180 | Time_F(START); |
| 3181 | count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); |
| 3182 | d = Time_F(STOP); |
| 3183 | BIO_printf(bio_err, |
| 3184 | mr ? "+R9:%ld:%u:%s:%.2f\n" |
| 3185 | : "%ld %u bits %s verify in %.2fs\n", |
| 3186 | count, test_ed_curves[testnum].bits, |
| 3187 | test_ed_curves[testnum].name, d); |
| 3188 | eddsa_results[testnum][1] = (double)count / d; |
| 3189 | } |
| 3190 | |
| 3191 | if (rsa_count <= 1) { |
| 3192 | /* if longer than 10s, don't do any more */ |
| 3193 | for (testnum++; testnum < EdDSA_NUM; testnum++) |
| 3194 | eddsa_doit[testnum] = 0; |
| 3195 | } |
| 3196 | } |
| 3197 | } |
| 3198 | |
| 3199 | #endif /* OPENSSL_NO_EC */ |
| 3200 | #ifndef NO_FORK |
| 3201 | show_res: |
| 3202 | #endif |
| 3203 | if (!mr) { |
| 3204 | printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); |
| 3205 | printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); |
| 3206 | printf("options:"); |
| 3207 | printf("%s ", BN_options()); |
| 3208 | #ifndef OPENSSL_NO_MD2 |
| 3209 | printf("%s ", MD2_options()); |
| 3210 | #endif |
| 3211 | #ifndef OPENSSL_NO_RC4 |
| 3212 | printf("%s ", RC4_options()); |
| 3213 | #endif |
| 3214 | #ifndef OPENSSL_NO_DES |
| 3215 | printf("%s ", DES_options()); |
| 3216 | #endif |
| 3217 | printf("%s ", AES_options()); |
| 3218 | #ifndef OPENSSL_NO_IDEA |
| 3219 | printf("%s ", IDEA_options()); |
| 3220 | #endif |
| 3221 | #ifndef OPENSSL_NO_BF |
| 3222 | printf("%s ", BF_options()); |
| 3223 | #endif |
| 3224 | printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); |
| 3225 | } |
| 3226 | |
| 3227 | if (pr_header) { |
| 3228 | if (mr) |
| 3229 | printf("+H"); |
| 3230 | else { |
| 3231 | printf |
| 3232 | ("The 'numbers' are in 1000s of bytes per second processed.\n"); |
| 3233 | printf("type "); |
| 3234 | } |
| 3235 | for (testnum = 0; testnum < size_num; testnum++) |
| 3236 | printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); |
| 3237 | printf("\n"); |
| 3238 | } |
| 3239 | |
| 3240 | for (k = 0; k < ALGOR_NUM; k++) { |
| 3241 | if (!doit[k]) |
| 3242 | continue; |
| 3243 | if (mr) |
| 3244 | printf("+F:%u:%s", k, names[k]); |
| 3245 | else |
| 3246 | printf("%-13s", names[k]); |
| 3247 | for (testnum = 0; testnum < size_num; testnum++) { |
| 3248 | if (results[k][testnum] > 10000 && !mr) |
| 3249 | printf(" %11.2fk", results[k][testnum] / 1e3); |
| 3250 | else |
| 3251 | printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); |
| 3252 | } |
| 3253 | printf("\n"); |
| 3254 | } |
| 3255 | #ifndef OPENSSL_NO_RSA |
| 3256 | testnum = 1; |
| 3257 | for (k = 0; k < RSA_NUM; k++) { |
| 3258 | if (!rsa_doit[k]) |
| 3259 | continue; |
| 3260 | if (testnum && !mr) { |
| 3261 | printf("%18ssign verify sign/s verify/s\n", " "); |
| 3262 | testnum = 0; |
| 3263 | } |
| 3264 | if (mr) |
| 3265 | printf("+F2:%u:%u:%f:%f\n", |
| 3266 | k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); |
| 3267 | else |
| 3268 | printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| 3269 | rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], |
| 3270 | rsa_results[k][0], rsa_results[k][1]); |
| 3271 | } |
| 3272 | #endif |
| 3273 | #ifndef OPENSSL_NO_DSA |
| 3274 | testnum = 1; |
| 3275 | for (k = 0; k < DSA_NUM; k++) { |
| 3276 | if (!dsa_doit[k]) |
| 3277 | continue; |
| 3278 | if (testnum && !mr) { |
| 3279 | printf("%18ssign verify sign/s verify/s\n", " "); |
| 3280 | testnum = 0; |
| 3281 | } |
| 3282 | if (mr) |
| 3283 | printf("+F3:%u:%u:%f:%f\n", |
| 3284 | k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
| 3285 | else |
| 3286 | printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| 3287 | dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], |
| 3288 | dsa_results[k][0], dsa_results[k][1]); |
| 3289 | } |
| 3290 | #endif |
| 3291 | #ifndef OPENSSL_NO_EC |
| 3292 | testnum = 1; |
| 3293 | for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { |
| 3294 | if (!ecdsa_doit[k]) |
| 3295 | continue; |
| 3296 | if (testnum && !mr) { |
| 3297 | printf("%30ssign verify sign/s verify/s\n", " "); |
| 3298 | testnum = 0; |
| 3299 | } |
| 3300 | |
| 3301 | if (mr) |
| 3302 | printf("+F4:%u:%u:%f:%f\n", |
| 3303 | k, test_curves[k].bits, |
| 3304 | ecdsa_results[k][0], ecdsa_results[k][1]); |
| 3305 | else |
| 3306 | printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
| 3307 | test_curves[k].bits, test_curves[k].name, |
| 3308 | 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], |
| 3309 | ecdsa_results[k][0], ecdsa_results[k][1]); |
| 3310 | } |
| 3311 | |
| 3312 | testnum = 1; |
| 3313 | for (k = 0; k < EC_NUM; k++) { |
| 3314 | if (!ecdh_doit[k]) |
| 3315 | continue; |
| 3316 | if (testnum && !mr) { |
| 3317 | printf("%30sop op/s\n", " "); |
| 3318 | testnum = 0; |
| 3319 | } |
| 3320 | if (mr) |
| 3321 | printf("+F5:%u:%u:%f:%f\n", |
| 3322 | k, test_curves[k].bits, |
| 3323 | ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| 3324 | |
| 3325 | else |
| 3326 | printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", |
| 3327 | test_curves[k].bits, test_curves[k].name, |
| 3328 | 1.0 / ecdh_results[k][0], ecdh_results[k][0]); |
| 3329 | } |
| 3330 | |
| 3331 | testnum = 1; |
| 3332 | for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { |
| 3333 | if (!eddsa_doit[k]) |
| 3334 | continue; |
| 3335 | if (testnum && !mr) { |
| 3336 | printf("%30ssign verify sign/s verify/s\n", " "); |
| 3337 | testnum = 0; |
| 3338 | } |
| 3339 | |
| 3340 | if (mr) |
| 3341 | printf("+F6:%u:%u:%s:%f:%f\n", |
| 3342 | k, test_ed_curves[k].bits, test_ed_curves[k].name, |
| 3343 | eddsa_results[k][0], eddsa_results[k][1]); |
| 3344 | else |
| 3345 | printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
| 3346 | test_ed_curves[k].bits, test_ed_curves[k].name, |
| 3347 | 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], |
| 3348 | eddsa_results[k][0], eddsa_results[k][1]); |
| 3349 | } |
| 3350 | #endif |
| 3351 | |
| 3352 | ret = 0; |
| 3353 | |
| 3354 | end: |
| 3355 | ERR_print_errors(bio_err); |
| 3356 | for (i = 0; i < loopargs_len; i++) { |
| 3357 | OPENSSL_free(loopargs[i].buf_malloc); |
| 3358 | OPENSSL_free(loopargs[i].buf2_malloc); |
| 3359 | |
| 3360 | #ifndef OPENSSL_NO_RSA |
| 3361 | for (k = 0; k < RSA_NUM; k++) |
| 3362 | RSA_free(loopargs[i].rsa_key[k]); |
| 3363 | #endif |
| 3364 | #ifndef OPENSSL_NO_DSA |
| 3365 | for (k = 0; k < DSA_NUM; k++) |
| 3366 | DSA_free(loopargs[i].dsa_key[k]); |
| 3367 | #endif |
| 3368 | #ifndef OPENSSL_NO_EC |
| 3369 | for (k = 0; k < ECDSA_NUM; k++) |
| 3370 | EC_KEY_free(loopargs[i].ecdsa[k]); |
| 3371 | for (k = 0; k < EC_NUM; k++) |
| 3372 | EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); |
| 3373 | for (k = 0; k < EdDSA_NUM; k++) |
| 3374 | EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); |
| 3375 | OPENSSL_free(loopargs[i].secret_a); |
| 3376 | OPENSSL_free(loopargs[i].secret_b); |
| 3377 | #endif |
| 3378 | } |
| 3379 | |
| 3380 | if (async_jobs > 0) { |
| 3381 | for (i = 0; i < loopargs_len; i++) |
| 3382 | ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); |
| 3383 | } |
| 3384 | |
| 3385 | if (async_init) { |
| 3386 | ASYNC_cleanup_thread(); |
| 3387 | } |
| 3388 | OPENSSL_free(loopargs); |
| 3389 | release_engine(e); |
| 3390 | return ret; |
| 3391 | } |
| 3392 | |
| 3393 | static void print_message(const char *s, long num, int length, int tm) |
| 3394 | { |
| 3395 | #ifdef SIGALRM |
| 3396 | BIO_printf(bio_err, |
| 3397 | mr ? "+DT:%s:%d:%d\n" |
| 3398 | : "Doing %s for %ds on %d size blocks: ", s, tm, length); |
| 3399 | (void)BIO_flush(bio_err); |
| 3400 | run = 1; |
| 3401 | alarm(tm); |
| 3402 | #else |
| 3403 | BIO_printf(bio_err, |
| 3404 | mr ? "+DN:%s:%ld:%d\n" |
| 3405 | : "Doing %s %ld times on %d size blocks: ", s, num, length); |
| 3406 | (void)BIO_flush(bio_err); |
| 3407 | #endif |
| 3408 | } |
| 3409 | |
| 3410 | static void pkey_print_message(const char *str, const char *str2, long num, |
| 3411 | unsigned int bits, int tm) |
| 3412 | { |
| 3413 | #ifdef SIGALRM |
| 3414 | BIO_printf(bio_err, |
| 3415 | mr ? "+DTP:%d:%s:%s:%d\n" |
| 3416 | : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm); |
| 3417 | (void)BIO_flush(bio_err); |
| 3418 | run = 1; |
| 3419 | alarm(tm); |
| 3420 | #else |
| 3421 | BIO_printf(bio_err, |
| 3422 | mr ? "+DNP:%ld:%d:%s:%s\n" |
| 3423 | : "Doing %ld %u bits %s %s's: ", num, bits, str, str2); |
| 3424 | (void)BIO_flush(bio_err); |
| 3425 | #endif |
| 3426 | } |
| 3427 | |
| 3428 | static void print_result(int alg, int run_no, int count, double time_used) |
| 3429 | { |
| 3430 | if (count == -1) { |
| 3431 | BIO_puts(bio_err, "EVP error!\n"); |
| 3432 | exit(1); |
| 3433 | } |
| 3434 | BIO_printf(bio_err, |
| 3435 | mr ? "+R:%d:%s:%f\n" |
| 3436 | : "%d %s's in %.2fs\n", count, names[alg], time_used); |
| 3437 | results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; |
| 3438 | } |
| 3439 | |
| 3440 | #ifndef NO_FORK |
| 3441 | static char *sstrsep(char **string, const char *delim) |
| 3442 | { |
| 3443 | char isdelim[256]; |
| 3444 | char *token = *string; |
| 3445 | |
| 3446 | if (**string == 0) |
| 3447 | return NULL; |
| 3448 | |
| 3449 | memset(isdelim, 0, sizeof(isdelim)); |
| 3450 | isdelim[0] = 1; |
| 3451 | |
| 3452 | while (*delim) { |
| 3453 | isdelim[(unsigned char)(*delim)] = 1; |
| 3454 | delim++; |
| 3455 | } |
| 3456 | |
| 3457 | while (!isdelim[(unsigned char)(**string)]) { |
| 3458 | (*string)++; |
| 3459 | } |
| 3460 | |
| 3461 | if (**string) { |
| 3462 | **string = 0; |
| 3463 | (*string)++; |
| 3464 | } |
| 3465 | |
| 3466 | return token; |
| 3467 | } |
| 3468 | |
| 3469 | static int do_multi(int multi, int size_num) |
| 3470 | { |
| 3471 | int n; |
| 3472 | int fd[2]; |
| 3473 | int *fds; |
| 3474 | static char sep[] = ":"; |
| 3475 | |
| 3476 | fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); |
| 3477 | for (n = 0; n < multi; ++n) { |
| 3478 | if (pipe(fd) == -1) { |
| 3479 | BIO_printf(bio_err, "pipe failure\n"); |
| 3480 | exit(1); |
| 3481 | } |
| 3482 | fflush(stdout); |
| 3483 | (void)BIO_flush(bio_err); |
| 3484 | if (fork()) { |
| 3485 | close(fd[1]); |
| 3486 | fds[n] = fd[0]; |
| 3487 | } else { |
| 3488 | close(fd[0]); |
| 3489 | close(1); |
| 3490 | if (dup(fd[1]) == -1) { |
| 3491 | BIO_printf(bio_err, "dup failed\n"); |
| 3492 | exit(1); |
| 3493 | } |
| 3494 | close(fd[1]); |
| 3495 | mr = 1; |
| 3496 | usertime = 0; |
| 3497 | OPENSSL_free(fds); |
| 3498 | return 0; |
| 3499 | } |
| 3500 | printf("Forked child %d\n", n); |
| 3501 | } |
| 3502 | |
| 3503 | /* for now, assume the pipe is long enough to take all the output */ |
| 3504 | for (n = 0; n < multi; ++n) { |
| 3505 | FILE *f; |
| 3506 | char buf[1024]; |
| 3507 | char *p; |
| 3508 | |
| 3509 | f = fdopen(fds[n], "r"); |
| 3510 | while (fgets(buf, sizeof(buf), f)) { |
| 3511 | p = strchr(buf, '\n'); |
| 3512 | if (p) |
| 3513 | *p = '\0'; |
| 3514 | if (buf[0] != '+') { |
| 3515 | BIO_printf(bio_err, |
| 3516 | "Don't understand line '%s' from child %d\n", buf, |
| 3517 | n); |
| 3518 | continue; |
| 3519 | } |
| 3520 | printf("Got: %s from %d\n", buf, n); |
| 3521 | if (strncmp(buf, "+F:", 3) == 0) { |
| 3522 | int alg; |
| 3523 | int j; |
| 3524 | |
| 3525 | p = buf + 3; |
| 3526 | alg = atoi(sstrsep(&p, sep)); |
| 3527 | sstrsep(&p, sep); |
| 3528 | for (j = 0; j < size_num; ++j) |
| 3529 | results[alg][j] += atof(sstrsep(&p, sep)); |
| 3530 | } else if (strncmp(buf, "+F2:", 4) == 0) { |
| 3531 | int k; |
| 3532 | double d; |
| 3533 | |
| 3534 | p = buf + 4; |
| 3535 | k = atoi(sstrsep(&p, sep)); |
| 3536 | sstrsep(&p, sep); |
| 3537 | |
| 3538 | d = atof(sstrsep(&p, sep)); |
| 3539 | rsa_results[k][0] += d; |
| 3540 | |
| 3541 | d = atof(sstrsep(&p, sep)); |
| 3542 | rsa_results[k][1] += d; |
| 3543 | } |
| 3544 | # ifndef OPENSSL_NO_DSA |
| 3545 | else if (strncmp(buf, "+F3:", 4) == 0) { |
| 3546 | int k; |
| 3547 | double d; |
| 3548 | |
| 3549 | p = buf + 4; |
| 3550 | k = atoi(sstrsep(&p, sep)); |
| 3551 | sstrsep(&p, sep); |
| 3552 | |
| 3553 | d = atof(sstrsep(&p, sep)); |
| 3554 | dsa_results[k][0] += d; |
| 3555 | |
| 3556 | d = atof(sstrsep(&p, sep)); |
| 3557 | dsa_results[k][1] += d; |
| 3558 | } |
| 3559 | # endif |
| 3560 | # ifndef OPENSSL_NO_EC |
| 3561 | else if (strncmp(buf, "+F4:", 4) == 0) { |
| 3562 | int k; |
| 3563 | double d; |
| 3564 | |
| 3565 | p = buf + 4; |
| 3566 | k = atoi(sstrsep(&p, sep)); |
| 3567 | sstrsep(&p, sep); |
| 3568 | |
| 3569 | d = atof(sstrsep(&p, sep)); |
| 3570 | ecdsa_results[k][0] += d; |
| 3571 | |
| 3572 | d = atof(sstrsep(&p, sep)); |
| 3573 | ecdsa_results[k][1] += d; |
| 3574 | } else if (strncmp(buf, "+F5:", 4) == 0) { |
| 3575 | int k; |
| 3576 | double d; |
| 3577 | |
| 3578 | p = buf + 4; |
| 3579 | k = atoi(sstrsep(&p, sep)); |
| 3580 | sstrsep(&p, sep); |
| 3581 | |
| 3582 | d = atof(sstrsep(&p, sep)); |
| 3583 | ecdh_results[k][0] += d; |
| 3584 | } else if (strncmp(buf, "+F6:", 4) == 0) { |
| 3585 | int k; |
| 3586 | double d; |
| 3587 | |
| 3588 | p = buf + 4; |
| 3589 | k = atoi(sstrsep(&p, sep)); |
| 3590 | sstrsep(&p, sep); |
| 3591 | sstrsep(&p, sep); |
| 3592 | |
| 3593 | d = atof(sstrsep(&p, sep)); |
| 3594 | eddsa_results[k][0] += d; |
| 3595 | |
| 3596 | d = atof(sstrsep(&p, sep)); |
| 3597 | eddsa_results[k][1] += d; |
| 3598 | } |
| 3599 | # endif |
| 3600 | |
| 3601 | else if (strncmp(buf, "+H:", 3) == 0) { |
| 3602 | ; |
| 3603 | } else |
| 3604 | BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, |
| 3605 | n); |
| 3606 | } |
| 3607 | |
| 3608 | fclose(f); |
| 3609 | } |
| 3610 | OPENSSL_free(fds); |
| 3611 | return 1; |
| 3612 | } |
| 3613 | #endif |
| 3614 | |
| 3615 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, |
| 3616 | const openssl_speed_sec_t *seconds) |
| 3617 | { |
| 3618 | static const int mblengths_list[] = |
| 3619 | { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; |
| 3620 | const int *mblengths = mblengths_list; |
| 3621 | int j, count, keylen, num = OSSL_NELEM(mblengths_list); |
| 3622 | const char *alg_name; |
| 3623 | unsigned char *inp, *out, *key, no_key[32], no_iv[16]; |
| 3624 | EVP_CIPHER_CTX *ctx; |
| 3625 | double d = 0.0; |
| 3626 | |
| 3627 | if (lengths_single) { |
| 3628 | mblengths = &lengths_single; |
| 3629 | num = 1; |
| 3630 | } |
| 3631 | |
| 3632 | inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); |
| 3633 | out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); |
| 3634 | ctx = EVP_CIPHER_CTX_new(); |
| 3635 | EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv); |
| 3636 | |
| 3637 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 3638 | key = app_malloc(keylen, "evp_cipher key"); |
| 3639 | EVP_CIPHER_CTX_rand_key(ctx, key); |
| 3640 | EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); |
| 3641 | OPENSSL_clear_free(key, keylen); |
| 3642 | |
| 3643 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); |
| 3644 | alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); |
| 3645 | |
| 3646 | for (j = 0; j < num; j++) { |
| 3647 | print_message(alg_name, 0, mblengths[j], seconds->sym); |
| 3648 | Time_F(START); |
| 3649 | for (count = 0; run && count < 0x7fffffff; count++) { |
| 3650 | unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; |
| 3651 | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; |
| 3652 | size_t len = mblengths[j]; |
| 3653 | int packlen; |
| 3654 | |
| 3655 | memset(aad, 0, 8); /* avoid uninitialized values */ |
| 3656 | aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ |
| 3657 | aad[9] = 3; /* version */ |
| 3658 | aad[10] = 2; |
| 3659 | aad[11] = 0; /* length */ |
| 3660 | aad[12] = 0; |
| 3661 | mb_param.out = NULL; |
| 3662 | mb_param.inp = aad; |
| 3663 | mb_param.len = len; |
| 3664 | mb_param.interleave = 8; |
| 3665 | |
| 3666 | packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, |
| 3667 | sizeof(mb_param), &mb_param); |
| 3668 | |
| 3669 | if (packlen > 0) { |
| 3670 | mb_param.out = out; |
| 3671 | mb_param.inp = inp; |
| 3672 | mb_param.len = len; |
| 3673 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, |
| 3674 | sizeof(mb_param), &mb_param); |
| 3675 | } else { |
| 3676 | int pad; |
| 3677 | |
| 3678 | RAND_bytes(out, 16); |
| 3679 | len += 16; |
| 3680 | aad[11] = (unsigned char)(len >> 8); |
| 3681 | aad[12] = (unsigned char)(len); |
| 3682 | pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, |
| 3683 | EVP_AEAD_TLS1_AAD_LEN, aad); |
| 3684 | EVP_Cipher(ctx, out, inp, len + pad); |
| 3685 | } |
| 3686 | } |
| 3687 | d = Time_F(STOP); |
| 3688 | BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" |
| 3689 | : "%d %s's in %.2fs\n", count, "evp", d); |
| 3690 | results[D_EVP][j] = ((double)count) / d * mblengths[j]; |
| 3691 | } |
| 3692 | |
| 3693 | if (mr) { |
| 3694 | fprintf(stdout, "+H"); |
| 3695 | for (j = 0; j < num; j++) |
| 3696 | fprintf(stdout, ":%d", mblengths[j]); |
| 3697 | fprintf(stdout, "\n"); |
| 3698 | fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); |
| 3699 | for (j = 0; j < num; j++) |
| 3700 | fprintf(stdout, ":%.2f", results[D_EVP][j]); |
| 3701 | fprintf(stdout, "\n"); |
| 3702 | } else { |
| 3703 | fprintf(stdout, |
| 3704 | "The 'numbers' are in 1000s of bytes per second processed.\n"); |
| 3705 | fprintf(stdout, "type "); |
| 3706 | for (j = 0; j < num; j++) |
| 3707 | fprintf(stdout, "%7d bytes", mblengths[j]); |
| 3708 | fprintf(stdout, "\n"); |
| 3709 | fprintf(stdout, "%-24s", alg_name); |
| 3710 | |
| 3711 | for (j = 0; j < num; j++) { |
| 3712 | if (results[D_EVP][j] > 10000) |
| 3713 | fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); |
| 3714 | else |
| 3715 | fprintf(stdout, " %11.2f ", results[D_EVP][j]); |
| 3716 | } |
| 3717 | fprintf(stdout, "\n"); |
| 3718 | } |
| 3719 | |
| 3720 | OPENSSL_free(inp); |
| 3721 | OPENSSL_free(out); |
| 3722 | EVP_CIPHER_CTX_free(ctx); |
| 3723 | } |