lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | #include <openssl/crypto.h> |
| 12 | #include <openssl/err.h> |
| 13 | #include "modes_local.h" |
| 14 | |
| 15 | #ifndef OPENSSL_NO_OCB |
| 16 | |
| 17 | /* |
| 18 | * Calculate the number of binary trailing zero's in any given number |
| 19 | */ |
| 20 | static u32 ocb_ntz(u64 n) |
| 21 | { |
| 22 | u32 cnt = 0; |
| 23 | |
| 24 | /* |
| 25 | * We do a right-to-left simple sequential search. This is surprisingly |
| 26 | * efficient as the distribution of trailing zeros is not uniform, |
| 27 | * e.g. the number of possible inputs with no trailing zeros is equal to |
| 28 | * the number with 1 or more; the number with exactly 1 is equal to the |
| 29 | * number with 2 or more, etc. Checking the last two bits covers 75% of |
| 30 | * all numbers. Checking the last three covers 87.5% |
| 31 | */ |
| 32 | while (!(n & 1)) { |
| 33 | n >>= 1; |
| 34 | cnt++; |
| 35 | } |
| 36 | return cnt; |
| 37 | } |
| 38 | |
| 39 | /* |
| 40 | * Shift a block of 16 bytes left by shift bits |
| 41 | */ |
| 42 | static void ocb_block_lshift(const unsigned char *in, size_t shift, |
| 43 | unsigned char *out) |
| 44 | { |
| 45 | int i; |
| 46 | unsigned char carry = 0, carry_next; |
| 47 | |
| 48 | for (i = 15; i >= 0; i--) { |
| 49 | carry_next = in[i] >> (8 - shift); |
| 50 | out[i] = (in[i] << shift) | carry; |
| 51 | carry = carry_next; |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | /* |
| 56 | * Perform a "double" operation as per OCB spec |
| 57 | */ |
| 58 | static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) |
| 59 | { |
| 60 | unsigned char mask; |
| 61 | |
| 62 | /* |
| 63 | * Calculate the mask based on the most significant bit. There are more |
| 64 | * efficient ways to do this - but this way is constant time |
| 65 | */ |
| 66 | mask = in->c[0] & 0x80; |
| 67 | mask >>= 7; |
| 68 | mask = (0 - mask) & 0x87; |
| 69 | |
| 70 | ocb_block_lshift(in->c, 1, out->c); |
| 71 | |
| 72 | out->c[15] ^= mask; |
| 73 | } |
| 74 | |
| 75 | /* |
| 76 | * Perform an xor on in1 and in2 - each of len bytes. Store result in out |
| 77 | */ |
| 78 | static void ocb_block_xor(const unsigned char *in1, |
| 79 | const unsigned char *in2, size_t len, |
| 80 | unsigned char *out) |
| 81 | { |
| 82 | size_t i; |
| 83 | for (i = 0; i < len; i++) { |
| 84 | out[i] = in1[i] ^ in2[i]; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * Lookup L_index in our lookup table. If we haven't already got it we need to |
| 90 | * calculate it |
| 91 | */ |
| 92 | static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) |
| 93 | { |
| 94 | size_t l_index = ctx->l_index; |
| 95 | |
| 96 | if (idx <= l_index) { |
| 97 | return ctx->l + idx; |
| 98 | } |
| 99 | |
| 100 | /* We don't have it - so calculate it */ |
| 101 | if (idx >= ctx->max_l_index) { |
| 102 | void *tmp_ptr; |
| 103 | /* |
| 104 | * Each additional entry allows to process almost double as |
| 105 | * much data, so that in linear world the table will need to |
| 106 | * be expanded with smaller and smaller increments. Originally |
| 107 | * it was doubling in size, which was a waste. Growing it |
| 108 | * linearly is not formally optimal, but is simpler to implement. |
| 109 | * We grow table by minimally required 4*n that would accommodate |
| 110 | * the index. |
| 111 | */ |
| 112 | ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; |
| 113 | tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); |
| 114 | if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ |
| 115 | return NULL; |
| 116 | ctx->l = tmp_ptr; |
| 117 | } |
| 118 | while (l_index < idx) { |
| 119 | ocb_double(ctx->l + l_index, ctx->l + l_index + 1); |
| 120 | l_index++; |
| 121 | } |
| 122 | ctx->l_index = l_index; |
| 123 | |
| 124 | return ctx->l + idx; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Create a new OCB128_CONTEXT |
| 129 | */ |
| 130 | OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, |
| 131 | block128_f encrypt, block128_f decrypt, |
| 132 | ocb128_f stream) |
| 133 | { |
| 134 | OCB128_CONTEXT *octx; |
| 135 | int ret; |
| 136 | |
| 137 | if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { |
| 138 | ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, |
| 139 | stream); |
| 140 | if (ret) |
| 141 | return octx; |
| 142 | OPENSSL_free(octx); |
| 143 | } |
| 144 | |
| 145 | return NULL; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Initialise an existing OCB128_CONTEXT |
| 150 | */ |
| 151 | int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, |
| 152 | block128_f encrypt, block128_f decrypt, |
| 153 | ocb128_f stream) |
| 154 | { |
| 155 | memset(ctx, 0, sizeof(*ctx)); |
| 156 | ctx->l_index = 0; |
| 157 | ctx->max_l_index = 5; |
| 158 | if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { |
| 159 | CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE); |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * We set both the encryption and decryption key schedules - decryption |
| 165 | * needs both. Don't really need decryption schedule if only doing |
| 166 | * encryption - but it simplifies things to take it anyway |
| 167 | */ |
| 168 | ctx->encrypt = encrypt; |
| 169 | ctx->decrypt = decrypt; |
| 170 | ctx->stream = stream; |
| 171 | ctx->keyenc = keyenc; |
| 172 | ctx->keydec = keydec; |
| 173 | |
| 174 | /* L_* = ENCIPHER(K, zeros(128)) */ |
| 175 | ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); |
| 176 | |
| 177 | /* L_$ = double(L_*) */ |
| 178 | ocb_double(&ctx->l_star, &ctx->l_dollar); |
| 179 | |
| 180 | /* L_0 = double(L_$) */ |
| 181 | ocb_double(&ctx->l_dollar, ctx->l); |
| 182 | |
| 183 | /* L_{i} = double(L_{i-1}) */ |
| 184 | ocb_double(ctx->l, ctx->l+1); |
| 185 | ocb_double(ctx->l+1, ctx->l+2); |
| 186 | ocb_double(ctx->l+2, ctx->l+3); |
| 187 | ocb_double(ctx->l+3, ctx->l+4); |
| 188 | ctx->l_index = 4; /* enough to process up to 496 bytes */ |
| 189 | |
| 190 | return 1; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * Copy an OCB128_CONTEXT object |
| 195 | */ |
| 196 | int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, |
| 197 | void *keyenc, void *keydec) |
| 198 | { |
| 199 | memcpy(dest, src, sizeof(OCB128_CONTEXT)); |
| 200 | if (keyenc) |
| 201 | dest->keyenc = keyenc; |
| 202 | if (keydec) |
| 203 | dest->keydec = keydec; |
| 204 | if (src->l) { |
| 205 | if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { |
| 206 | CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE); |
| 207 | return 0; |
| 208 | } |
| 209 | memcpy(dest->l, src->l, (src->l_index + 1) * 16); |
| 210 | } |
| 211 | return 1; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Set the IV to be used for this operation. Must be 1 - 15 bytes. |
| 216 | */ |
| 217 | int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, |
| 218 | size_t len, size_t taglen) |
| 219 | { |
| 220 | unsigned char ktop[16], tmp[16], mask; |
| 221 | unsigned char stretch[24], nonce[16]; |
| 222 | size_t bottom, shift; |
| 223 | |
| 224 | /* |
| 225 | * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. |
| 226 | * We don't support this at this stage |
| 227 | */ |
| 228 | if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { |
| 229 | return -1; |
| 230 | } |
| 231 | |
| 232 | /* Reset nonce-dependent variables */ |
| 233 | memset(&ctx->sess, 0, sizeof(ctx->sess)); |
| 234 | |
| 235 | /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ |
| 236 | nonce[0] = ((taglen * 8) % 128) << 1; |
| 237 | memset(nonce + 1, 0, 15); |
| 238 | memcpy(nonce + 16 - len, iv, len); |
| 239 | nonce[15 - len] |= 1; |
| 240 | |
| 241 | /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ |
| 242 | memcpy(tmp, nonce, 16); |
| 243 | tmp[15] &= 0xc0; |
| 244 | ctx->encrypt(tmp, ktop, ctx->keyenc); |
| 245 | |
| 246 | /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ |
| 247 | memcpy(stretch, ktop, 16); |
| 248 | ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); |
| 249 | |
| 250 | /* bottom = str2num(Nonce[123..128]) */ |
| 251 | bottom = nonce[15] & 0x3f; |
| 252 | |
| 253 | /* Offset_0 = Stretch[1+bottom..128+bottom] */ |
| 254 | shift = bottom % 8; |
| 255 | ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); |
| 256 | mask = 0xff; |
| 257 | mask <<= 8 - shift; |
| 258 | ctx->sess.offset.c[15] |= |
| 259 | (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); |
| 260 | |
| 261 | return 1; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * Provide any AAD. This can be called multiple times. Only the final time can |
| 266 | * have a partial block |
| 267 | */ |
| 268 | int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, |
| 269 | size_t len) |
| 270 | { |
| 271 | u64 i, all_num_blocks; |
| 272 | size_t num_blocks, last_len; |
| 273 | OCB_BLOCK tmp; |
| 274 | |
| 275 | /* Calculate the number of blocks of AAD provided now, and so far */ |
| 276 | num_blocks = len / 16; |
| 277 | all_num_blocks = num_blocks + ctx->sess.blocks_hashed; |
| 278 | |
| 279 | /* Loop through all full blocks of AAD */ |
| 280 | for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { |
| 281 | OCB_BLOCK *lookup; |
| 282 | |
| 283 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| 284 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| 285 | if (lookup == NULL) |
| 286 | return 0; |
| 287 | ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); |
| 288 | |
| 289 | memcpy(tmp.c, aad, 16); |
| 290 | aad += 16; |
| 291 | |
| 292 | /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ |
| 293 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
| 294 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| 295 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Check if we have any partial blocks left over. This is only valid in the |
| 300 | * last call to this function |
| 301 | */ |
| 302 | last_len = len % 16; |
| 303 | |
| 304 | if (last_len > 0) { |
| 305 | /* Offset_* = Offset_m xor L_* */ |
| 306 | ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, |
| 307 | &ctx->sess.offset_aad); |
| 308 | |
| 309 | /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ |
| 310 | memset(tmp.c, 0, 16); |
| 311 | memcpy(tmp.c, aad, last_len); |
| 312 | tmp.c[last_len] = 0x80; |
| 313 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
| 314 | |
| 315 | /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ |
| 316 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| 317 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
| 318 | } |
| 319 | |
| 320 | ctx->sess.blocks_hashed = all_num_blocks; |
| 321 | |
| 322 | return 1; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Provide any data to be encrypted. This can be called multiple times. Only |
| 327 | * the final time can have a partial block |
| 328 | */ |
| 329 | int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, |
| 330 | const unsigned char *in, unsigned char *out, |
| 331 | size_t len) |
| 332 | { |
| 333 | u64 i, all_num_blocks; |
| 334 | size_t num_blocks, last_len; |
| 335 | |
| 336 | /* |
| 337 | * Calculate the number of blocks of data to be encrypted provided now, and |
| 338 | * so far |
| 339 | */ |
| 340 | num_blocks = len / 16; |
| 341 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
| 342 | |
| 343 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
| 344 | && ctx->stream != NULL) { |
| 345 | size_t max_idx = 0, top = (size_t)all_num_blocks; |
| 346 | |
| 347 | /* |
| 348 | * See how many L_{i} entries we need to process data at hand |
| 349 | * and pre-compute missing entries in the table [if any]... |
| 350 | */ |
| 351 | while (top >>= 1) |
| 352 | max_idx++; |
| 353 | if (ocb_lookup_l(ctx, max_idx) == NULL) |
| 354 | return 0; |
| 355 | |
| 356 | ctx->stream(in, out, num_blocks, ctx->keyenc, |
| 357 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
| 358 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
| 359 | } else { |
| 360 | /* Loop through all full blocks to be encrypted */ |
| 361 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
| 362 | OCB_BLOCK *lookup; |
| 363 | OCB_BLOCK tmp; |
| 364 | |
| 365 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| 366 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| 367 | if (lookup == NULL) |
| 368 | return 0; |
| 369 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
| 370 | |
| 371 | memcpy(tmp.c, in, 16); |
| 372 | in += 16; |
| 373 | |
| 374 | /* Checksum_i = Checksum_{i-1} xor P_i */ |
| 375 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
| 376 | |
| 377 | /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ |
| 378 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| 379 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| 380 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| 381 | |
| 382 | memcpy(out, tmp.c, 16); |
| 383 | out += 16; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Check if we have any partial blocks left over. This is only valid in the |
| 389 | * last call to this function |
| 390 | */ |
| 391 | last_len = len % 16; |
| 392 | |
| 393 | if (last_len > 0) { |
| 394 | OCB_BLOCK pad; |
| 395 | |
| 396 | /* Offset_* = Offset_m xor L_* */ |
| 397 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
| 398 | |
| 399 | /* Pad = ENCIPHER(K, Offset_*) */ |
| 400 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
| 401 | |
| 402 | /* C_* = P_* xor Pad[1..bitlen(P_*)] */ |
| 403 | ocb_block_xor(in, pad.c, last_len, out); |
| 404 | |
| 405 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
| 406 | memset(pad.c, 0, 16); /* borrow pad */ |
| 407 | memcpy(pad.c, in, last_len); |
| 408 | pad.c[last_len] = 0x80; |
| 409 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
| 410 | } |
| 411 | |
| 412 | ctx->sess.blocks_processed = all_num_blocks; |
| 413 | |
| 414 | return 1; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Provide any data to be decrypted. This can be called multiple times. Only |
| 419 | * the final time can have a partial block |
| 420 | */ |
| 421 | int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, |
| 422 | const unsigned char *in, unsigned char *out, |
| 423 | size_t len) |
| 424 | { |
| 425 | u64 i, all_num_blocks; |
| 426 | size_t num_blocks, last_len; |
| 427 | |
| 428 | /* |
| 429 | * Calculate the number of blocks of data to be decrypted provided now, and |
| 430 | * so far |
| 431 | */ |
| 432 | num_blocks = len / 16; |
| 433 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
| 434 | |
| 435 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
| 436 | && ctx->stream != NULL) { |
| 437 | size_t max_idx = 0, top = (size_t)all_num_blocks; |
| 438 | |
| 439 | /* |
| 440 | * See how many L_{i} entries we need to process data at hand |
| 441 | * and pre-compute missing entries in the table [if any]... |
| 442 | */ |
| 443 | while (top >>= 1) |
| 444 | max_idx++; |
| 445 | if (ocb_lookup_l(ctx, max_idx) == NULL) |
| 446 | return 0; |
| 447 | |
| 448 | ctx->stream(in, out, num_blocks, ctx->keydec, |
| 449 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
| 450 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
| 451 | } else { |
| 452 | OCB_BLOCK tmp; |
| 453 | |
| 454 | /* Loop through all full blocks to be decrypted */ |
| 455 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
| 456 | |
| 457 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| 458 | OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| 459 | if (lookup == NULL) |
| 460 | return 0; |
| 461 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
| 462 | |
| 463 | memcpy(tmp.c, in, 16); |
| 464 | in += 16; |
| 465 | |
| 466 | /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ |
| 467 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| 468 | ctx->decrypt(tmp.c, tmp.c, ctx->keydec); |
| 469 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| 470 | |
| 471 | /* Checksum_i = Checksum_{i-1} xor P_i */ |
| 472 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
| 473 | |
| 474 | memcpy(out, tmp.c, 16); |
| 475 | out += 16; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Check if we have any partial blocks left over. This is only valid in the |
| 481 | * last call to this function |
| 482 | */ |
| 483 | last_len = len % 16; |
| 484 | |
| 485 | if (last_len > 0) { |
| 486 | OCB_BLOCK pad; |
| 487 | |
| 488 | /* Offset_* = Offset_m xor L_* */ |
| 489 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
| 490 | |
| 491 | /* Pad = ENCIPHER(K, Offset_*) */ |
| 492 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
| 493 | |
| 494 | /* P_* = C_* xor Pad[1..bitlen(C_*)] */ |
| 495 | ocb_block_xor(in, pad.c, last_len, out); |
| 496 | |
| 497 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
| 498 | memset(pad.c, 0, 16); /* borrow pad */ |
| 499 | memcpy(pad.c, out, last_len); |
| 500 | pad.c[last_len] = 0x80; |
| 501 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
| 502 | } |
| 503 | |
| 504 | ctx->sess.blocks_processed = all_num_blocks; |
| 505 | |
| 506 | return 1; |
| 507 | } |
| 508 | |
| 509 | static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, |
| 510 | int write) |
| 511 | { |
| 512 | OCB_BLOCK tmp; |
| 513 | |
| 514 | if (len > 16 || len < 1) { |
| 515 | return -1; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) |
| 520 | */ |
| 521 | ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); |
| 522 | ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); |
| 523 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| 524 | ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); |
| 525 | |
| 526 | if (write) { |
| 527 | memcpy(tag, &tmp, len); |
| 528 | return 1; |
| 529 | } else { |
| 530 | return CRYPTO_memcmp(&tmp, tag, len); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Calculate the tag and verify it against the supplied tag |
| 536 | */ |
| 537 | int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, |
| 538 | size_t len) |
| 539 | { |
| 540 | return ocb_finish(ctx, (unsigned char*)tag, len, 0); |
| 541 | } |
| 542 | |
| 543 | /* |
| 544 | * Retrieve the calculated tag |
| 545 | */ |
| 546 | int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| 547 | { |
| 548 | return ocb_finish(ctx, tag, len, 1); |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Release all resources |
| 553 | */ |
| 554 | void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) |
| 555 | { |
| 556 | if (ctx) { |
| 557 | OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); |
| 558 | OPENSSL_cleanse(ctx, sizeof(*ctx)); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | #endif /* OPENSSL_NO_OCB */ |