lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <openssl/e_os2.h> |
| 11 | #include <string.h> |
| 12 | #include <assert.h> |
| 13 | |
| 14 | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
| 15 | size_t r); |
| 16 | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); |
| 17 | |
| 18 | #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) |
| 19 | |
| 20 | /* |
| 21 | * Choose some sensible defaults |
| 22 | */ |
| 23 | #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ |
| 24 | !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) |
| 25 | # define KECCAK_2X /* default to KECCAK_2X variant */ |
| 26 | #endif |
| 27 | |
| 28 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| 29 | # define KECCAK_COMPLEMENTING_TRANSFORM |
| 30 | #endif |
| 31 | |
| 32 | #if defined(__x86_64__) || defined(__aarch64__) || \ |
| 33 | defined(__mips64) || defined(__ia64) || \ |
| 34 | (defined(__VMS) && !defined(__vax)) |
| 35 | /* |
| 36 | * These are available even in ILP32 flavours, but even then they are |
| 37 | * capable of performing 64-bit operations as efficiently as in *P64. |
| 38 | * Since it's not given that we can use sizeof(void *), just shunt it. |
| 39 | */ |
| 40 | # define BIT_INTERLEAVE (0) |
| 41 | #else |
| 42 | # define BIT_INTERLEAVE (sizeof(void *) < 8) |
| 43 | #endif |
| 44 | |
| 45 | #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) |
| 46 | |
| 47 | static uint64_t ROL64(uint64_t val, int offset) |
| 48 | { |
| 49 | if (offset == 0) { |
| 50 | return val; |
| 51 | } else if (!BIT_INTERLEAVE) { |
| 52 | return (val << offset) | (val >> (64-offset)); |
| 53 | } else { |
| 54 | uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; |
| 55 | |
| 56 | if (offset & 1) { |
| 57 | uint32_t tmp = hi; |
| 58 | |
| 59 | offset >>= 1; |
| 60 | hi = ROL32(lo, offset); |
| 61 | lo = ROL32(tmp, offset + 1); |
| 62 | } else { |
| 63 | offset >>= 1; |
| 64 | lo = ROL32(lo, offset); |
| 65 | hi = ROL32(hi, offset); |
| 66 | } |
| 67 | |
| 68 | return ((uint64_t)hi << 32) | lo; |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | static const unsigned char rhotates[5][5] = { |
| 73 | { 0, 1, 62, 28, 27 }, |
| 74 | { 36, 44, 6, 55, 20 }, |
| 75 | { 3, 10, 43, 25, 39 }, |
| 76 | { 41, 45, 15, 21, 8 }, |
| 77 | { 18, 2, 61, 56, 14 } |
| 78 | }; |
| 79 | |
| 80 | static const uint64_t iotas[] = { |
| 81 | BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, |
| 82 | BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, |
| 83 | BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, |
| 84 | BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, |
| 85 | BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, |
| 86 | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
| 87 | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
| 88 | BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, |
| 89 | BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, |
| 90 | BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, |
| 91 | BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, |
| 92 | BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, |
| 93 | BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, |
| 94 | BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, |
| 95 | BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, |
| 96 | BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, |
| 97 | BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, |
| 98 | BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, |
| 99 | BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, |
| 100 | BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, |
| 101 | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
| 102 | BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, |
| 103 | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
| 104 | BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL |
| 105 | }; |
| 106 | |
| 107 | #if defined(KECCAK_REF) |
| 108 | /* |
| 109 | * This is straightforward or "maximum clarity" implementation aiming |
| 110 | * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: |
| 111 | * Permutation-Based Hash and Extendible-Output Functions" as much as |
| 112 | * possible. With one caveat. Because of the way C stores matrices, |
| 113 | * references to A[x,y] in the specification are presented as A[y][x]. |
| 114 | * Implementation unrolls inner x-loops so that modulo 5 operations are |
| 115 | * explicitly pre-computed. |
| 116 | */ |
| 117 | static void Theta(uint64_t A[5][5]) |
| 118 | { |
| 119 | uint64_t C[5], D[5]; |
| 120 | size_t y; |
| 121 | |
| 122 | C[0] = A[0][0]; |
| 123 | C[1] = A[0][1]; |
| 124 | C[2] = A[0][2]; |
| 125 | C[3] = A[0][3]; |
| 126 | C[4] = A[0][4]; |
| 127 | |
| 128 | for (y = 1; y < 5; y++) { |
| 129 | C[0] ^= A[y][0]; |
| 130 | C[1] ^= A[y][1]; |
| 131 | C[2] ^= A[y][2]; |
| 132 | C[3] ^= A[y][3]; |
| 133 | C[4] ^= A[y][4]; |
| 134 | } |
| 135 | |
| 136 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 137 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 138 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 139 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 140 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 141 | |
| 142 | for (y = 0; y < 5; y++) { |
| 143 | A[y][0] ^= D[0]; |
| 144 | A[y][1] ^= D[1]; |
| 145 | A[y][2] ^= D[2]; |
| 146 | A[y][3] ^= D[3]; |
| 147 | A[y][4] ^= D[4]; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | static void Rho(uint64_t A[5][5]) |
| 152 | { |
| 153 | size_t y; |
| 154 | |
| 155 | for (y = 0; y < 5; y++) { |
| 156 | A[y][0] = ROL64(A[y][0], rhotates[y][0]); |
| 157 | A[y][1] = ROL64(A[y][1], rhotates[y][1]); |
| 158 | A[y][2] = ROL64(A[y][2], rhotates[y][2]); |
| 159 | A[y][3] = ROL64(A[y][3], rhotates[y][3]); |
| 160 | A[y][4] = ROL64(A[y][4], rhotates[y][4]); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | static void Pi(uint64_t A[5][5]) |
| 165 | { |
| 166 | uint64_t T[5][5]; |
| 167 | |
| 168 | /* |
| 169 | * T = A |
| 170 | * A[y][x] = T[x][(3*y+x)%5] |
| 171 | */ |
| 172 | memcpy(T, A, sizeof(T)); |
| 173 | |
| 174 | A[0][0] = T[0][0]; |
| 175 | A[0][1] = T[1][1]; |
| 176 | A[0][2] = T[2][2]; |
| 177 | A[0][3] = T[3][3]; |
| 178 | A[0][4] = T[4][4]; |
| 179 | |
| 180 | A[1][0] = T[0][3]; |
| 181 | A[1][1] = T[1][4]; |
| 182 | A[1][2] = T[2][0]; |
| 183 | A[1][3] = T[3][1]; |
| 184 | A[1][4] = T[4][2]; |
| 185 | |
| 186 | A[2][0] = T[0][1]; |
| 187 | A[2][1] = T[1][2]; |
| 188 | A[2][2] = T[2][3]; |
| 189 | A[2][3] = T[3][4]; |
| 190 | A[2][4] = T[4][0]; |
| 191 | |
| 192 | A[3][0] = T[0][4]; |
| 193 | A[3][1] = T[1][0]; |
| 194 | A[3][2] = T[2][1]; |
| 195 | A[3][3] = T[3][2]; |
| 196 | A[3][4] = T[4][3]; |
| 197 | |
| 198 | A[4][0] = T[0][2]; |
| 199 | A[4][1] = T[1][3]; |
| 200 | A[4][2] = T[2][4]; |
| 201 | A[4][3] = T[3][0]; |
| 202 | A[4][4] = T[4][1]; |
| 203 | } |
| 204 | |
| 205 | static void Chi(uint64_t A[5][5]) |
| 206 | { |
| 207 | uint64_t C[5]; |
| 208 | size_t y; |
| 209 | |
| 210 | for (y = 0; y < 5; y++) { |
| 211 | C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); |
| 212 | C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); |
| 213 | C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); |
| 214 | C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); |
| 215 | C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); |
| 216 | |
| 217 | A[y][0] = C[0]; |
| 218 | A[y][1] = C[1]; |
| 219 | A[y][2] = C[2]; |
| 220 | A[y][3] = C[3]; |
| 221 | A[y][4] = C[4]; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | static void Iota(uint64_t A[5][5], size_t i) |
| 226 | { |
| 227 | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| 228 | A[0][0] ^= iotas[i]; |
| 229 | } |
| 230 | |
| 231 | static void KeccakF1600(uint64_t A[5][5]) |
| 232 | { |
| 233 | size_t i; |
| 234 | |
| 235 | for (i = 0; i < 24; i++) { |
| 236 | Theta(A); |
| 237 | Rho(A); |
| 238 | Pi(A); |
| 239 | Chi(A); |
| 240 | Iota(A, i); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | #elif defined(KECCAK_1X) |
| 245 | /* |
| 246 | * This implementation is optimization of above code featuring unroll |
| 247 | * of even y-loops, their fusion and code motion. It also minimizes |
| 248 | * temporary storage. Compiler would normally do all these things for |
| 249 | * you, purpose of manual optimization is to provide "unobscured" |
| 250 | * reference for assembly implementation [in case this approach is |
| 251 | * chosen for implementation on some platform]. In the nutshell it's |
| 252 | * equivalent of "plane-per-plane processing" approach discussed in |
| 253 | * section 2.4 of "Keccak implementation overview". |
| 254 | */ |
| 255 | static void Round(uint64_t A[5][5], size_t i) |
| 256 | { |
| 257 | uint64_t C[5], E[2]; /* registers */ |
| 258 | uint64_t D[5], T[2][5]; /* memory */ |
| 259 | |
| 260 | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| 261 | |
| 262 | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| 263 | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| 264 | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| 265 | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| 266 | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| 267 | |
| 268 | #if defined(__arm__) |
| 269 | D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; |
| 270 | D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; |
| 271 | D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; |
| 272 | D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; |
| 273 | D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; |
| 274 | |
| 275 | T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ |
| 276 | T[0][1] = A[0][1] ^ E[0]; /* D[1] */ |
| 277 | T[0][2] = A[0][2] ^ C[1]; /* D[2] */ |
| 278 | T[0][3] = A[0][3] ^ C[2]; /* D[3] */ |
| 279 | T[0][4] = A[0][4] ^ E[1]; /* D[4] */ |
| 280 | |
| 281 | C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ |
| 282 | C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ |
| 283 | C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ |
| 284 | C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ |
| 285 | C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ |
| 286 | #else |
| 287 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 288 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 289 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 290 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 291 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 292 | |
| 293 | T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ |
| 294 | T[0][1] = A[0][1] ^ D[1]; |
| 295 | T[0][2] = A[0][2] ^ D[2]; |
| 296 | T[0][3] = A[0][3] ^ D[3]; |
| 297 | T[0][4] = A[0][4] ^ D[4]; |
| 298 | |
| 299 | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 300 | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| 301 | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| 302 | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| 303 | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| 304 | #endif |
| 305 | A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
| 306 | A[0][1] = C[1] ^ (~C[2] & C[3]); |
| 307 | A[0][2] = C[2] ^ (~C[3] & C[4]); |
| 308 | A[0][3] = C[3] ^ (~C[4] & C[0]); |
| 309 | A[0][4] = C[4] ^ (~C[0] & C[1]); |
| 310 | |
| 311 | T[1][0] = A[1][0] ^ (C[3] = D[0]); |
| 312 | T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ |
| 313 | T[1][2] = A[1][2] ^ (E[0] = D[2]); |
| 314 | T[1][3] = A[1][3] ^ (E[1] = D[3]); |
| 315 | T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ |
| 316 | |
| 317 | C[0] = ROL64(T[0][3], rhotates[0][3]); |
| 318 | C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ |
| 319 | C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ |
| 320 | C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ |
| 321 | C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ |
| 322 | |
| 323 | A[1][0] = C[0] ^ (~C[1] & C[2]); |
| 324 | A[1][1] = C[1] ^ (~C[2] & C[3]); |
| 325 | A[1][2] = C[2] ^ (~C[3] & C[4]); |
| 326 | A[1][3] = C[3] ^ (~C[4] & C[0]); |
| 327 | A[1][4] = C[4] ^ (~C[0] & C[1]); |
| 328 | |
| 329 | C[0] = ROL64(T[0][1], rhotates[0][1]); |
| 330 | C[1] = ROL64(T[1][2], rhotates[1][2]); |
| 331 | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 332 | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| 333 | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| 334 | |
| 335 | A[2][0] = C[0] ^ (~C[1] & C[2]); |
| 336 | A[2][1] = C[1] ^ (~C[2] & C[3]); |
| 337 | A[2][2] = C[2] ^ (~C[3] & C[4]); |
| 338 | A[2][3] = C[3] ^ (~C[4] & C[0]); |
| 339 | A[2][4] = C[4] ^ (~C[0] & C[1]); |
| 340 | |
| 341 | C[0] = ROL64(T[0][4], rhotates[0][4]); |
| 342 | C[1] = ROL64(T[1][0], rhotates[1][0]); |
| 343 | C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ |
| 344 | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 345 | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| 346 | |
| 347 | A[3][0] = C[0] ^ (~C[1] & C[2]); |
| 348 | A[3][1] = C[1] ^ (~C[2] & C[3]); |
| 349 | A[3][2] = C[2] ^ (~C[3] & C[4]); |
| 350 | A[3][3] = C[3] ^ (~C[4] & C[0]); |
| 351 | A[3][4] = C[4] ^ (~C[0] & C[1]); |
| 352 | |
| 353 | C[0] = ROL64(T[0][2], rhotates[0][2]); |
| 354 | C[1] = ROL64(T[1][3], rhotates[1][3]); |
| 355 | C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ |
| 356 | C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ |
| 357 | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 358 | |
| 359 | A[4][0] = C[0] ^ (~C[1] & C[2]); |
| 360 | A[4][1] = C[1] ^ (~C[2] & C[3]); |
| 361 | A[4][2] = C[2] ^ (~C[3] & C[4]); |
| 362 | A[4][3] = C[3] ^ (~C[4] & C[0]); |
| 363 | A[4][4] = C[4] ^ (~C[0] & C[1]); |
| 364 | } |
| 365 | |
| 366 | static void KeccakF1600(uint64_t A[5][5]) |
| 367 | { |
| 368 | size_t i; |
| 369 | |
| 370 | for (i = 0; i < 24; i++) { |
| 371 | Round(A, i); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | #elif defined(KECCAK_1X_ALT) |
| 376 | /* |
| 377 | * This is variant of above KECCAK_1X that reduces requirement for |
| 378 | * temporary storage even further, but at cost of more updates to A[][]. |
| 379 | * It's less suitable if A[][] is memory bound, but better if it's |
| 380 | * register bound. |
| 381 | */ |
| 382 | |
| 383 | static void Round(uint64_t A[5][5], size_t i) |
| 384 | { |
| 385 | uint64_t C[5], D[5]; |
| 386 | |
| 387 | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| 388 | |
| 389 | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| 390 | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| 391 | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| 392 | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| 393 | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| 394 | |
| 395 | D[1] = C[0] ^ ROL64(C[2], 1); |
| 396 | D[2] = C[1] ^ ROL64(C[3], 1); |
| 397 | D[3] = C[2] ^= ROL64(C[4], 1); |
| 398 | D[4] = C[3] ^= ROL64(C[0], 1); |
| 399 | D[0] = C[4] ^= ROL64(C[1], 1); |
| 400 | |
| 401 | A[0][1] ^= D[1]; |
| 402 | A[1][1] ^= D[1]; |
| 403 | A[2][1] ^= D[1]; |
| 404 | A[3][1] ^= D[1]; |
| 405 | A[4][1] ^= D[1]; |
| 406 | |
| 407 | A[0][2] ^= D[2]; |
| 408 | A[1][2] ^= D[2]; |
| 409 | A[2][2] ^= D[2]; |
| 410 | A[3][2] ^= D[2]; |
| 411 | A[4][2] ^= D[2]; |
| 412 | |
| 413 | A[0][3] ^= C[2]; |
| 414 | A[1][3] ^= C[2]; |
| 415 | A[2][3] ^= C[2]; |
| 416 | A[3][3] ^= C[2]; |
| 417 | A[4][3] ^= C[2]; |
| 418 | |
| 419 | A[0][4] ^= C[3]; |
| 420 | A[1][4] ^= C[3]; |
| 421 | A[2][4] ^= C[3]; |
| 422 | A[3][4] ^= C[3]; |
| 423 | A[4][4] ^= C[3]; |
| 424 | |
| 425 | A[0][0] ^= C[4]; |
| 426 | A[1][0] ^= C[4]; |
| 427 | A[2][0] ^= C[4]; |
| 428 | A[3][0] ^= C[4]; |
| 429 | A[4][0] ^= C[4]; |
| 430 | |
| 431 | C[1] = A[0][1]; |
| 432 | C[2] = A[0][2]; |
| 433 | C[3] = A[0][3]; |
| 434 | C[4] = A[0][4]; |
| 435 | |
| 436 | A[0][1] = ROL64(A[1][1], rhotates[1][1]); |
| 437 | A[0][2] = ROL64(A[2][2], rhotates[2][2]); |
| 438 | A[0][3] = ROL64(A[3][3], rhotates[3][3]); |
| 439 | A[0][4] = ROL64(A[4][4], rhotates[4][4]); |
| 440 | |
| 441 | A[1][1] = ROL64(A[1][4], rhotates[1][4]); |
| 442 | A[2][2] = ROL64(A[2][3], rhotates[2][3]); |
| 443 | A[3][3] = ROL64(A[3][2], rhotates[3][2]); |
| 444 | A[4][4] = ROL64(A[4][1], rhotates[4][1]); |
| 445 | |
| 446 | A[1][4] = ROL64(A[4][2], rhotates[4][2]); |
| 447 | A[2][3] = ROL64(A[3][4], rhotates[3][4]); |
| 448 | A[3][2] = ROL64(A[2][1], rhotates[2][1]); |
| 449 | A[4][1] = ROL64(A[1][3], rhotates[1][3]); |
| 450 | |
| 451 | A[4][2] = ROL64(A[2][4], rhotates[2][4]); |
| 452 | A[3][4] = ROL64(A[4][3], rhotates[4][3]); |
| 453 | A[2][1] = ROL64(A[1][2], rhotates[1][2]); |
| 454 | A[1][3] = ROL64(A[3][1], rhotates[3][1]); |
| 455 | |
| 456 | A[2][4] = ROL64(A[4][0], rhotates[4][0]); |
| 457 | A[4][3] = ROL64(A[3][0], rhotates[3][0]); |
| 458 | A[1][2] = ROL64(A[2][0], rhotates[2][0]); |
| 459 | A[3][1] = ROL64(A[1][0], rhotates[1][0]); |
| 460 | |
| 461 | A[1][0] = ROL64(C[3], rhotates[0][3]); |
| 462 | A[2][0] = ROL64(C[1], rhotates[0][1]); |
| 463 | A[3][0] = ROL64(C[4], rhotates[0][4]); |
| 464 | A[4][0] = ROL64(C[2], rhotates[0][2]); |
| 465 | |
| 466 | C[0] = A[0][0]; |
| 467 | C[1] = A[1][0]; |
| 468 | D[0] = A[0][1]; |
| 469 | D[1] = A[1][1]; |
| 470 | |
| 471 | A[0][0] ^= (~A[0][1] & A[0][2]); |
| 472 | A[1][0] ^= (~A[1][1] & A[1][2]); |
| 473 | A[0][1] ^= (~A[0][2] & A[0][3]); |
| 474 | A[1][1] ^= (~A[1][2] & A[1][3]); |
| 475 | A[0][2] ^= (~A[0][3] & A[0][4]); |
| 476 | A[1][2] ^= (~A[1][3] & A[1][4]); |
| 477 | A[0][3] ^= (~A[0][4] & C[0]); |
| 478 | A[1][3] ^= (~A[1][4] & C[1]); |
| 479 | A[0][4] ^= (~C[0] & D[0]); |
| 480 | A[1][4] ^= (~C[1] & D[1]); |
| 481 | |
| 482 | C[2] = A[2][0]; |
| 483 | C[3] = A[3][0]; |
| 484 | D[2] = A[2][1]; |
| 485 | D[3] = A[3][1]; |
| 486 | |
| 487 | A[2][0] ^= (~A[2][1] & A[2][2]); |
| 488 | A[3][0] ^= (~A[3][1] & A[3][2]); |
| 489 | A[2][1] ^= (~A[2][2] & A[2][3]); |
| 490 | A[3][1] ^= (~A[3][2] & A[3][3]); |
| 491 | A[2][2] ^= (~A[2][3] & A[2][4]); |
| 492 | A[3][2] ^= (~A[3][3] & A[3][4]); |
| 493 | A[2][3] ^= (~A[2][4] & C[2]); |
| 494 | A[3][3] ^= (~A[3][4] & C[3]); |
| 495 | A[2][4] ^= (~C[2] & D[2]); |
| 496 | A[3][4] ^= (~C[3] & D[3]); |
| 497 | |
| 498 | C[4] = A[4][0]; |
| 499 | D[4] = A[4][1]; |
| 500 | |
| 501 | A[4][0] ^= (~A[4][1] & A[4][2]); |
| 502 | A[4][1] ^= (~A[4][2] & A[4][3]); |
| 503 | A[4][2] ^= (~A[4][3] & A[4][4]); |
| 504 | A[4][3] ^= (~A[4][4] & C[4]); |
| 505 | A[4][4] ^= (~C[4] & D[4]); |
| 506 | A[0][0] ^= iotas[i]; |
| 507 | } |
| 508 | |
| 509 | static void KeccakF1600(uint64_t A[5][5]) |
| 510 | { |
| 511 | size_t i; |
| 512 | |
| 513 | for (i = 0; i < 24; i++) { |
| 514 | Round(A, i); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | #elif defined(KECCAK_2X) |
| 519 | /* |
| 520 | * This implementation is variant of KECCAK_1X above with outer-most |
| 521 | * round loop unrolled twice. This allows to take temporary storage |
| 522 | * out of round procedure and simplify references to it by alternating |
| 523 | * it with actual data (see round loop below). Originally it was meant |
| 524 | * rather as reference for an assembly implementation, but it seems to |
| 525 | * play best with compilers [as well as provide best instruction per |
| 526 | * processed byte ratio at minimal round unroll factor]... |
| 527 | */ |
| 528 | static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) |
| 529 | { |
| 530 | uint64_t C[5], D[5]; |
| 531 | |
| 532 | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| 533 | |
| 534 | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| 535 | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| 536 | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| 537 | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| 538 | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| 539 | |
| 540 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 541 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 542 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 543 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 544 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 545 | |
| 546 | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 547 | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| 548 | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| 549 | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| 550 | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| 551 | |
| 552 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 553 | R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; |
| 554 | R[0][1] = C[1] ^ (~C[2] | C[3]); |
| 555 | R[0][2] = C[2] ^ ( C[3] & C[4]); |
| 556 | R[0][3] = C[3] ^ ( C[4] | C[0]); |
| 557 | R[0][4] = C[4] ^ ( C[0] & C[1]); |
| 558 | #else |
| 559 | R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
| 560 | R[0][1] = C[1] ^ (~C[2] & C[3]); |
| 561 | R[0][2] = C[2] ^ (~C[3] & C[4]); |
| 562 | R[0][3] = C[3] ^ (~C[4] & C[0]); |
| 563 | R[0][4] = C[4] ^ (~C[0] & C[1]); |
| 564 | #endif |
| 565 | |
| 566 | C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
| 567 | C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| 568 | C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| 569 | C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| 570 | C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| 571 | |
| 572 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 573 | R[1][0] = C[0] ^ (C[1] | C[2]); |
| 574 | R[1][1] = C[1] ^ (C[2] & C[3]); |
| 575 | R[1][2] = C[2] ^ (C[3] | ~C[4]); |
| 576 | R[1][3] = C[3] ^ (C[4] | C[0]); |
| 577 | R[1][4] = C[4] ^ (C[0] & C[1]); |
| 578 | #else |
| 579 | R[1][0] = C[0] ^ (~C[1] & C[2]); |
| 580 | R[1][1] = C[1] ^ (~C[2] & C[3]); |
| 581 | R[1][2] = C[2] ^ (~C[3] & C[4]); |
| 582 | R[1][3] = C[3] ^ (~C[4] & C[0]); |
| 583 | R[1][4] = C[4] ^ (~C[0] & C[1]); |
| 584 | #endif |
| 585 | |
| 586 | C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
| 587 | C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
| 588 | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 589 | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| 590 | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| 591 | |
| 592 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 593 | R[2][0] = C[0] ^ ( C[1] | C[2]); |
| 594 | R[2][1] = C[1] ^ ( C[2] & C[3]); |
| 595 | R[2][2] = C[2] ^ (~C[3] & C[4]); |
| 596 | R[2][3] = ~C[3] ^ ( C[4] | C[0]); |
| 597 | R[2][4] = C[4] ^ ( C[0] & C[1]); |
| 598 | #else |
| 599 | R[2][0] = C[0] ^ (~C[1] & C[2]); |
| 600 | R[2][1] = C[1] ^ (~C[2] & C[3]); |
| 601 | R[2][2] = C[2] ^ (~C[3] & C[4]); |
| 602 | R[2][3] = C[3] ^ (~C[4] & C[0]); |
| 603 | R[2][4] = C[4] ^ (~C[0] & C[1]); |
| 604 | #endif |
| 605 | |
| 606 | C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
| 607 | C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
| 608 | C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
| 609 | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 610 | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| 611 | |
| 612 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 613 | R[3][0] = C[0] ^ ( C[1] & C[2]); |
| 614 | R[3][1] = C[1] ^ ( C[2] | C[3]); |
| 615 | R[3][2] = C[2] ^ (~C[3] | C[4]); |
| 616 | R[3][3] = ~C[3] ^ ( C[4] & C[0]); |
| 617 | R[3][4] = C[4] ^ ( C[0] | C[1]); |
| 618 | #else |
| 619 | R[3][0] = C[0] ^ (~C[1] & C[2]); |
| 620 | R[3][1] = C[1] ^ (~C[2] & C[3]); |
| 621 | R[3][2] = C[2] ^ (~C[3] & C[4]); |
| 622 | R[3][3] = C[3] ^ (~C[4] & C[0]); |
| 623 | R[3][4] = C[4] ^ (~C[0] & C[1]); |
| 624 | #endif |
| 625 | |
| 626 | C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
| 627 | C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
| 628 | C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
| 629 | C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
| 630 | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 631 | |
| 632 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 633 | R[4][0] = C[0] ^ (~C[1] & C[2]); |
| 634 | R[4][1] = ~C[1] ^ ( C[2] | C[3]); |
| 635 | R[4][2] = C[2] ^ ( C[3] & C[4]); |
| 636 | R[4][3] = C[3] ^ ( C[4] | C[0]); |
| 637 | R[4][4] = C[4] ^ ( C[0] & C[1]); |
| 638 | #else |
| 639 | R[4][0] = C[0] ^ (~C[1] & C[2]); |
| 640 | R[4][1] = C[1] ^ (~C[2] & C[3]); |
| 641 | R[4][2] = C[2] ^ (~C[3] & C[4]); |
| 642 | R[4][3] = C[3] ^ (~C[4] & C[0]); |
| 643 | R[4][4] = C[4] ^ (~C[0] & C[1]); |
| 644 | #endif |
| 645 | } |
| 646 | |
| 647 | static void KeccakF1600(uint64_t A[5][5]) |
| 648 | { |
| 649 | uint64_t T[5][5]; |
| 650 | size_t i; |
| 651 | |
| 652 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 653 | A[0][1] = ~A[0][1]; |
| 654 | A[0][2] = ~A[0][2]; |
| 655 | A[1][3] = ~A[1][3]; |
| 656 | A[2][2] = ~A[2][2]; |
| 657 | A[3][2] = ~A[3][2]; |
| 658 | A[4][0] = ~A[4][0]; |
| 659 | #endif |
| 660 | |
| 661 | for (i = 0; i < 24; i += 2) { |
| 662 | Round(T, A, i); |
| 663 | Round(A, T, i + 1); |
| 664 | } |
| 665 | |
| 666 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
| 667 | A[0][1] = ~A[0][1]; |
| 668 | A[0][2] = ~A[0][2]; |
| 669 | A[1][3] = ~A[1][3]; |
| 670 | A[2][2] = ~A[2][2]; |
| 671 | A[3][2] = ~A[3][2]; |
| 672 | A[4][0] = ~A[4][0]; |
| 673 | #endif |
| 674 | } |
| 675 | |
| 676 | #else /* define KECCAK_INPLACE to compile this code path */ |
| 677 | /* |
| 678 | * This implementation is KECCAK_1X from above combined 4 times with |
| 679 | * a twist that allows to omit temporary storage and perform in-place |
| 680 | * processing. It's discussed in section 2.5 of "Keccak implementation |
| 681 | * overview". It's likely to be best suited for processors with large |
| 682 | * register bank... On the other hand processor with large register |
| 683 | * bank can as well use KECCAK_1X_ALT, it would be as fast but much |
| 684 | * more compact... |
| 685 | */ |
| 686 | static void FourRounds(uint64_t A[5][5], size_t i) |
| 687 | { |
| 688 | uint64_t B[5], C[5], D[5]; |
| 689 | |
| 690 | assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); |
| 691 | |
| 692 | /* Round 4*n */ |
| 693 | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| 694 | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| 695 | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| 696 | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| 697 | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| 698 | |
| 699 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 700 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 701 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 702 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 703 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 704 | |
| 705 | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 706 | B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| 707 | B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| 708 | B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| 709 | B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| 710 | |
| 711 | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; |
| 712 | C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); |
| 713 | C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); |
| 714 | C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); |
| 715 | C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); |
| 716 | |
| 717 | B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
| 718 | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| 719 | B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| 720 | B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| 721 | B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| 722 | |
| 723 | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| 724 | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
| 725 | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
| 726 | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| 727 | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| 728 | |
| 729 | B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
| 730 | B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
| 731 | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 732 | B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| 733 | B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| 734 | |
| 735 | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| 736 | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| 737 | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
| 738 | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| 739 | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
| 740 | |
| 741 | B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
| 742 | B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
| 743 | B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
| 744 | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 745 | B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| 746 | |
| 747 | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| 748 | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
| 749 | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| 750 | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
| 751 | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| 752 | |
| 753 | B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
| 754 | B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
| 755 | B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
| 756 | B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
| 757 | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 758 | |
| 759 | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| 760 | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| 761 | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| 762 | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
| 763 | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
| 764 | |
| 765 | /* Round 4*n+1 */ |
| 766 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 767 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 768 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 769 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 770 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 771 | |
| 772 | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 773 | B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); |
| 774 | B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); |
| 775 | B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); |
| 776 | B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); |
| 777 | |
| 778 | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; |
| 779 | C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); |
| 780 | C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); |
| 781 | C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); |
| 782 | C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); |
| 783 | |
| 784 | B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); |
| 785 | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| 786 | B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); |
| 787 | B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); |
| 788 | B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); |
| 789 | |
| 790 | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| 791 | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
| 792 | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| 793 | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
| 794 | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| 795 | |
| 796 | B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); |
| 797 | B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); |
| 798 | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 799 | B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); |
| 800 | B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); |
| 801 | |
| 802 | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| 803 | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
| 804 | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
| 805 | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| 806 | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| 807 | |
| 808 | B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); |
| 809 | B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); |
| 810 | B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); |
| 811 | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 812 | B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); |
| 813 | |
| 814 | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| 815 | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| 816 | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| 817 | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
| 818 | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
| 819 | |
| 820 | B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); |
| 821 | B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); |
| 822 | B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); |
| 823 | B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); |
| 824 | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 825 | |
| 826 | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| 827 | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| 828 | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
| 829 | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| 830 | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
| 831 | |
| 832 | /* Round 4*n+2 */ |
| 833 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 834 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 835 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 836 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 837 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 838 | |
| 839 | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 840 | B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); |
| 841 | B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); |
| 842 | B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); |
| 843 | B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); |
| 844 | |
| 845 | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; |
| 846 | C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); |
| 847 | C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); |
| 848 | C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); |
| 849 | C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); |
| 850 | |
| 851 | B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); |
| 852 | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| 853 | B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); |
| 854 | B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); |
| 855 | B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); |
| 856 | |
| 857 | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| 858 | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| 859 | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
| 860 | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
| 861 | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| 862 | |
| 863 | B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); |
| 864 | B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); |
| 865 | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 866 | B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); |
| 867 | B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); |
| 868 | |
| 869 | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| 870 | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
| 871 | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| 872 | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| 873 | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
| 874 | |
| 875 | B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); |
| 876 | B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); |
| 877 | B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); |
| 878 | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 879 | B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); |
| 880 | |
| 881 | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| 882 | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
| 883 | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| 884 | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| 885 | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
| 886 | |
| 887 | B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); |
| 888 | B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); |
| 889 | B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); |
| 890 | B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); |
| 891 | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 892 | |
| 893 | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| 894 | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| 895 | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
| 896 | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
| 897 | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| 898 | |
| 899 | /* Round 4*n+3 */ |
| 900 | D[0] = ROL64(C[1], 1) ^ C[4]; |
| 901 | D[1] = ROL64(C[2], 1) ^ C[0]; |
| 902 | D[2] = ROL64(C[3], 1) ^ C[1]; |
| 903 | D[3] = ROL64(C[4], 1) ^ C[2]; |
| 904 | D[4] = ROL64(C[0], 1) ^ C[3]; |
| 905 | |
| 906 | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| 907 | B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); |
| 908 | B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); |
| 909 | B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); |
| 910 | B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); |
| 911 | |
| 912 | /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; |
| 913 | /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); |
| 914 | /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); |
| 915 | /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); |
| 916 | /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); |
| 917 | |
| 918 | B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); |
| 919 | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| 920 | B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); |
| 921 | B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); |
| 922 | B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); |
| 923 | |
| 924 | /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); |
| 925 | /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); |
| 926 | /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); |
| 927 | /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); |
| 928 | /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); |
| 929 | |
| 930 | B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); |
| 931 | B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); |
| 932 | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| 933 | B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); |
| 934 | B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); |
| 935 | |
| 936 | /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); |
| 937 | /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); |
| 938 | /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); |
| 939 | /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); |
| 940 | /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); |
| 941 | |
| 942 | B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); |
| 943 | B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); |
| 944 | B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); |
| 945 | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| 946 | B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); |
| 947 | |
| 948 | /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); |
| 949 | /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); |
| 950 | /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); |
| 951 | /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); |
| 952 | /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); |
| 953 | |
| 954 | B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); |
| 955 | B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); |
| 956 | B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); |
| 957 | B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); |
| 958 | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| 959 | |
| 960 | /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); |
| 961 | /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); |
| 962 | /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); |
| 963 | /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); |
| 964 | /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); |
| 965 | } |
| 966 | |
| 967 | static void KeccakF1600(uint64_t A[5][5]) |
| 968 | { |
| 969 | size_t i; |
| 970 | |
| 971 | for (i = 0; i < 24; i += 4) { |
| 972 | FourRounds(A, i); |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | #endif |
| 977 | |
| 978 | static uint64_t BitInterleave(uint64_t Ai) |
| 979 | { |
| 980 | if (BIT_INTERLEAVE) { |
| 981 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
| 982 | uint32_t t0, t1; |
| 983 | |
| 984 | t0 = lo & 0x55555555; |
| 985 | t0 |= t0 >> 1; t0 &= 0x33333333; |
| 986 | t0 |= t0 >> 2; t0 &= 0x0f0f0f0f; |
| 987 | t0 |= t0 >> 4; t0 &= 0x00ff00ff; |
| 988 | t0 |= t0 >> 8; t0 &= 0x0000ffff; |
| 989 | |
| 990 | t1 = hi & 0x55555555; |
| 991 | t1 |= t1 >> 1; t1 &= 0x33333333; |
| 992 | t1 |= t1 >> 2; t1 &= 0x0f0f0f0f; |
| 993 | t1 |= t1 >> 4; t1 &= 0x00ff00ff; |
| 994 | t1 |= t1 >> 8; t1 <<= 16; |
| 995 | |
| 996 | lo &= 0xaaaaaaaa; |
| 997 | lo |= lo << 1; lo &= 0xcccccccc; |
| 998 | lo |= lo << 2; lo &= 0xf0f0f0f0; |
| 999 | lo |= lo << 4; lo &= 0xff00ff00; |
| 1000 | lo |= lo << 8; lo >>= 16; |
| 1001 | |
| 1002 | hi &= 0xaaaaaaaa; |
| 1003 | hi |= hi << 1; hi &= 0xcccccccc; |
| 1004 | hi |= hi << 2; hi &= 0xf0f0f0f0; |
| 1005 | hi |= hi << 4; hi &= 0xff00ff00; |
| 1006 | hi |= hi << 8; hi &= 0xffff0000; |
| 1007 | |
| 1008 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
| 1009 | } |
| 1010 | |
| 1011 | return Ai; |
| 1012 | } |
| 1013 | |
| 1014 | static uint64_t BitDeinterleave(uint64_t Ai) |
| 1015 | { |
| 1016 | if (BIT_INTERLEAVE) { |
| 1017 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
| 1018 | uint32_t t0, t1; |
| 1019 | |
| 1020 | t0 = lo & 0x0000ffff; |
| 1021 | t0 |= t0 << 8; t0 &= 0x00ff00ff; |
| 1022 | t0 |= t0 << 4; t0 &= 0x0f0f0f0f; |
| 1023 | t0 |= t0 << 2; t0 &= 0x33333333; |
| 1024 | t0 |= t0 << 1; t0 &= 0x55555555; |
| 1025 | |
| 1026 | t1 = hi << 16; |
| 1027 | t1 |= t1 >> 8; t1 &= 0xff00ff00; |
| 1028 | t1 |= t1 >> 4; t1 &= 0xf0f0f0f0; |
| 1029 | t1 |= t1 >> 2; t1 &= 0xcccccccc; |
| 1030 | t1 |= t1 >> 1; t1 &= 0xaaaaaaaa; |
| 1031 | |
| 1032 | lo >>= 16; |
| 1033 | lo |= lo << 8; lo &= 0x00ff00ff; |
| 1034 | lo |= lo << 4; lo &= 0x0f0f0f0f; |
| 1035 | lo |= lo << 2; lo &= 0x33333333; |
| 1036 | lo |= lo << 1; lo &= 0x55555555; |
| 1037 | |
| 1038 | hi &= 0xffff0000; |
| 1039 | hi |= hi >> 8; hi &= 0xff00ff00; |
| 1040 | hi |= hi >> 4; hi &= 0xf0f0f0f0; |
| 1041 | hi |= hi >> 2; hi &= 0xcccccccc; |
| 1042 | hi |= hi >> 1; hi &= 0xaaaaaaaa; |
| 1043 | |
| 1044 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
| 1045 | } |
| 1046 | |
| 1047 | return Ai; |
| 1048 | } |
| 1049 | |
| 1050 | /* |
| 1051 | * SHA3_absorb can be called multiple times, but at each invocation |
| 1052 | * largest multiple of |r| out of |len| bytes are processed. Then |
| 1053 | * remaining amount of bytes is returned. This is done to spare caller |
| 1054 | * trouble of calculating the largest multiple of |r|. |r| can be viewed |
| 1055 | * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, |
| 1056 | * 72, but can also be (1600 - 448)/8 = 144. All this means that message |
| 1057 | * padding and intermediate sub-block buffering, byte- or bitwise, is |
| 1058 | * caller's responsibility. |
| 1059 | */ |
| 1060 | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
| 1061 | size_t r) |
| 1062 | { |
| 1063 | uint64_t *A_flat = (uint64_t *)A; |
| 1064 | size_t i, w = r / 8; |
| 1065 | |
| 1066 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
| 1067 | |
| 1068 | while (len >= r) { |
| 1069 | for (i = 0; i < w; i++) { |
| 1070 | uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | |
| 1071 | (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | |
| 1072 | (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | |
| 1073 | (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; |
| 1074 | inp += 8; |
| 1075 | |
| 1076 | A_flat[i] ^= BitInterleave(Ai); |
| 1077 | } |
| 1078 | KeccakF1600(A); |
| 1079 | len -= r; |
| 1080 | } |
| 1081 | |
| 1082 | return len; |
| 1083 | } |
| 1084 | |
| 1085 | /* |
| 1086 | * SHA3_squeeze is called once at the end to generate |out| hash value |
| 1087 | * of |len| bytes. |
| 1088 | */ |
| 1089 | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) |
| 1090 | { |
| 1091 | uint64_t *A_flat = (uint64_t *)A; |
| 1092 | size_t i, w = r / 8; |
| 1093 | |
| 1094 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
| 1095 | |
| 1096 | while (len != 0) { |
| 1097 | for (i = 0; i < w && len != 0; i++) { |
| 1098 | uint64_t Ai = BitDeinterleave(A_flat[i]); |
| 1099 | |
| 1100 | if (len < 8) { |
| 1101 | for (i = 0; i < len; i++) { |
| 1102 | *out++ = (unsigned char)Ai; |
| 1103 | Ai >>= 8; |
| 1104 | } |
| 1105 | return; |
| 1106 | } |
| 1107 | |
| 1108 | out[0] = (unsigned char)(Ai); |
| 1109 | out[1] = (unsigned char)(Ai >> 8); |
| 1110 | out[2] = (unsigned char)(Ai >> 16); |
| 1111 | out[3] = (unsigned char)(Ai >> 24); |
| 1112 | out[4] = (unsigned char)(Ai >> 32); |
| 1113 | out[5] = (unsigned char)(Ai >> 40); |
| 1114 | out[6] = (unsigned char)(Ai >> 48); |
| 1115 | out[7] = (unsigned char)(Ai >> 56); |
| 1116 | out += 8; |
| 1117 | len -= 8; |
| 1118 | } |
| 1119 | if (len) |
| 1120 | KeccakF1600(A); |
| 1121 | } |
| 1122 | } |
| 1123 | #endif |
| 1124 | |
| 1125 | #ifdef SELFTEST |
| 1126 | /* |
| 1127 | * Post-padding one-shot implementations would look as following: |
| 1128 | * |
| 1129 | * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); |
| 1130 | * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); |
| 1131 | * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); |
| 1132 | * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); |
| 1133 | * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); |
| 1134 | * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); |
| 1135 | */ |
| 1136 | |
| 1137 | void SHA3_sponge(const unsigned char *inp, size_t len, |
| 1138 | unsigned char *out, size_t d, size_t r) |
| 1139 | { |
| 1140 | uint64_t A[5][5]; |
| 1141 | |
| 1142 | memset(A, 0, sizeof(A)); |
| 1143 | SHA3_absorb(A, inp, len, r); |
| 1144 | SHA3_squeeze(A, out, d, r); |
| 1145 | } |
| 1146 | |
| 1147 | # include <stdio.h> |
| 1148 | |
| 1149 | int main() |
| 1150 | { |
| 1151 | /* |
| 1152 | * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing |
| 1153 | */ |
| 1154 | unsigned char test[168] = { '\xf3', '\x3' }; |
| 1155 | unsigned char out[512]; |
| 1156 | size_t i; |
| 1157 | static const unsigned char result[512] = { |
| 1158 | 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, |
| 1159 | 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, |
| 1160 | 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, |
| 1161 | 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, |
| 1162 | 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, |
| 1163 | 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, |
| 1164 | 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, |
| 1165 | 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, |
| 1166 | 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, |
| 1167 | 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, |
| 1168 | 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, |
| 1169 | 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, |
| 1170 | 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, |
| 1171 | 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, |
| 1172 | 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, |
| 1173 | 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, |
| 1174 | 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, |
| 1175 | 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, |
| 1176 | 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, |
| 1177 | 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, |
| 1178 | 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, |
| 1179 | 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, |
| 1180 | 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, |
| 1181 | 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, |
| 1182 | 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, |
| 1183 | 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, |
| 1184 | 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, |
| 1185 | 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, |
| 1186 | 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, |
| 1187 | 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, |
| 1188 | 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, |
| 1189 | 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, |
| 1190 | 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, |
| 1191 | 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, |
| 1192 | 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, |
| 1193 | 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, |
| 1194 | 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, |
| 1195 | 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, |
| 1196 | 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, |
| 1197 | 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, |
| 1198 | 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, |
| 1199 | 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, |
| 1200 | 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, |
| 1201 | 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, |
| 1202 | 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, |
| 1203 | 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, |
| 1204 | 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, |
| 1205 | 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, |
| 1206 | 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, |
| 1207 | 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, |
| 1208 | 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, |
| 1209 | 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, |
| 1210 | 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, |
| 1211 | 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, |
| 1212 | 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, |
| 1213 | 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, |
| 1214 | 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, |
| 1215 | 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, |
| 1216 | 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, |
| 1217 | 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, |
| 1218 | 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, |
| 1219 | 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, |
| 1220 | 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, |
| 1221 | 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 |
| 1222 | }; |
| 1223 | |
| 1224 | test[167] = '\x80'; |
| 1225 | SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); |
| 1226 | |
| 1227 | /* |
| 1228 | * Rationale behind keeping output [formatted as below] is that |
| 1229 | * one should be able to redirect it to a file, then copy-n-paste |
| 1230 | * final "output val" from official example to another file, and |
| 1231 | * compare the two with diff(1). |
| 1232 | */ |
| 1233 | for (i = 0; i < sizeof(out);) { |
| 1234 | printf("%02X", out[i]); |
| 1235 | printf(++i % 16 && i != sizeof(out) ? " " : "\n"); |
| 1236 | } |
| 1237 | |
| 1238 | if (memcmp(out,result,sizeof(out))) { |
| 1239 | fprintf(stderr,"failure\n"); |
| 1240 | return 1; |
| 1241 | } else { |
| 1242 | fprintf(stderr,"success\n"); |
| 1243 | return 0; |
| 1244 | } |
| 1245 | } |
| 1246 | #endif |