lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include "internal/cryptlib.h" |
| 12 | #include "internal/numbers.h" |
| 13 | #include <openssl/stack.h> |
| 14 | #include <openssl/objects.h> |
| 15 | #include <errno.h> |
| 16 | #include <openssl/e_os2.h> /* For ossl_inline */ |
| 17 | |
| 18 | /* |
| 19 | * The initial number of nodes in the array. |
| 20 | */ |
| 21 | static const int min_nodes = 4; |
| 22 | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
| 23 | ? (int)(SIZE_MAX / sizeof(void *)) |
| 24 | : INT_MAX; |
| 25 | |
| 26 | struct stack_st { |
| 27 | int num; |
| 28 | const void **data; |
| 29 | int sorted; |
| 30 | int num_alloc; |
| 31 | OPENSSL_sk_compfunc comp; |
| 32 | }; |
| 33 | |
| 34 | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c) |
| 35 | { |
| 36 | OPENSSL_sk_compfunc old = sk->comp; |
| 37 | |
| 38 | if (sk->comp != c) |
| 39 | sk->sorted = 0; |
| 40 | sk->comp = c; |
| 41 | |
| 42 | return old; |
| 43 | } |
| 44 | |
| 45 | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
| 46 | { |
| 47 | OPENSSL_STACK *ret; |
| 48 | |
| 49 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { |
| 50 | CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE); |
| 51 | return NULL; |
| 52 | } |
| 53 | |
| 54 | /* direct structure assignment */ |
| 55 | *ret = *sk; |
| 56 | |
| 57 | if (sk->num == 0) { |
| 58 | /* postpone |ret->data| allocation */ |
| 59 | ret->data = NULL; |
| 60 | ret->num_alloc = 0; |
| 61 | return ret; |
| 62 | } |
| 63 | /* duplicate |sk->data| content */ |
| 64 | if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL) |
| 65 | goto err; |
| 66 | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
| 67 | return ret; |
| 68 | err: |
| 69 | OPENSSL_sk_free(ret); |
| 70 | return NULL; |
| 71 | } |
| 72 | |
| 73 | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
| 74 | OPENSSL_sk_copyfunc copy_func, |
| 75 | OPENSSL_sk_freefunc free_func) |
| 76 | { |
| 77 | OPENSSL_STACK *ret; |
| 78 | int i; |
| 79 | |
| 80 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { |
| 81 | CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE); |
| 82 | return NULL; |
| 83 | } |
| 84 | |
| 85 | /* direct structure assignment */ |
| 86 | *ret = *sk; |
| 87 | |
| 88 | if (sk->num == 0) { |
| 89 | /* postpone |ret| data allocation */ |
| 90 | ret->data = NULL; |
| 91 | ret->num_alloc = 0; |
| 92 | return ret; |
| 93 | } |
| 94 | |
| 95 | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
| 96 | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
| 97 | if (ret->data == NULL) { |
| 98 | OPENSSL_free(ret); |
| 99 | return NULL; |
| 100 | } |
| 101 | |
| 102 | for (i = 0; i < ret->num; ++i) { |
| 103 | if (sk->data[i] == NULL) |
| 104 | continue; |
| 105 | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
| 106 | while (--i >= 0) |
| 107 | if (ret->data[i] != NULL) |
| 108 | free_func((void *)ret->data[i]); |
| 109 | OPENSSL_sk_free(ret); |
| 110 | return NULL; |
| 111 | } |
| 112 | } |
| 113 | return ret; |
| 114 | } |
| 115 | |
| 116 | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
| 117 | { |
| 118 | return OPENSSL_sk_new_reserve(NULL, 0); |
| 119 | } |
| 120 | |
| 121 | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
| 122 | { |
| 123 | return OPENSSL_sk_new_reserve(c, 0); |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Calculate the array growth based on the target size. |
| 128 | * |
| 129 | * The growth fraction is a rational number and is defined by a numerator |
| 130 | * and a denominator. According to Andrew Koenig in his paper "Why Are |
| 131 | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
| 132 | * than the golden ratio (1.618...). |
| 133 | * |
| 134 | * We use 3/2 = 1.5 for simplicity of calculation and overflow checking. |
| 135 | * Another option 8/5 = 1.6 allows for slightly faster growth, although safe |
| 136 | * computation is more difficult. |
| 137 | * |
| 138 | * The limit to avoid overflow is spot on. The modulo three correction term |
| 139 | * ensures that the limit is the largest number than can be expanded by the |
| 140 | * growth factor without exceeding the hard limit. |
| 141 | * |
| 142 | * Do not call it with |current| lower than 2, or it will infinitely loop. |
| 143 | */ |
| 144 | static ossl_inline int compute_growth(int target, int current) |
| 145 | { |
| 146 | const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0); |
| 147 | |
| 148 | while (current < target) { |
| 149 | /* Check to see if we're at the hard limit */ |
| 150 | if (current >= max_nodes) |
| 151 | return 0; |
| 152 | |
| 153 | /* Expand the size by a factor of 3/2 if it is within range */ |
| 154 | current = current < limit ? current + current / 2 : max_nodes; |
| 155 | } |
| 156 | return current; |
| 157 | } |
| 158 | |
| 159 | /* internal STACK storage allocation */ |
| 160 | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
| 161 | { |
| 162 | const void **tmpdata; |
| 163 | int num_alloc; |
| 164 | |
| 165 | /* Check to see the reservation isn't exceeding the hard limit */ |
| 166 | if (n > max_nodes - st->num) |
| 167 | return 0; |
| 168 | |
| 169 | /* Figure out the new size */ |
| 170 | num_alloc = st->num + n; |
| 171 | if (num_alloc < min_nodes) |
| 172 | num_alloc = min_nodes; |
| 173 | |
| 174 | /* If |st->data| allocation was postponed */ |
| 175 | if (st->data == NULL) { |
| 176 | /* |
| 177 | * At this point, |st->num_alloc| and |st->num| are 0; |
| 178 | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
| 179 | */ |
| 180 | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { |
| 181 | CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE); |
| 182 | return 0; |
| 183 | } |
| 184 | st->num_alloc = num_alloc; |
| 185 | return 1; |
| 186 | } |
| 187 | |
| 188 | if (!exact) { |
| 189 | if (num_alloc <= st->num_alloc) |
| 190 | return 1; |
| 191 | num_alloc = compute_growth(num_alloc, st->num_alloc); |
| 192 | if (num_alloc == 0) |
| 193 | return 0; |
| 194 | } else if (num_alloc == st->num_alloc) { |
| 195 | return 1; |
| 196 | } |
| 197 | |
| 198 | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
| 199 | if (tmpdata == NULL) |
| 200 | return 0; |
| 201 | |
| 202 | st->data = tmpdata; |
| 203 | st->num_alloc = num_alloc; |
| 204 | return 1; |
| 205 | } |
| 206 | |
| 207 | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
| 208 | { |
| 209 | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
| 210 | |
| 211 | if (st == NULL) |
| 212 | return NULL; |
| 213 | |
| 214 | st->comp = c; |
| 215 | |
| 216 | if (n <= 0) |
| 217 | return st; |
| 218 | |
| 219 | if (!sk_reserve(st, n, 1)) { |
| 220 | OPENSSL_sk_free(st); |
| 221 | return NULL; |
| 222 | } |
| 223 | |
| 224 | return st; |
| 225 | } |
| 226 | |
| 227 | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
| 228 | { |
| 229 | if (st == NULL) |
| 230 | return 0; |
| 231 | |
| 232 | if (n < 0) |
| 233 | return 1; |
| 234 | return sk_reserve(st, n, 1); |
| 235 | } |
| 236 | |
| 237 | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
| 238 | { |
| 239 | if (st == NULL || st->num == max_nodes) |
| 240 | return 0; |
| 241 | |
| 242 | if (!sk_reserve(st, 1, 0)) |
| 243 | return 0; |
| 244 | |
| 245 | if ((loc >= st->num) || (loc < 0)) { |
| 246 | st->data[st->num] = data; |
| 247 | } else { |
| 248 | memmove(&st->data[loc + 1], &st->data[loc], |
| 249 | sizeof(st->data[0]) * (st->num - loc)); |
| 250 | st->data[loc] = data; |
| 251 | } |
| 252 | st->num++; |
| 253 | st->sorted = 0; |
| 254 | return st->num; |
| 255 | } |
| 256 | |
| 257 | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
| 258 | { |
| 259 | const void *ret = st->data[loc]; |
| 260 | |
| 261 | if (loc != st->num - 1) |
| 262 | memmove(&st->data[loc], &st->data[loc + 1], |
| 263 | sizeof(st->data[0]) * (st->num - loc - 1)); |
| 264 | st->num--; |
| 265 | |
| 266 | return (void *)ret; |
| 267 | } |
| 268 | |
| 269 | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
| 270 | { |
| 271 | int i; |
| 272 | |
| 273 | for (i = 0; i < st->num; i++) |
| 274 | if (st->data[i] == p) |
| 275 | return internal_delete(st, i); |
| 276 | return NULL; |
| 277 | } |
| 278 | |
| 279 | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
| 280 | { |
| 281 | if (st == NULL || loc < 0 || loc >= st->num) |
| 282 | return NULL; |
| 283 | |
| 284 | return internal_delete(st, loc); |
| 285 | } |
| 286 | |
| 287 | static int internal_find(OPENSSL_STACK *st, const void *data, |
| 288 | int ret_val_options) |
| 289 | { |
| 290 | const void *r; |
| 291 | int i; |
| 292 | |
| 293 | if (st == NULL || st->num == 0) |
| 294 | return -1; |
| 295 | |
| 296 | if (st->comp == NULL) { |
| 297 | for (i = 0; i < st->num; i++) |
| 298 | if (st->data[i] == data) |
| 299 | return i; |
| 300 | return -1; |
| 301 | } |
| 302 | |
| 303 | if (!st->sorted) { |
| 304 | if (st->num > 1) |
| 305 | qsort(st->data, st->num, sizeof(void *), st->comp); |
| 306 | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
| 307 | } |
| 308 | if (data == NULL) |
| 309 | return -1; |
| 310 | r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp, |
| 311 | ret_val_options); |
| 312 | |
| 313 | return r == NULL ? -1 : (int)((const void **)r - st->data); |
| 314 | } |
| 315 | |
| 316 | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
| 317 | { |
| 318 | return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH); |
| 319 | } |
| 320 | |
| 321 | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
| 322 | { |
| 323 | return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH); |
| 324 | } |
| 325 | |
| 326 | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
| 327 | { |
| 328 | if (st == NULL) |
| 329 | return -1; |
| 330 | return OPENSSL_sk_insert(st, data, st->num); |
| 331 | } |
| 332 | |
| 333 | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
| 334 | { |
| 335 | return OPENSSL_sk_insert(st, data, 0); |
| 336 | } |
| 337 | |
| 338 | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
| 339 | { |
| 340 | if (st == NULL || st->num == 0) |
| 341 | return NULL; |
| 342 | return internal_delete(st, 0); |
| 343 | } |
| 344 | |
| 345 | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
| 346 | { |
| 347 | if (st == NULL || st->num == 0) |
| 348 | return NULL; |
| 349 | return internal_delete(st, st->num - 1); |
| 350 | } |
| 351 | |
| 352 | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
| 353 | { |
| 354 | if (st == NULL || st->num == 0) |
| 355 | return; |
| 356 | memset(st->data, 0, sizeof(*st->data) * st->num); |
| 357 | st->num = 0; |
| 358 | } |
| 359 | |
| 360 | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
| 361 | { |
| 362 | int i; |
| 363 | |
| 364 | if (st == NULL) |
| 365 | return; |
| 366 | for (i = 0; i < st->num; i++) |
| 367 | if (st->data[i] != NULL) |
| 368 | func((char *)st->data[i]); |
| 369 | OPENSSL_sk_free(st); |
| 370 | } |
| 371 | |
| 372 | void OPENSSL_sk_free(OPENSSL_STACK *st) |
| 373 | { |
| 374 | if (st == NULL) |
| 375 | return; |
| 376 | OPENSSL_free(st->data); |
| 377 | OPENSSL_free(st); |
| 378 | } |
| 379 | |
| 380 | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
| 381 | { |
| 382 | return st == NULL ? -1 : st->num; |
| 383 | } |
| 384 | |
| 385 | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
| 386 | { |
| 387 | if (st == NULL || i < 0 || i >= st->num) |
| 388 | return NULL; |
| 389 | return (void *)st->data[i]; |
| 390 | } |
| 391 | |
| 392 | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
| 393 | { |
| 394 | if (st == NULL || i < 0 || i >= st->num) |
| 395 | return NULL; |
| 396 | st->data[i] = data; |
| 397 | st->sorted = 0; |
| 398 | return (void *)st->data[i]; |
| 399 | } |
| 400 | |
| 401 | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
| 402 | { |
| 403 | if (st != NULL && !st->sorted && st->comp != NULL) { |
| 404 | if (st->num > 1) |
| 405 | qsort(st->data, st->num, sizeof(void *), st->comp); |
| 406 | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
| 411 | { |
| 412 | return st == NULL ? 1 : st->sorted; |
| 413 | } |