lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | |
| 12 | #include <openssl/bio.h> |
| 13 | #include <openssl/x509_vfy.h> |
| 14 | #include <openssl/ssl.h> |
| 15 | #ifndef OPENSSL_NO_SRP |
| 16 | #include <openssl/srp.h> |
| 17 | #endif |
| 18 | |
| 19 | #include "../ssl/ssl_local.h" |
| 20 | #include "internal/sockets.h" |
| 21 | #include "internal/nelem.h" |
| 22 | #include "handshake_helper.h" |
| 23 | #include "testutil.h" |
| 24 | |
| 25 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) |
| 26 | #include <netinet/sctp.h> |
| 27 | #endif |
| 28 | |
| 29 | HANDSHAKE_RESULT *HANDSHAKE_RESULT_new(void) |
| 30 | { |
| 31 | HANDSHAKE_RESULT *ret; |
| 32 | |
| 33 | TEST_ptr(ret = OPENSSL_zalloc(sizeof(*ret))); |
| 34 | return ret; |
| 35 | } |
| 36 | |
| 37 | void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result) |
| 38 | { |
| 39 | if (result == NULL) |
| 40 | return; |
| 41 | OPENSSL_free(result->client_npn_negotiated); |
| 42 | OPENSSL_free(result->server_npn_negotiated); |
| 43 | OPENSSL_free(result->client_alpn_negotiated); |
| 44 | OPENSSL_free(result->server_alpn_negotiated); |
| 45 | OPENSSL_free(result->result_session_ticket_app_data); |
| 46 | sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free); |
| 47 | sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free); |
| 48 | OPENSSL_free(result->cipher); |
| 49 | OPENSSL_free(result); |
| 50 | } |
| 51 | |
| 52 | /* |
| 53 | * Since there appears to be no way to extract the sent/received alert |
| 54 | * from the SSL object directly, we use the info callback and stash |
| 55 | * the result in ex_data. |
| 56 | */ |
| 57 | typedef struct handshake_ex_data_st { |
| 58 | int alert_sent; |
| 59 | int num_fatal_alerts_sent; |
| 60 | int alert_received; |
| 61 | int session_ticket_do_not_call; |
| 62 | ssl_servername_t servername; |
| 63 | } HANDSHAKE_EX_DATA; |
| 64 | |
| 65 | typedef struct ctx_data_st { |
| 66 | unsigned char *npn_protocols; |
| 67 | size_t npn_protocols_len; |
| 68 | unsigned char *alpn_protocols; |
| 69 | size_t alpn_protocols_len; |
| 70 | char *srp_user; |
| 71 | char *srp_password; |
| 72 | char *session_ticket_app_data; |
| 73 | } CTX_DATA; |
| 74 | |
| 75 | /* |ctx_data| itself is stack-allocated. */ |
| 76 | static void ctx_data_free_data(CTX_DATA *ctx_data) |
| 77 | { |
| 78 | OPENSSL_free(ctx_data->npn_protocols); |
| 79 | ctx_data->npn_protocols = NULL; |
| 80 | OPENSSL_free(ctx_data->alpn_protocols); |
| 81 | ctx_data->alpn_protocols = NULL; |
| 82 | OPENSSL_free(ctx_data->srp_user); |
| 83 | ctx_data->srp_user = NULL; |
| 84 | OPENSSL_free(ctx_data->srp_password); |
| 85 | ctx_data->srp_password = NULL; |
| 86 | OPENSSL_free(ctx_data->session_ticket_app_data); |
| 87 | ctx_data->session_ticket_app_data = NULL; |
| 88 | } |
| 89 | |
| 90 | static int ex_data_idx; |
| 91 | |
| 92 | static void info_cb(const SSL *s, int where, int ret) |
| 93 | { |
| 94 | if (where & SSL_CB_ALERT) { |
| 95 | HANDSHAKE_EX_DATA *ex_data = |
| 96 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); |
| 97 | if (where & SSL_CB_WRITE) { |
| 98 | ex_data->alert_sent = ret; |
| 99 | if (strcmp(SSL_alert_type_string(ret), "F") == 0 |
| 100 | || strcmp(SSL_alert_desc_string(ret), "CN") == 0) |
| 101 | ex_data->num_fatal_alerts_sent++; |
| 102 | } else { |
| 103 | ex_data->alert_received = ret; |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /* Select the appropriate server CTX. |
| 109 | * Returns SSL_TLSEXT_ERR_OK if a match was found. |
| 110 | * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch. |
| 111 | * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch. |
| 112 | * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK. |
| 113 | */ |
| 114 | static int select_server_ctx(SSL *s, void *arg, int ignore) |
| 115 | { |
| 116 | const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); |
| 117 | HANDSHAKE_EX_DATA *ex_data = |
| 118 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); |
| 119 | |
| 120 | if (servername == NULL) { |
| 121 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; |
| 122 | return SSL_TLSEXT_ERR_NOACK; |
| 123 | } |
| 124 | |
| 125 | if (strcmp(servername, "server2") == 0) { |
| 126 | SSL_CTX *new_ctx = (SSL_CTX*)arg; |
| 127 | SSL_set_SSL_CTX(s, new_ctx); |
| 128 | /* |
| 129 | * Copy over all the SSL_CTX options - reasonable behavior |
| 130 | * allows testing of cases where the options between two |
| 131 | * contexts differ/conflict |
| 132 | */ |
| 133 | SSL_clear_options(s, 0xFFFFFFFFL); |
| 134 | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); |
| 135 | |
| 136 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; |
| 137 | return SSL_TLSEXT_ERR_OK; |
| 138 | } else if (strcmp(servername, "server1") == 0) { |
| 139 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; |
| 140 | return SSL_TLSEXT_ERR_OK; |
| 141 | } else if (ignore) { |
| 142 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; |
| 143 | return SSL_TLSEXT_ERR_NOACK; |
| 144 | } else { |
| 145 | /* Don't set an explicit alert, to test library defaults. */ |
| 146 | return SSL_TLSEXT_ERR_ALERT_FATAL; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | static int client_hello_select_server_ctx(SSL *s, void *arg, int ignore) |
| 151 | { |
| 152 | const char *servername; |
| 153 | const unsigned char *p; |
| 154 | size_t len, remaining; |
| 155 | HANDSHAKE_EX_DATA *ex_data = |
| 156 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); |
| 157 | |
| 158 | /* |
| 159 | * The server_name extension was given too much extensibility when it |
| 160 | * was written, so parsing the normal case is a bit complex. |
| 161 | */ |
| 162 | if (!SSL_client_hello_get0_ext(s, TLSEXT_TYPE_server_name, &p, |
| 163 | &remaining) || |
| 164 | remaining <= 2) |
| 165 | return 0; |
| 166 | /* Extract the length of the supplied list of names. */ |
| 167 | len = (*(p++) << 8); |
| 168 | len += *(p++); |
| 169 | if (len + 2 != remaining) |
| 170 | return 0; |
| 171 | remaining = len; |
| 172 | /* |
| 173 | * The list in practice only has a single element, so we only consider |
| 174 | * the first one. |
| 175 | */ |
| 176 | if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name) |
| 177 | return 0; |
| 178 | remaining--; |
| 179 | /* Now we can finally pull out the byte array with the actual hostname. */ |
| 180 | if (remaining <= 2) |
| 181 | return 0; |
| 182 | len = (*(p++) << 8); |
| 183 | len += *(p++); |
| 184 | if (len + 2 > remaining) |
| 185 | return 0; |
| 186 | remaining = len; |
| 187 | servername = (const char *)p; |
| 188 | |
| 189 | if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) { |
| 190 | SSL_CTX *new_ctx = arg; |
| 191 | SSL_set_SSL_CTX(s, new_ctx); |
| 192 | /* |
| 193 | * Copy over all the SSL_CTX options - reasonable behavior |
| 194 | * allows testing of cases where the options between two |
| 195 | * contexts differ/conflict |
| 196 | */ |
| 197 | SSL_clear_options(s, 0xFFFFFFFFL); |
| 198 | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); |
| 199 | |
| 200 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; |
| 201 | return 1; |
| 202 | } else if (len == strlen("server1") && |
| 203 | strncmp(servername, "server1", len) == 0) { |
| 204 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; |
| 205 | return 1; |
| 206 | } else if (ignore) { |
| 207 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; |
| 208 | return 1; |
| 209 | } |
| 210 | return 0; |
| 211 | } |
| 212 | /* |
| 213 | * (RFC 6066): |
| 214 | * If the server understood the ClientHello extension but |
| 215 | * does not recognize the server name, the server SHOULD take one of two |
| 216 | * actions: either abort the handshake by sending a fatal-level |
| 217 | * unrecognized_name(112) alert or continue the handshake. |
| 218 | * |
| 219 | * This behaviour is up to the application to configure; we test both |
| 220 | * configurations to ensure the state machine propagates the result |
| 221 | * correctly. |
| 222 | */ |
| 223 | static int servername_ignore_cb(SSL *s, int *ad, void *arg) |
| 224 | { |
| 225 | return select_server_ctx(s, arg, 1); |
| 226 | } |
| 227 | |
| 228 | static int servername_reject_cb(SSL *s, int *ad, void *arg) |
| 229 | { |
| 230 | return select_server_ctx(s, arg, 0); |
| 231 | } |
| 232 | |
| 233 | static int client_hello_ignore_cb(SSL *s, int *al, void *arg) |
| 234 | { |
| 235 | if (!client_hello_select_server_ctx(s, arg, 1)) { |
| 236 | *al = SSL_AD_UNRECOGNIZED_NAME; |
| 237 | return SSL_CLIENT_HELLO_ERROR; |
| 238 | } |
| 239 | return SSL_CLIENT_HELLO_SUCCESS; |
| 240 | } |
| 241 | |
| 242 | static int client_hello_reject_cb(SSL *s, int *al, void *arg) |
| 243 | { |
| 244 | if (!client_hello_select_server_ctx(s, arg, 0)) { |
| 245 | *al = SSL_AD_UNRECOGNIZED_NAME; |
| 246 | return SSL_CLIENT_HELLO_ERROR; |
| 247 | } |
| 248 | return SSL_CLIENT_HELLO_SUCCESS; |
| 249 | } |
| 250 | |
| 251 | static int client_hello_nov12_cb(SSL *s, int *al, void *arg) |
| 252 | { |
| 253 | int ret; |
| 254 | unsigned int v; |
| 255 | const unsigned char *p; |
| 256 | |
| 257 | v = SSL_client_hello_get0_legacy_version(s); |
| 258 | if (v > TLS1_2_VERSION || v < SSL3_VERSION) { |
| 259 | *al = SSL_AD_PROTOCOL_VERSION; |
| 260 | return SSL_CLIENT_HELLO_ERROR; |
| 261 | } |
| 262 | (void)SSL_client_hello_get0_session_id(s, &p); |
| 263 | if (p == NULL || |
| 264 | SSL_client_hello_get0_random(s, &p) == 0 || |
| 265 | SSL_client_hello_get0_ciphers(s, &p) == 0 || |
| 266 | SSL_client_hello_get0_compression_methods(s, &p) == 0) { |
| 267 | *al = SSL_AD_INTERNAL_ERROR; |
| 268 | return SSL_CLIENT_HELLO_ERROR; |
| 269 | } |
| 270 | ret = client_hello_select_server_ctx(s, arg, 0); |
| 271 | SSL_set_max_proto_version(s, TLS1_1_VERSION); |
| 272 | if (!ret) { |
| 273 | *al = SSL_AD_UNRECOGNIZED_NAME; |
| 274 | return SSL_CLIENT_HELLO_ERROR; |
| 275 | } |
| 276 | return SSL_CLIENT_HELLO_SUCCESS; |
| 277 | } |
| 278 | |
| 279 | static unsigned char dummy_ocsp_resp_good_val = 0xff; |
| 280 | static unsigned char dummy_ocsp_resp_bad_val = 0xfe; |
| 281 | |
| 282 | static int server_ocsp_cb(SSL *s, void *arg) |
| 283 | { |
| 284 | unsigned char *resp; |
| 285 | |
| 286 | resp = OPENSSL_malloc(1); |
| 287 | if (resp == NULL) |
| 288 | return SSL_TLSEXT_ERR_ALERT_FATAL; |
| 289 | /* |
| 290 | * For the purposes of testing we just send back a dummy OCSP response |
| 291 | */ |
| 292 | *resp = *(unsigned char *)arg; |
| 293 | if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1)) |
| 294 | return SSL_TLSEXT_ERR_ALERT_FATAL; |
| 295 | |
| 296 | return SSL_TLSEXT_ERR_OK; |
| 297 | } |
| 298 | |
| 299 | static int client_ocsp_cb(SSL *s, void *arg) |
| 300 | { |
| 301 | const unsigned char *resp; |
| 302 | int len; |
| 303 | |
| 304 | len = SSL_get_tlsext_status_ocsp_resp(s, &resp); |
| 305 | if (len != 1 || *resp != dummy_ocsp_resp_good_val) |
| 306 | return 0; |
| 307 | |
| 308 | return 1; |
| 309 | } |
| 310 | |
| 311 | static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) { |
| 312 | X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION); |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) { |
| 317 | return 1; |
| 318 | } |
| 319 | |
| 320 | static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv, |
| 321 | EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) |
| 322 | { |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name, |
| 327 | unsigned char *iv, |
| 328 | EVP_CIPHER_CTX *ctx, |
| 329 | HMAC_CTX *hctx, int enc) |
| 330 | { |
| 331 | HANDSHAKE_EX_DATA *ex_data = |
| 332 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); |
| 333 | ex_data->session_ticket_do_not_call = 1; |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | /* Parse the comma-separated list into TLS format. */ |
| 338 | static int parse_protos(const char *protos, unsigned char **out, size_t *outlen) |
| 339 | { |
| 340 | size_t len, i, prefix; |
| 341 | |
| 342 | len = strlen(protos); |
| 343 | |
| 344 | /* Should never have reuse. */ |
| 345 | if (!TEST_ptr_null(*out) |
| 346 | /* Test values are small, so we omit length limit checks. */ |
| 347 | || !TEST_ptr(*out = OPENSSL_malloc(len + 1))) |
| 348 | return 0; |
| 349 | *outlen = len + 1; |
| 350 | |
| 351 | /* |
| 352 | * foo => '3', 'f', 'o', 'o' |
| 353 | * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r' |
| 354 | */ |
| 355 | memcpy(*out + 1, protos, len); |
| 356 | |
| 357 | prefix = 0; |
| 358 | i = prefix + 1; |
| 359 | while (i <= len) { |
| 360 | if ((*out)[i] == ',') { |
| 361 | if (!TEST_int_gt(i - 1, prefix)) |
| 362 | goto err; |
| 363 | (*out)[prefix] = (unsigned char)(i - 1 - prefix); |
| 364 | prefix = i; |
| 365 | } |
| 366 | i++; |
| 367 | } |
| 368 | if (!TEST_int_gt(len, prefix)) |
| 369 | goto err; |
| 370 | (*out)[prefix] = (unsigned char)(len - prefix); |
| 371 | return 1; |
| 372 | |
| 373 | err: |
| 374 | OPENSSL_free(*out); |
| 375 | *out = NULL; |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | #ifndef OPENSSL_NO_NEXTPROTONEG |
| 380 | /* |
| 381 | * The client SHOULD select the first protocol advertised by the server that it |
| 382 | * also supports. In the event that the client doesn't support any of server's |
| 383 | * protocols, or the server doesn't advertise any, it SHOULD select the first |
| 384 | * protocol that it supports. |
| 385 | */ |
| 386 | static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen, |
| 387 | const unsigned char *in, unsigned int inlen, |
| 388 | void *arg) |
| 389 | { |
| 390 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); |
| 391 | int ret; |
| 392 | |
| 393 | ret = SSL_select_next_proto(out, outlen, in, inlen, |
| 394 | ctx_data->npn_protocols, |
| 395 | ctx_data->npn_protocols_len); |
| 396 | /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */ |
| 397 | return TEST_true(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP) |
| 398 | ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL; |
| 399 | } |
| 400 | |
| 401 | static int server_npn_cb(SSL *s, const unsigned char **data, |
| 402 | unsigned int *len, void *arg) |
| 403 | { |
| 404 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); |
| 405 | *data = ctx_data->npn_protocols; |
| 406 | *len = ctx_data->npn_protocols_len; |
| 407 | return SSL_TLSEXT_ERR_OK; |
| 408 | } |
| 409 | #endif |
| 410 | |
| 411 | /* |
| 412 | * The server SHOULD select the most highly preferred protocol that it supports |
| 413 | * and that is also advertised by the client. In the event that the server |
| 414 | * supports no protocols that the client advertises, then the server SHALL |
| 415 | * respond with a fatal "no_application_protocol" alert. |
| 416 | */ |
| 417 | static int server_alpn_cb(SSL *s, const unsigned char **out, |
| 418 | unsigned char *outlen, const unsigned char *in, |
| 419 | unsigned int inlen, void *arg) |
| 420 | { |
| 421 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); |
| 422 | int ret; |
| 423 | |
| 424 | /* SSL_select_next_proto isn't const-correct... */ |
| 425 | unsigned char *tmp_out; |
| 426 | |
| 427 | /* |
| 428 | * The result points either to |in| or to |ctx_data->alpn_protocols|. |
| 429 | * The callback is allowed to point to |in| or to a long-lived buffer, |
| 430 | * so we can return directly without storing a copy. |
| 431 | */ |
| 432 | ret = SSL_select_next_proto(&tmp_out, outlen, |
| 433 | ctx_data->alpn_protocols, |
| 434 | ctx_data->alpn_protocols_len, in, inlen); |
| 435 | |
| 436 | *out = tmp_out; |
| 437 | /* Unlike NPN, we don't tolerate a mismatch. */ |
| 438 | return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK |
| 439 | : SSL_TLSEXT_ERR_ALERT_FATAL; |
| 440 | } |
| 441 | |
| 442 | #ifndef OPENSSL_NO_SRP |
| 443 | static char *client_srp_cb(SSL *s, void *arg) |
| 444 | { |
| 445 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); |
| 446 | return OPENSSL_strdup(ctx_data->srp_password); |
| 447 | } |
| 448 | |
| 449 | static int server_srp_cb(SSL *s, int *ad, void *arg) |
| 450 | { |
| 451 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); |
| 452 | if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0) |
| 453 | return SSL3_AL_FATAL; |
| 454 | if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user, |
| 455 | ctx_data->srp_password, |
| 456 | "2048" /* known group */) < 0) { |
| 457 | *ad = SSL_AD_INTERNAL_ERROR; |
| 458 | return SSL3_AL_FATAL; |
| 459 | } |
| 460 | return SSL_ERROR_NONE; |
| 461 | } |
| 462 | #endif /* !OPENSSL_NO_SRP */ |
| 463 | |
| 464 | static int generate_session_ticket_cb(SSL *s, void *arg) |
| 465 | { |
| 466 | CTX_DATA *server_ctx_data = arg; |
| 467 | SSL_SESSION *ss = SSL_get_session(s); |
| 468 | char *app_data = server_ctx_data->session_ticket_app_data; |
| 469 | |
| 470 | if (ss == NULL || app_data == NULL) |
| 471 | return 0; |
| 472 | |
| 473 | return SSL_SESSION_set1_ticket_appdata(ss, app_data, strlen(app_data)); |
| 474 | } |
| 475 | |
| 476 | static int decrypt_session_ticket_cb(SSL *s, SSL_SESSION *ss, |
| 477 | const unsigned char *keyname, |
| 478 | size_t keyname_len, |
| 479 | SSL_TICKET_STATUS status, |
| 480 | void *arg) |
| 481 | { |
| 482 | switch (status) { |
| 483 | case SSL_TICKET_EMPTY: |
| 484 | case SSL_TICKET_NO_DECRYPT: |
| 485 | return SSL_TICKET_RETURN_IGNORE_RENEW; |
| 486 | case SSL_TICKET_SUCCESS: |
| 487 | return SSL_TICKET_RETURN_USE; |
| 488 | case SSL_TICKET_SUCCESS_RENEW: |
| 489 | return SSL_TICKET_RETURN_USE_RENEW; |
| 490 | default: |
| 491 | break; |
| 492 | } |
| 493 | return SSL_TICKET_RETURN_ABORT; |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Configure callbacks and other properties that can't be set directly |
| 498 | * in the server/client CONF. |
| 499 | */ |
| 500 | static int configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, |
| 501 | SSL_CTX *client_ctx, |
| 502 | const SSL_TEST_CTX *test, |
| 503 | const SSL_TEST_EXTRA_CONF *extra, |
| 504 | CTX_DATA *server_ctx_data, |
| 505 | CTX_DATA *server2_ctx_data, |
| 506 | CTX_DATA *client_ctx_data) |
| 507 | { |
| 508 | unsigned char *ticket_keys; |
| 509 | size_t ticket_key_len; |
| 510 | |
| 511 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server_ctx, |
| 512 | test->max_fragment_size), 1)) |
| 513 | goto err; |
| 514 | if (server2_ctx != NULL) { |
| 515 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server2_ctx, |
| 516 | test->max_fragment_size), |
| 517 | 1)) |
| 518 | goto err; |
| 519 | } |
| 520 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(client_ctx, |
| 521 | test->max_fragment_size), 1)) |
| 522 | goto err; |
| 523 | |
| 524 | switch (extra->client.verify_callback) { |
| 525 | case SSL_TEST_VERIFY_ACCEPT_ALL: |
| 526 | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb, NULL); |
| 527 | break; |
| 528 | case SSL_TEST_VERIFY_REJECT_ALL: |
| 529 | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb, NULL); |
| 530 | break; |
| 531 | case SSL_TEST_VERIFY_NONE: |
| 532 | break; |
| 533 | } |
| 534 | |
| 535 | switch (extra->client.max_fragment_len_mode) { |
| 536 | case TLSEXT_max_fragment_length_512: |
| 537 | case TLSEXT_max_fragment_length_1024: |
| 538 | case TLSEXT_max_fragment_length_2048: |
| 539 | case TLSEXT_max_fragment_length_4096: |
| 540 | case TLSEXT_max_fragment_length_DISABLED: |
| 541 | SSL_CTX_set_tlsext_max_fragment_length( |
| 542 | client_ctx, extra->client.max_fragment_len_mode); |
| 543 | break; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * Link the two contexts for SNI purposes. |
| 548 | * Also do ClientHello callbacks here, as setting both ClientHello and SNI |
| 549 | * is bad. |
| 550 | */ |
| 551 | switch (extra->server.servername_callback) { |
| 552 | case SSL_TEST_SERVERNAME_IGNORE_MISMATCH: |
| 553 | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb); |
| 554 | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); |
| 555 | break; |
| 556 | case SSL_TEST_SERVERNAME_REJECT_MISMATCH: |
| 557 | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb); |
| 558 | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); |
| 559 | break; |
| 560 | case SSL_TEST_SERVERNAME_CB_NONE: |
| 561 | break; |
| 562 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_IGNORE_MISMATCH: |
| 563 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_ignore_cb, server2_ctx); |
| 564 | break; |
| 565 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_REJECT_MISMATCH: |
| 566 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_reject_cb, server2_ctx); |
| 567 | break; |
| 568 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_NO_V12: |
| 569 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_nov12_cb, server2_ctx); |
| 570 | } |
| 571 | |
| 572 | if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) { |
| 573 | SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp); |
| 574 | SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb); |
| 575 | SSL_CTX_set_tlsext_status_arg(client_ctx, NULL); |
| 576 | SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb); |
| 577 | SSL_CTX_set_tlsext_status_arg(server_ctx, |
| 578 | ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE) |
| 579 | ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val)); |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * The initial_ctx/session_ctx always handles the encrypt/decrypt of the |
| 584 | * session ticket. This ticket_key callback is assigned to the second |
| 585 | * session (assigned via SNI), and should never be invoked |
| 586 | */ |
| 587 | if (server2_ctx != NULL) |
| 588 | SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx, |
| 589 | do_not_call_session_ticket_cb); |
| 590 | |
| 591 | if (extra->server.broken_session_ticket) { |
| 592 | SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb); |
| 593 | } |
| 594 | #ifndef OPENSSL_NO_NEXTPROTONEG |
| 595 | if (extra->server.npn_protocols != NULL) { |
| 596 | if (!TEST_true(parse_protos(extra->server.npn_protocols, |
| 597 | &server_ctx_data->npn_protocols, |
| 598 | &server_ctx_data->npn_protocols_len))) |
| 599 | goto err; |
| 600 | SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb, |
| 601 | server_ctx_data); |
| 602 | } |
| 603 | if (extra->server2.npn_protocols != NULL) { |
| 604 | if (!TEST_true(parse_protos(extra->server2.npn_protocols, |
| 605 | &server2_ctx_data->npn_protocols, |
| 606 | &server2_ctx_data->npn_protocols_len)) |
| 607 | || !TEST_ptr(server2_ctx)) |
| 608 | goto err; |
| 609 | SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb, |
| 610 | server2_ctx_data); |
| 611 | } |
| 612 | if (extra->client.npn_protocols != NULL) { |
| 613 | if (!TEST_true(parse_protos(extra->client.npn_protocols, |
| 614 | &client_ctx_data->npn_protocols, |
| 615 | &client_ctx_data->npn_protocols_len))) |
| 616 | goto err; |
| 617 | SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb, |
| 618 | client_ctx_data); |
| 619 | } |
| 620 | #endif |
| 621 | if (extra->server.alpn_protocols != NULL) { |
| 622 | if (!TEST_true(parse_protos(extra->server.alpn_protocols, |
| 623 | &server_ctx_data->alpn_protocols, |
| 624 | &server_ctx_data->alpn_protocols_len))) |
| 625 | goto err; |
| 626 | SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data); |
| 627 | } |
| 628 | if (extra->server2.alpn_protocols != NULL) { |
| 629 | if (!TEST_ptr(server2_ctx) |
| 630 | || !TEST_true(parse_protos(extra->server2.alpn_protocols, |
| 631 | &server2_ctx_data->alpn_protocols, |
| 632 | &server2_ctx_data->alpn_protocols_len |
| 633 | ))) |
| 634 | goto err; |
| 635 | SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, |
| 636 | server2_ctx_data); |
| 637 | } |
| 638 | if (extra->client.alpn_protocols != NULL) { |
| 639 | unsigned char *alpn_protos = NULL; |
| 640 | size_t alpn_protos_len = 0; |
| 641 | |
| 642 | if (!TEST_true(parse_protos(extra->client.alpn_protocols, |
| 643 | &alpn_protos, &alpn_protos_len)) |
| 644 | /* Reversed return value convention... */ |
| 645 | || !TEST_int_eq(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos, |
| 646 | alpn_protos_len), 0)) |
| 647 | goto err; |
| 648 | OPENSSL_free(alpn_protos); |
| 649 | } |
| 650 | |
| 651 | if (extra->server.session_ticket_app_data != NULL) { |
| 652 | server_ctx_data->session_ticket_app_data = |
| 653 | OPENSSL_strdup(extra->server.session_ticket_app_data); |
| 654 | SSL_CTX_set_session_ticket_cb(server_ctx, generate_session_ticket_cb, |
| 655 | decrypt_session_ticket_cb, server_ctx_data); |
| 656 | } |
| 657 | if (extra->server2.session_ticket_app_data != NULL) { |
| 658 | if (!TEST_ptr(server2_ctx)) |
| 659 | goto err; |
| 660 | server2_ctx_data->session_ticket_app_data = |
| 661 | OPENSSL_strdup(extra->server2.session_ticket_app_data); |
| 662 | SSL_CTX_set_session_ticket_cb(server2_ctx, NULL, |
| 663 | decrypt_session_ticket_cb, server2_ctx_data); |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * Use fixed session ticket keys so that we can decrypt a ticket created with |
| 668 | * one CTX in another CTX. Don't address server2 for the moment. |
| 669 | */ |
| 670 | ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0); |
| 671 | if (!TEST_ptr(ticket_keys = OPENSSL_zalloc(ticket_key_len)) |
| 672 | || !TEST_int_eq(SSL_CTX_set_tlsext_ticket_keys(server_ctx, |
| 673 | ticket_keys, |
| 674 | ticket_key_len), 1)) { |
| 675 | OPENSSL_free(ticket_keys); |
| 676 | goto err; |
| 677 | } |
| 678 | OPENSSL_free(ticket_keys); |
| 679 | |
| 680 | /* The default log list includes EC keys, so CT can't work without EC. */ |
| 681 | #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC) |
| 682 | if (!TEST_true(SSL_CTX_set_default_ctlog_list_file(client_ctx))) |
| 683 | goto err; |
| 684 | switch (extra->client.ct_validation) { |
| 685 | case SSL_TEST_CT_VALIDATION_PERMISSIVE: |
| 686 | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, |
| 687 | SSL_CT_VALIDATION_PERMISSIVE))) |
| 688 | goto err; |
| 689 | break; |
| 690 | case SSL_TEST_CT_VALIDATION_STRICT: |
| 691 | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT))) |
| 692 | goto err; |
| 693 | break; |
| 694 | case SSL_TEST_CT_VALIDATION_NONE: |
| 695 | break; |
| 696 | } |
| 697 | #endif |
| 698 | #ifndef OPENSSL_NO_SRP |
| 699 | if (extra->server.srp_user != NULL) { |
| 700 | SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb); |
| 701 | server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user); |
| 702 | server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password); |
| 703 | SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data); |
| 704 | } |
| 705 | if (extra->server2.srp_user != NULL) { |
| 706 | if (!TEST_ptr(server2_ctx)) |
| 707 | goto err; |
| 708 | SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb); |
| 709 | server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user); |
| 710 | server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password); |
| 711 | SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data); |
| 712 | } |
| 713 | if (extra->client.srp_user != NULL) { |
| 714 | if (!TEST_true(SSL_CTX_set_srp_username(client_ctx, |
| 715 | extra->client.srp_user))) |
| 716 | goto err; |
| 717 | SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb); |
| 718 | client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password); |
| 719 | SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data); |
| 720 | } |
| 721 | #endif /* !OPENSSL_NO_SRP */ |
| 722 | return 1; |
| 723 | err: |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | /* Configure per-SSL callbacks and other properties. */ |
| 728 | static void configure_handshake_ssl(SSL *server, SSL *client, |
| 729 | const SSL_TEST_EXTRA_CONF *extra) |
| 730 | { |
| 731 | if (extra->client.servername != SSL_TEST_SERVERNAME_NONE) |
| 732 | SSL_set_tlsext_host_name(client, |
| 733 | ssl_servername_name(extra->client.servername)); |
| 734 | if (extra->client.enable_pha) |
| 735 | SSL_set_post_handshake_auth(client, 1); |
| 736 | } |
| 737 | |
| 738 | /* The status for each connection phase. */ |
| 739 | typedef enum { |
| 740 | PEER_SUCCESS, |
| 741 | PEER_RETRY, |
| 742 | PEER_ERROR, |
| 743 | PEER_WAITING, |
| 744 | PEER_TEST_FAILURE |
| 745 | } peer_status_t; |
| 746 | |
| 747 | /* An SSL object and associated read-write buffers. */ |
| 748 | typedef struct peer_st { |
| 749 | SSL *ssl; |
| 750 | /* Buffer lengths are int to match the SSL read/write API. */ |
| 751 | unsigned char *write_buf; |
| 752 | int write_buf_len; |
| 753 | unsigned char *read_buf; |
| 754 | int read_buf_len; |
| 755 | int bytes_to_write; |
| 756 | int bytes_to_read; |
| 757 | peer_status_t status; |
| 758 | } PEER; |
| 759 | |
| 760 | static int create_peer(PEER *peer, SSL_CTX *ctx) |
| 761 | { |
| 762 | static const int peer_buffer_size = 64 * 1024; |
| 763 | SSL *ssl = NULL; |
| 764 | unsigned char *read_buf = NULL, *write_buf = NULL; |
| 765 | |
| 766 | if (!TEST_ptr(ssl = SSL_new(ctx)) |
| 767 | || !TEST_ptr(write_buf = OPENSSL_zalloc(peer_buffer_size)) |
| 768 | || !TEST_ptr(read_buf = OPENSSL_zalloc(peer_buffer_size))) |
| 769 | goto err; |
| 770 | |
| 771 | peer->ssl = ssl; |
| 772 | peer->write_buf = write_buf; |
| 773 | peer->read_buf = read_buf; |
| 774 | peer->write_buf_len = peer->read_buf_len = peer_buffer_size; |
| 775 | return 1; |
| 776 | err: |
| 777 | SSL_free(ssl); |
| 778 | OPENSSL_free(write_buf); |
| 779 | OPENSSL_free(read_buf); |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | static void peer_free_data(PEER *peer) |
| 784 | { |
| 785 | SSL_free(peer->ssl); |
| 786 | OPENSSL_free(peer->write_buf); |
| 787 | OPENSSL_free(peer->read_buf); |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * Note that we could do the handshake transparently under an SSL_write, |
| 792 | * but separating the steps is more helpful for debugging test failures. |
| 793 | */ |
| 794 | static void do_handshake_step(PEER *peer) |
| 795 | { |
| 796 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { |
| 797 | peer->status = PEER_TEST_FAILURE; |
| 798 | } else { |
| 799 | int ret = SSL_do_handshake(peer->ssl); |
| 800 | |
| 801 | if (ret == 1) { |
| 802 | peer->status = PEER_SUCCESS; |
| 803 | } else if (ret == 0) { |
| 804 | peer->status = PEER_ERROR; |
| 805 | } else { |
| 806 | int error = SSL_get_error(peer->ssl, ret); |
| 807 | /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */ |
| 808 | if (error != SSL_ERROR_WANT_READ) |
| 809 | peer->status = PEER_ERROR; |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | /*- |
| 815 | * Send/receive some application data. The read-write sequence is |
| 816 | * Peer A: (R) W - first read will yield no data |
| 817 | * Peer B: R W |
| 818 | * ... |
| 819 | * Peer A: R W |
| 820 | * Peer B: R W |
| 821 | * Peer A: R |
| 822 | */ |
| 823 | static void do_app_data_step(PEER *peer) |
| 824 | { |
| 825 | int ret = 1, write_bytes; |
| 826 | |
| 827 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { |
| 828 | peer->status = PEER_TEST_FAILURE; |
| 829 | return; |
| 830 | } |
| 831 | |
| 832 | /* We read everything available... */ |
| 833 | while (ret > 0 && peer->bytes_to_read) { |
| 834 | ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len); |
| 835 | if (ret > 0) { |
| 836 | if (!TEST_int_le(ret, peer->bytes_to_read)) { |
| 837 | peer->status = PEER_TEST_FAILURE; |
| 838 | return; |
| 839 | } |
| 840 | peer->bytes_to_read -= ret; |
| 841 | } else if (ret == 0) { |
| 842 | peer->status = PEER_ERROR; |
| 843 | return; |
| 844 | } else { |
| 845 | int error = SSL_get_error(peer->ssl, ret); |
| 846 | if (error != SSL_ERROR_WANT_READ) { |
| 847 | peer->status = PEER_ERROR; |
| 848 | return; |
| 849 | } /* Else continue with write. */ |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | /* ... but we only write one write-buffer-full of data. */ |
| 854 | write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write : |
| 855 | peer->write_buf_len; |
| 856 | if (write_bytes) { |
| 857 | ret = SSL_write(peer->ssl, peer->write_buf, write_bytes); |
| 858 | if (ret > 0) { |
| 859 | /* SSL_write will only succeed with a complete write. */ |
| 860 | if (!TEST_int_eq(ret, write_bytes)) { |
| 861 | peer->status = PEER_TEST_FAILURE; |
| 862 | return; |
| 863 | } |
| 864 | peer->bytes_to_write -= ret; |
| 865 | } else { |
| 866 | /* |
| 867 | * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here |
| 868 | * but this doesn't yet occur with current app data sizes. |
| 869 | */ |
| 870 | peer->status = PEER_ERROR; |
| 871 | return; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * We could simply finish when there was nothing to read, and we have |
| 877 | * nothing left to write. But keeping track of the expected number of bytes |
| 878 | * to read gives us somewhat better guarantees that all data sent is in fact |
| 879 | * received. |
| 880 | */ |
| 881 | if (!peer->bytes_to_write && !peer->bytes_to_read) { |
| 882 | peer->status = PEER_SUCCESS; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer) |
| 887 | { |
| 888 | int ret; |
| 889 | char buf; |
| 890 | |
| 891 | if (peer->status == PEER_SUCCESS) { |
| 892 | /* |
| 893 | * We are a client that succeeded this step previously, but the server |
| 894 | * wanted to retry. Probably there is a no_renegotiation warning alert |
| 895 | * waiting for us. Attempt to continue the handshake. |
| 896 | */ |
| 897 | peer->status = PEER_RETRY; |
| 898 | do_handshake_step(peer); |
| 899 | return; |
| 900 | } |
| 901 | |
| 902 | if (!TEST_int_eq(peer->status, PEER_RETRY) |
| 903 | || !TEST_true(test_ctx->handshake_mode |
| 904 | == SSL_TEST_HANDSHAKE_RENEG_SERVER |
| 905 | || test_ctx->handshake_mode |
| 906 | == SSL_TEST_HANDSHAKE_RENEG_CLIENT |
| 907 | || test_ctx->handshake_mode |
| 908 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER |
| 909 | || test_ctx->handshake_mode |
| 910 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT |
| 911 | || test_ctx->handshake_mode |
| 912 | == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH)) { |
| 913 | peer->status = PEER_TEST_FAILURE; |
| 914 | return; |
| 915 | } |
| 916 | |
| 917 | /* Reset the count of the amount of app data we need to read/write */ |
| 918 | peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size; |
| 919 | |
| 920 | /* Check if we are the peer that is going to initiate */ |
| 921 | if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER |
| 922 | && SSL_is_server(peer->ssl)) |
| 923 | || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT |
| 924 | && !SSL_is_server(peer->ssl))) { |
| 925 | /* |
| 926 | * If we already asked for a renegotiation then fall through to the |
| 927 | * SSL_read() below. |
| 928 | */ |
| 929 | if (!SSL_renegotiate_pending(peer->ssl)) { |
| 930 | /* |
| 931 | * If we are the client we will always attempt to resume the |
| 932 | * session. The server may or may not resume dependent on the |
| 933 | * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
| 934 | */ |
| 935 | if (SSL_is_server(peer->ssl)) { |
| 936 | ret = SSL_renegotiate(peer->ssl); |
| 937 | } else { |
| 938 | if (test_ctx->extra.client.reneg_ciphers != NULL) { |
| 939 | if (!SSL_set_cipher_list(peer->ssl, |
| 940 | test_ctx->extra.client.reneg_ciphers)) { |
| 941 | peer->status = PEER_ERROR; |
| 942 | return; |
| 943 | } |
| 944 | ret = SSL_renegotiate(peer->ssl); |
| 945 | } else { |
| 946 | ret = SSL_renegotiate_abbreviated(peer->ssl); |
| 947 | } |
| 948 | } |
| 949 | if (!ret) { |
| 950 | peer->status = PEER_ERROR; |
| 951 | return; |
| 952 | } |
| 953 | do_handshake_step(peer); |
| 954 | /* |
| 955 | * If status is PEER_RETRY it means we're waiting on the peer to |
| 956 | * continue the handshake. As far as setting up the renegotiation is |
| 957 | * concerned that is a success. The next step will continue the |
| 958 | * handshake to its conclusion. |
| 959 | * |
| 960 | * If status is PEER_SUCCESS then we are the server and we have |
| 961 | * successfully sent the HelloRequest. We need to continue to wait |
| 962 | * until the handshake arrives from the client. |
| 963 | */ |
| 964 | if (peer->status == PEER_RETRY) |
| 965 | peer->status = PEER_SUCCESS; |
| 966 | else if (peer->status == PEER_SUCCESS) |
| 967 | peer->status = PEER_RETRY; |
| 968 | return; |
| 969 | } |
| 970 | } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER |
| 971 | || test_ctx->handshake_mode |
| 972 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) { |
| 973 | if (SSL_is_server(peer->ssl) |
| 974 | != (test_ctx->handshake_mode |
| 975 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) { |
| 976 | peer->status = PEER_SUCCESS; |
| 977 | return; |
| 978 | } |
| 979 | |
| 980 | ret = SSL_key_update(peer->ssl, test_ctx->key_update_type); |
| 981 | if (!ret) { |
| 982 | peer->status = PEER_ERROR; |
| 983 | return; |
| 984 | } |
| 985 | do_handshake_step(peer); |
| 986 | /* |
| 987 | * This is a one step handshake. We shouldn't get anything other than |
| 988 | * PEER_SUCCESS |
| 989 | */ |
| 990 | if (peer->status != PEER_SUCCESS) |
| 991 | peer->status = PEER_ERROR; |
| 992 | return; |
| 993 | } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH) { |
| 994 | if (SSL_is_server(peer->ssl)) { |
| 995 | /* Make the server believe it's received the extension */ |
| 996 | if (test_ctx->extra.server.force_pha) |
| 997 | peer->ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; |
| 998 | ret = SSL_verify_client_post_handshake(peer->ssl); |
| 999 | if (!ret) { |
| 1000 | peer->status = PEER_ERROR; |
| 1001 | return; |
| 1002 | } |
| 1003 | } |
| 1004 | do_handshake_step(peer); |
| 1005 | /* |
| 1006 | * This is a one step handshake. We shouldn't get anything other than |
| 1007 | * PEER_SUCCESS |
| 1008 | */ |
| 1009 | if (peer->status != PEER_SUCCESS) |
| 1010 | peer->status = PEER_ERROR; |
| 1011 | return; |
| 1012 | } |
| 1013 | |
| 1014 | /* |
| 1015 | * The SSL object is still expecting app data, even though it's going to |
| 1016 | * get a handshake message. We try to read, and it should fail - after which |
| 1017 | * we should be in a handshake |
| 1018 | */ |
| 1019 | ret = SSL_read(peer->ssl, &buf, sizeof(buf)); |
| 1020 | if (ret >= 0) { |
| 1021 | /* |
| 1022 | * We're not actually expecting data - we're expecting a reneg to |
| 1023 | * start |
| 1024 | */ |
| 1025 | peer->status = PEER_ERROR; |
| 1026 | return; |
| 1027 | } else { |
| 1028 | int error = SSL_get_error(peer->ssl, ret); |
| 1029 | if (error != SSL_ERROR_WANT_READ) { |
| 1030 | peer->status = PEER_ERROR; |
| 1031 | return; |
| 1032 | } |
| 1033 | /* If we're not in init yet then we're not done with setup yet */ |
| 1034 | if (!SSL_in_init(peer->ssl)) |
| 1035 | return; |
| 1036 | } |
| 1037 | |
| 1038 | peer->status = PEER_SUCCESS; |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | /* |
| 1043 | * RFC 5246 says: |
| 1044 | * |
| 1045 | * Note that as of TLS 1.1, |
| 1046 | * failure to properly close a connection no longer requires that a |
| 1047 | * session not be resumed. This is a change from TLS 1.0 to conform |
| 1048 | * with widespread implementation practice. |
| 1049 | * |
| 1050 | * However, |
| 1051 | * (a) OpenSSL requires that a connection be shutdown for all protocol versions. |
| 1052 | * (b) We test lower versions, too. |
| 1053 | * So we just implement shutdown. We do a full bidirectional shutdown so that we |
| 1054 | * can compare sent and received close_notify alerts and get some test coverage |
| 1055 | * for SSL_shutdown as a bonus. |
| 1056 | */ |
| 1057 | static void do_shutdown_step(PEER *peer) |
| 1058 | { |
| 1059 | int ret; |
| 1060 | |
| 1061 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { |
| 1062 | peer->status = PEER_TEST_FAILURE; |
| 1063 | return; |
| 1064 | } |
| 1065 | ret = SSL_shutdown(peer->ssl); |
| 1066 | |
| 1067 | if (ret == 1) { |
| 1068 | peer->status = PEER_SUCCESS; |
| 1069 | } else if (ret < 0) { /* On 0, we retry. */ |
| 1070 | int error = SSL_get_error(peer->ssl, ret); |
| 1071 | |
| 1072 | if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE) |
| 1073 | peer->status = PEER_ERROR; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | typedef enum { |
| 1078 | HANDSHAKE, |
| 1079 | RENEG_APPLICATION_DATA, |
| 1080 | RENEG_SETUP, |
| 1081 | RENEG_HANDSHAKE, |
| 1082 | APPLICATION_DATA, |
| 1083 | SHUTDOWN, |
| 1084 | CONNECTION_DONE |
| 1085 | } connect_phase_t; |
| 1086 | |
| 1087 | |
| 1088 | static int renegotiate_op(const SSL_TEST_CTX *test_ctx) |
| 1089 | { |
| 1090 | switch (test_ctx->handshake_mode) { |
| 1091 | case SSL_TEST_HANDSHAKE_RENEG_SERVER: |
| 1092 | case SSL_TEST_HANDSHAKE_RENEG_CLIENT: |
| 1093 | return 1; |
| 1094 | default: |
| 1095 | return 0; |
| 1096 | } |
| 1097 | } |
| 1098 | static int post_handshake_op(const SSL_TEST_CTX *test_ctx) |
| 1099 | { |
| 1100 | switch (test_ctx->handshake_mode) { |
| 1101 | case SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT: |
| 1102 | case SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER: |
| 1103 | case SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH: |
| 1104 | return 1; |
| 1105 | default: |
| 1106 | return 0; |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx, |
| 1111 | connect_phase_t phase) |
| 1112 | { |
| 1113 | switch (phase) { |
| 1114 | case HANDSHAKE: |
| 1115 | if (renegotiate_op(test_ctx) || post_handshake_op(test_ctx)) |
| 1116 | return RENEG_APPLICATION_DATA; |
| 1117 | return APPLICATION_DATA; |
| 1118 | case RENEG_APPLICATION_DATA: |
| 1119 | return RENEG_SETUP; |
| 1120 | case RENEG_SETUP: |
| 1121 | if (post_handshake_op(test_ctx)) |
| 1122 | return APPLICATION_DATA; |
| 1123 | return RENEG_HANDSHAKE; |
| 1124 | case RENEG_HANDSHAKE: |
| 1125 | return APPLICATION_DATA; |
| 1126 | case APPLICATION_DATA: |
| 1127 | return SHUTDOWN; |
| 1128 | case SHUTDOWN: |
| 1129 | return CONNECTION_DONE; |
| 1130 | case CONNECTION_DONE: |
| 1131 | TEST_error("Trying to progress after connection done"); |
| 1132 | break; |
| 1133 | } |
| 1134 | return -1; |
| 1135 | } |
| 1136 | |
| 1137 | static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer, |
| 1138 | connect_phase_t phase) |
| 1139 | { |
| 1140 | switch (phase) { |
| 1141 | case HANDSHAKE: |
| 1142 | do_handshake_step(peer); |
| 1143 | break; |
| 1144 | case RENEG_APPLICATION_DATA: |
| 1145 | do_app_data_step(peer); |
| 1146 | break; |
| 1147 | case RENEG_SETUP: |
| 1148 | do_reneg_setup_step(test_ctx, peer); |
| 1149 | break; |
| 1150 | case RENEG_HANDSHAKE: |
| 1151 | do_handshake_step(peer); |
| 1152 | break; |
| 1153 | case APPLICATION_DATA: |
| 1154 | do_app_data_step(peer); |
| 1155 | break; |
| 1156 | case SHUTDOWN: |
| 1157 | do_shutdown_step(peer); |
| 1158 | break; |
| 1159 | case CONNECTION_DONE: |
| 1160 | TEST_error("Action after connection done"); |
| 1161 | break; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | typedef enum { |
| 1166 | /* Both parties succeeded. */ |
| 1167 | HANDSHAKE_SUCCESS, |
| 1168 | /* Client errored. */ |
| 1169 | CLIENT_ERROR, |
| 1170 | /* Server errored. */ |
| 1171 | SERVER_ERROR, |
| 1172 | /* Peers are in inconsistent state. */ |
| 1173 | INTERNAL_ERROR, |
| 1174 | /* One or both peers not done. */ |
| 1175 | HANDSHAKE_RETRY |
| 1176 | } handshake_status_t; |
| 1177 | |
| 1178 | /* |
| 1179 | * Determine the handshake outcome. |
| 1180 | * last_status: the status of the peer to have acted last. |
| 1181 | * previous_status: the status of the peer that didn't act last. |
| 1182 | * client_spoke_last: 1 if the client went last. |
| 1183 | */ |
| 1184 | static handshake_status_t handshake_status(peer_status_t last_status, |
| 1185 | peer_status_t previous_status, |
| 1186 | int client_spoke_last) |
| 1187 | { |
| 1188 | switch (last_status) { |
| 1189 | case PEER_TEST_FAILURE: |
| 1190 | return INTERNAL_ERROR; |
| 1191 | |
| 1192 | case PEER_WAITING: |
| 1193 | /* Shouldn't ever happen */ |
| 1194 | return INTERNAL_ERROR; |
| 1195 | |
| 1196 | case PEER_SUCCESS: |
| 1197 | switch (previous_status) { |
| 1198 | case PEER_TEST_FAILURE: |
| 1199 | return INTERNAL_ERROR; |
| 1200 | case PEER_SUCCESS: |
| 1201 | /* Both succeeded. */ |
| 1202 | return HANDSHAKE_SUCCESS; |
| 1203 | case PEER_WAITING: |
| 1204 | case PEER_RETRY: |
| 1205 | /* Let the first peer finish. */ |
| 1206 | return HANDSHAKE_RETRY; |
| 1207 | case PEER_ERROR: |
| 1208 | /* |
| 1209 | * Second peer succeeded despite the fact that the first peer |
| 1210 | * already errored. This shouldn't happen. |
| 1211 | */ |
| 1212 | return INTERNAL_ERROR; |
| 1213 | } |
| 1214 | break; |
| 1215 | |
| 1216 | case PEER_RETRY: |
| 1217 | return HANDSHAKE_RETRY; |
| 1218 | |
| 1219 | case PEER_ERROR: |
| 1220 | switch (previous_status) { |
| 1221 | case PEER_TEST_FAILURE: |
| 1222 | return INTERNAL_ERROR; |
| 1223 | case PEER_WAITING: |
| 1224 | /* The client failed immediately before sending the ClientHello */ |
| 1225 | return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR; |
| 1226 | case PEER_SUCCESS: |
| 1227 | /* |
| 1228 | * First peer succeeded but second peer errored. |
| 1229 | * TODO(emilia): we should be able to continue here (with some |
| 1230 | * application data?) to ensure the first peer receives the |
| 1231 | * alert / close_notify. |
| 1232 | * (No tests currently exercise this branch.) |
| 1233 | */ |
| 1234 | return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR; |
| 1235 | case PEER_RETRY: |
| 1236 | /* We errored; let the peer finish. */ |
| 1237 | return HANDSHAKE_RETRY; |
| 1238 | case PEER_ERROR: |
| 1239 | /* Both peers errored. Return the one that errored first. */ |
| 1240 | return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR; |
| 1241 | } |
| 1242 | } |
| 1243 | /* Control should never reach here. */ |
| 1244 | return INTERNAL_ERROR; |
| 1245 | } |
| 1246 | |
| 1247 | /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */ |
| 1248 | static char *dup_str(const unsigned char *in, size_t len) |
| 1249 | { |
| 1250 | char *ret = NULL; |
| 1251 | |
| 1252 | if (len == 0) |
| 1253 | return NULL; |
| 1254 | |
| 1255 | /* Assert that the string does not contain NUL-bytes. */ |
| 1256 | if (TEST_size_t_eq(OPENSSL_strnlen((const char*)(in), len), len)) |
| 1257 | TEST_ptr(ret = OPENSSL_strndup((const char*)(in), len)); |
| 1258 | return ret; |
| 1259 | } |
| 1260 | |
| 1261 | static int pkey_type(EVP_PKEY *pkey) |
| 1262 | { |
| 1263 | int nid = EVP_PKEY_id(pkey); |
| 1264 | |
| 1265 | #ifndef OPENSSL_NO_EC |
| 1266 | if (nid == EVP_PKEY_EC) { |
| 1267 | const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); |
| 1268 | return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); |
| 1269 | } |
| 1270 | #endif |
| 1271 | return nid; |
| 1272 | } |
| 1273 | |
| 1274 | static int peer_pkey_type(SSL *s) |
| 1275 | { |
| 1276 | X509 *x = SSL_get_peer_certificate(s); |
| 1277 | |
| 1278 | if (x != NULL) { |
| 1279 | int nid = pkey_type(X509_get0_pubkey(x)); |
| 1280 | |
| 1281 | X509_free(x); |
| 1282 | return nid; |
| 1283 | } |
| 1284 | return NID_undef; |
| 1285 | } |
| 1286 | |
| 1287 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) |
| 1288 | static int set_sock_as_sctp(int sock) |
| 1289 | { |
| 1290 | struct sctp_assocparams assocparams; |
| 1291 | struct sctp_rtoinfo rto_info; |
| 1292 | BIO *tmpbio; |
| 1293 | |
| 1294 | /* |
| 1295 | * To allow tests to fail fast (within a second or so), reduce the |
| 1296 | * retransmission timeouts and the number of retransmissions. |
| 1297 | */ |
| 1298 | memset(&rto_info, 0, sizeof(struct sctp_rtoinfo)); |
| 1299 | rto_info.srto_initial = 100; |
| 1300 | rto_info.srto_max = 200; |
| 1301 | rto_info.srto_min = 50; |
| 1302 | (void)setsockopt(sock, IPPROTO_SCTP, SCTP_RTOINFO, |
| 1303 | (const void *)&rto_info, sizeof(struct sctp_rtoinfo)); |
| 1304 | memset(&assocparams, 0, sizeof(struct sctp_assocparams)); |
| 1305 | assocparams.sasoc_asocmaxrxt = 2; |
| 1306 | (void)setsockopt(sock, IPPROTO_SCTP, SCTP_ASSOCINFO, |
| 1307 | (const void *)&assocparams, |
| 1308 | sizeof(struct sctp_assocparams)); |
| 1309 | |
| 1310 | /* |
| 1311 | * For SCTP we have to set various options on the socket prior to |
| 1312 | * connecting. This is done automatically by BIO_new_dgram_sctp(). |
| 1313 | * We don't actually need the created BIO though so we free it again |
| 1314 | * immediately. |
| 1315 | */ |
| 1316 | tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE); |
| 1317 | |
| 1318 | if (tmpbio == NULL) |
| 1319 | return 0; |
| 1320 | BIO_free(tmpbio); |
| 1321 | |
| 1322 | return 1; |
| 1323 | } |
| 1324 | |
| 1325 | static int create_sctp_socks(int *ssock, int *csock) |
| 1326 | { |
| 1327 | BIO_ADDRINFO *res = NULL; |
| 1328 | const BIO_ADDRINFO *ai = NULL; |
| 1329 | int lsock = INVALID_SOCKET, asock = INVALID_SOCKET; |
| 1330 | int consock = INVALID_SOCKET; |
| 1331 | int ret = 0; |
| 1332 | int family = 0; |
| 1333 | |
| 1334 | if (BIO_sock_init() != 1) |
| 1335 | return 0; |
| 1336 | |
| 1337 | /* |
| 1338 | * Port is 4463. It could be anything. It will fail if it's already being |
| 1339 | * used for some other SCTP service. It seems unlikely though so we don't |
| 1340 | * worry about it here. |
| 1341 | */ |
| 1342 | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM, |
| 1343 | IPPROTO_SCTP, &res)) |
| 1344 | return 0; |
| 1345 | |
| 1346 | for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) { |
| 1347 | family = BIO_ADDRINFO_family(ai); |
| 1348 | lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); |
| 1349 | if (lsock == INVALID_SOCKET) { |
| 1350 | /* Maybe the kernel doesn't support the socket family, even if |
| 1351 | * BIO_lookup() added it in the returned result... |
| 1352 | */ |
| 1353 | continue; |
| 1354 | } |
| 1355 | |
| 1356 | if (!set_sock_as_sctp(lsock) |
| 1357 | || !BIO_listen(lsock, BIO_ADDRINFO_address(ai), |
| 1358 | BIO_SOCK_REUSEADDR)) { |
| 1359 | BIO_closesocket(lsock); |
| 1360 | lsock = INVALID_SOCKET; |
| 1361 | continue; |
| 1362 | } |
| 1363 | |
| 1364 | /* Success, don't try any more addresses */ |
| 1365 | break; |
| 1366 | } |
| 1367 | |
| 1368 | if (lsock == INVALID_SOCKET) |
| 1369 | goto err; |
| 1370 | |
| 1371 | BIO_ADDRINFO_free(res); |
| 1372 | res = NULL; |
| 1373 | |
| 1374 | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM, |
| 1375 | IPPROTO_SCTP, &res)) |
| 1376 | goto err; |
| 1377 | |
| 1378 | consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); |
| 1379 | if (consock == INVALID_SOCKET) |
| 1380 | goto err; |
| 1381 | |
| 1382 | if (!set_sock_as_sctp(consock) |
| 1383 | || !BIO_connect(consock, BIO_ADDRINFO_address(res), 0) |
| 1384 | || !BIO_socket_nbio(consock, 1)) |
| 1385 | goto err; |
| 1386 | |
| 1387 | asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK); |
| 1388 | if (asock == INVALID_SOCKET) |
| 1389 | goto err; |
| 1390 | |
| 1391 | *csock = consock; |
| 1392 | *ssock = asock; |
| 1393 | consock = asock = INVALID_SOCKET; |
| 1394 | ret = 1; |
| 1395 | |
| 1396 | err: |
| 1397 | BIO_ADDRINFO_free(res); |
| 1398 | if (consock != INVALID_SOCKET) |
| 1399 | BIO_closesocket(consock); |
| 1400 | if (lsock != INVALID_SOCKET) |
| 1401 | BIO_closesocket(lsock); |
| 1402 | if (asock != INVALID_SOCKET) |
| 1403 | BIO_closesocket(asock); |
| 1404 | return ret; |
| 1405 | } |
| 1406 | #endif |
| 1407 | |
| 1408 | /* |
| 1409 | * Note that |extra| points to the correct client/server configuration |
| 1410 | * within |test_ctx|. When configuring the handshake, general mode settings |
| 1411 | * are taken from |test_ctx|, and client/server-specific settings should be |
| 1412 | * taken from |extra|. |
| 1413 | * |
| 1414 | * The configuration code should never reach into |test_ctx->extra| or |
| 1415 | * |test_ctx->resume_extra| directly. |
| 1416 | * |
| 1417 | * (We could refactor test mode settings into a substructure. This would result |
| 1418 | * in cleaner argument passing but would complicate the test configuration |
| 1419 | * parsing.) |
| 1420 | */ |
| 1421 | static HANDSHAKE_RESULT *do_handshake_internal( |
| 1422 | SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, |
| 1423 | const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra, |
| 1424 | SSL_SESSION *session_in, SSL_SESSION *serv_sess_in, |
| 1425 | SSL_SESSION **session_out, SSL_SESSION **serv_sess_out) |
| 1426 | { |
| 1427 | PEER server, client; |
| 1428 | BIO *client_to_server = NULL, *server_to_client = NULL; |
| 1429 | HANDSHAKE_EX_DATA server_ex_data, client_ex_data; |
| 1430 | CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; |
| 1431 | HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); |
| 1432 | int client_turn = 1, client_turn_count = 0, client_wait_count = 0; |
| 1433 | connect_phase_t phase = HANDSHAKE; |
| 1434 | handshake_status_t status = HANDSHAKE_RETRY; |
| 1435 | const unsigned char* tick = NULL; |
| 1436 | size_t tick_len = 0; |
| 1437 | const unsigned char* sess_id = NULL; |
| 1438 | unsigned int sess_id_len = 0; |
| 1439 | SSL_SESSION* sess = NULL; |
| 1440 | const unsigned char *proto = NULL; |
| 1441 | /* API dictates unsigned int rather than size_t. */ |
| 1442 | unsigned int proto_len = 0; |
| 1443 | EVP_PKEY *tmp_key; |
| 1444 | const STACK_OF(X509_NAME) *names; |
| 1445 | time_t start; |
| 1446 | const char* cipher; |
| 1447 | |
| 1448 | if (ret == NULL) |
| 1449 | return NULL; |
| 1450 | |
| 1451 | memset(&server_ctx_data, 0, sizeof(server_ctx_data)); |
| 1452 | memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); |
| 1453 | memset(&client_ctx_data, 0, sizeof(client_ctx_data)); |
| 1454 | memset(&server, 0, sizeof(server)); |
| 1455 | memset(&client, 0, sizeof(client)); |
| 1456 | memset(&server_ex_data, 0, sizeof(server_ex_data)); |
| 1457 | memset(&client_ex_data, 0, sizeof(client_ex_data)); |
| 1458 | |
| 1459 | if (!configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, |
| 1460 | test_ctx, extra, &server_ctx_data, |
| 1461 | &server2_ctx_data, &client_ctx_data)) { |
| 1462 | TEST_note("configure_handshake_ctx"); |
| 1463 | return NULL; |
| 1464 | } |
| 1465 | |
| 1466 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) |
| 1467 | if (test_ctx->enable_client_sctp_label_bug) |
| 1468 | SSL_CTX_set_mode(client_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); |
| 1469 | if (test_ctx->enable_server_sctp_label_bug) |
| 1470 | SSL_CTX_set_mode(server_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); |
| 1471 | #endif |
| 1472 | |
| 1473 | /* Setup SSL and buffers; additional configuration happens below. */ |
| 1474 | if (!create_peer(&server, server_ctx)) { |
| 1475 | TEST_note("creating server context"); |
| 1476 | goto err; |
| 1477 | } |
| 1478 | if (!create_peer(&client, client_ctx)) { |
| 1479 | TEST_note("creating client context"); |
| 1480 | goto err; |
| 1481 | } |
| 1482 | |
| 1483 | server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size; |
| 1484 | client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size; |
| 1485 | |
| 1486 | configure_handshake_ssl(server.ssl, client.ssl, extra); |
| 1487 | if (session_in != NULL) { |
| 1488 | SSL_SESSION_get_id(serv_sess_in, &sess_id_len); |
| 1489 | /* In case we're testing resumption without tickets. */ |
| 1490 | if ((sess_id_len > 0 |
| 1491 | && !TEST_true(SSL_CTX_add_session(server_ctx, |
| 1492 | serv_sess_in))) |
| 1493 | || !TEST_true(SSL_set_session(client.ssl, session_in))) |
| 1494 | goto err; |
| 1495 | sess_id_len = 0; |
| 1496 | } |
| 1497 | |
| 1498 | ret->result = SSL_TEST_INTERNAL_ERROR; |
| 1499 | |
| 1500 | if (test_ctx->use_sctp) { |
| 1501 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) |
| 1502 | int csock, ssock; |
| 1503 | |
| 1504 | if (create_sctp_socks(&ssock, &csock)) { |
| 1505 | client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE); |
| 1506 | server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE); |
| 1507 | } |
| 1508 | #endif |
| 1509 | } else { |
| 1510 | client_to_server = BIO_new(BIO_s_mem()); |
| 1511 | server_to_client = BIO_new(BIO_s_mem()); |
| 1512 | } |
| 1513 | |
| 1514 | if (!TEST_ptr(client_to_server) |
| 1515 | || !TEST_ptr(server_to_client)) |
| 1516 | goto err; |
| 1517 | |
| 1518 | /* Non-blocking bio. */ |
| 1519 | BIO_set_nbio(client_to_server, 1); |
| 1520 | BIO_set_nbio(server_to_client, 1); |
| 1521 | |
| 1522 | SSL_set_connect_state(client.ssl); |
| 1523 | SSL_set_accept_state(server.ssl); |
| 1524 | |
| 1525 | /* The bios are now owned by the SSL object. */ |
| 1526 | if (test_ctx->use_sctp) { |
| 1527 | SSL_set_bio(client.ssl, client_to_server, client_to_server); |
| 1528 | SSL_set_bio(server.ssl, server_to_client, server_to_client); |
| 1529 | } else { |
| 1530 | SSL_set_bio(client.ssl, server_to_client, client_to_server); |
| 1531 | if (!TEST_int_gt(BIO_up_ref(server_to_client), 0) |
| 1532 | || !TEST_int_gt(BIO_up_ref(client_to_server), 0)) |
| 1533 | goto err; |
| 1534 | SSL_set_bio(server.ssl, client_to_server, server_to_client); |
| 1535 | } |
| 1536 | |
| 1537 | ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); |
| 1538 | if (!TEST_int_ge(ex_data_idx, 0) |
| 1539 | || !TEST_int_eq(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data), 1) |
| 1540 | || !TEST_int_eq(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data), 1)) |
| 1541 | goto err; |
| 1542 | |
| 1543 | SSL_set_info_callback(server.ssl, &info_cb); |
| 1544 | SSL_set_info_callback(client.ssl, &info_cb); |
| 1545 | |
| 1546 | client.status = PEER_RETRY; |
| 1547 | server.status = PEER_WAITING; |
| 1548 | |
| 1549 | start = time(NULL); |
| 1550 | |
| 1551 | /* |
| 1552 | * Half-duplex handshake loop. |
| 1553 | * Client and server speak to each other synchronously in the same process. |
| 1554 | * We use non-blocking BIOs, so whenever one peer blocks for read, it |
| 1555 | * returns PEER_RETRY to indicate that it's the other peer's turn to write. |
| 1556 | * The handshake succeeds once both peers have succeeded. If one peer |
| 1557 | * errors out, we also let the other peer retry (and presumably fail). |
| 1558 | */ |
| 1559 | for(;;) { |
| 1560 | if (client_turn) { |
| 1561 | do_connect_step(test_ctx, &client, phase); |
| 1562 | status = handshake_status(client.status, server.status, |
| 1563 | 1 /* client went last */); |
| 1564 | if (server.status == PEER_WAITING) |
| 1565 | server.status = PEER_RETRY; |
| 1566 | } else { |
| 1567 | do_connect_step(test_ctx, &server, phase); |
| 1568 | status = handshake_status(server.status, client.status, |
| 1569 | 0 /* server went last */); |
| 1570 | } |
| 1571 | |
| 1572 | switch (status) { |
| 1573 | case HANDSHAKE_SUCCESS: |
| 1574 | client_turn_count = 0; |
| 1575 | phase = next_phase(test_ctx, phase); |
| 1576 | if (phase == CONNECTION_DONE) { |
| 1577 | ret->result = SSL_TEST_SUCCESS; |
| 1578 | goto err; |
| 1579 | } else { |
| 1580 | client.status = server.status = PEER_RETRY; |
| 1581 | /* |
| 1582 | * For now, client starts each phase. Since each phase is |
| 1583 | * started separately, we can later control this more |
| 1584 | * precisely, for example, to test client-initiated and |
| 1585 | * server-initiated shutdown. |
| 1586 | */ |
| 1587 | client_turn = 1; |
| 1588 | break; |
| 1589 | } |
| 1590 | case CLIENT_ERROR: |
| 1591 | ret->result = SSL_TEST_CLIENT_FAIL; |
| 1592 | goto err; |
| 1593 | case SERVER_ERROR: |
| 1594 | ret->result = SSL_TEST_SERVER_FAIL; |
| 1595 | goto err; |
| 1596 | case INTERNAL_ERROR: |
| 1597 | ret->result = SSL_TEST_INTERNAL_ERROR; |
| 1598 | goto err; |
| 1599 | case HANDSHAKE_RETRY: |
| 1600 | if (test_ctx->use_sctp) { |
| 1601 | if (time(NULL) - start > 3) { |
| 1602 | /* |
| 1603 | * We've waited for too long. Give up. |
| 1604 | */ |
| 1605 | ret->result = SSL_TEST_INTERNAL_ERROR; |
| 1606 | goto err; |
| 1607 | } |
| 1608 | /* |
| 1609 | * With "real" sockets we only swap to processing the peer |
| 1610 | * if they are expecting to retry. Otherwise we just retry the |
| 1611 | * same endpoint again. |
| 1612 | */ |
| 1613 | if ((client_turn && server.status == PEER_RETRY) |
| 1614 | || (!client_turn && client.status == PEER_RETRY)) |
| 1615 | client_turn ^= 1; |
| 1616 | } else { |
| 1617 | if (client_turn_count++ >= 2000) { |
| 1618 | /* |
| 1619 | * At this point, there's been so many PEER_RETRY in a row |
| 1620 | * that it's likely both sides are stuck waiting for a read. |
| 1621 | * It's time to give up. |
| 1622 | */ |
| 1623 | ret->result = SSL_TEST_INTERNAL_ERROR; |
| 1624 | goto err; |
| 1625 | } |
| 1626 | if (client_turn && server.status == PEER_SUCCESS) { |
| 1627 | /* |
| 1628 | * The server may finish before the client because the |
| 1629 | * client spends some turns processing NewSessionTickets. |
| 1630 | */ |
| 1631 | if (client_wait_count++ >= 2) { |
| 1632 | ret->result = SSL_TEST_INTERNAL_ERROR; |
| 1633 | goto err; |
| 1634 | } |
| 1635 | } else { |
| 1636 | /* Continue. */ |
| 1637 | client_turn ^= 1; |
| 1638 | } |
| 1639 | } |
| 1640 | break; |
| 1641 | } |
| 1642 | } |
| 1643 | err: |
| 1644 | ret->server_alert_sent = server_ex_data.alert_sent; |
| 1645 | ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent; |
| 1646 | ret->server_alert_received = client_ex_data.alert_received; |
| 1647 | ret->client_alert_sent = client_ex_data.alert_sent; |
| 1648 | ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent; |
| 1649 | ret->client_alert_received = server_ex_data.alert_received; |
| 1650 | ret->server_protocol = SSL_version(server.ssl); |
| 1651 | ret->client_protocol = SSL_version(client.ssl); |
| 1652 | ret->servername = server_ex_data.servername; |
| 1653 | if ((sess = SSL_get0_session(client.ssl)) != NULL) { |
| 1654 | SSL_SESSION_get0_ticket(sess, &tick, &tick_len); |
| 1655 | sess_id = SSL_SESSION_get_id(sess, &sess_id_len); |
| 1656 | } |
| 1657 | if (tick == NULL || tick_len == 0) |
| 1658 | ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; |
| 1659 | else |
| 1660 | ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; |
| 1661 | ret->compression = (SSL_get_current_compression(client.ssl) == NULL) |
| 1662 | ? SSL_TEST_COMPRESSION_NO |
| 1663 | : SSL_TEST_COMPRESSION_YES; |
| 1664 | if (sess_id == NULL || sess_id_len == 0) |
| 1665 | ret->session_id = SSL_TEST_SESSION_ID_NO; |
| 1666 | else |
| 1667 | ret->session_id = SSL_TEST_SESSION_ID_YES; |
| 1668 | ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; |
| 1669 | |
| 1670 | #ifndef OPENSSL_NO_NEXTPROTONEG |
| 1671 | SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len); |
| 1672 | ret->client_npn_negotiated = dup_str(proto, proto_len); |
| 1673 | |
| 1674 | SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len); |
| 1675 | ret->server_npn_negotiated = dup_str(proto, proto_len); |
| 1676 | #endif |
| 1677 | |
| 1678 | SSL_get0_alpn_selected(client.ssl, &proto, &proto_len); |
| 1679 | ret->client_alpn_negotiated = dup_str(proto, proto_len); |
| 1680 | |
| 1681 | SSL_get0_alpn_selected(server.ssl, &proto, &proto_len); |
| 1682 | ret->server_alpn_negotiated = dup_str(proto, proto_len); |
| 1683 | |
| 1684 | if ((sess = SSL_get0_session(server.ssl)) != NULL) { |
| 1685 | SSL_SESSION_get0_ticket_appdata(sess, (void**)&tick, &tick_len); |
| 1686 | ret->result_session_ticket_app_data = OPENSSL_strndup((const char*)tick, tick_len); |
| 1687 | } |
| 1688 | |
| 1689 | ret->client_resumed = SSL_session_reused(client.ssl); |
| 1690 | ret->server_resumed = SSL_session_reused(server.ssl); |
| 1691 | |
| 1692 | cipher = SSL_CIPHER_get_name(SSL_get_current_cipher(client.ssl)); |
| 1693 | ret->cipher = dup_str((const unsigned char*)cipher, strlen(cipher)); |
| 1694 | |
| 1695 | if (session_out != NULL) |
| 1696 | *session_out = SSL_get1_session(client.ssl); |
| 1697 | if (serv_sess_out != NULL) { |
| 1698 | SSL_SESSION *tmp = SSL_get_session(server.ssl); |
| 1699 | |
| 1700 | /* |
| 1701 | * We create a fresh copy that is not in the server session ctx linked |
| 1702 | * list. |
| 1703 | */ |
| 1704 | if (tmp != NULL) |
| 1705 | *serv_sess_out = SSL_SESSION_dup(tmp); |
| 1706 | } |
| 1707 | |
| 1708 | if (SSL_get_peer_tmp_key(client.ssl, &tmp_key)) { |
| 1709 | ret->tmp_key_type = pkey_type(tmp_key); |
| 1710 | EVP_PKEY_free(tmp_key); |
| 1711 | } |
| 1712 | |
| 1713 | SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash); |
| 1714 | SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash); |
| 1715 | |
| 1716 | SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type); |
| 1717 | SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type); |
| 1718 | |
| 1719 | names = SSL_get0_peer_CA_list(client.ssl); |
| 1720 | if (names == NULL) |
| 1721 | ret->client_ca_names = NULL; |
| 1722 | else |
| 1723 | ret->client_ca_names = SSL_dup_CA_list(names); |
| 1724 | |
| 1725 | names = SSL_get0_peer_CA_list(server.ssl); |
| 1726 | if (names == NULL) |
| 1727 | ret->server_ca_names = NULL; |
| 1728 | else |
| 1729 | ret->server_ca_names = SSL_dup_CA_list(names); |
| 1730 | |
| 1731 | ret->server_cert_type = peer_pkey_type(client.ssl); |
| 1732 | ret->client_cert_type = peer_pkey_type(server.ssl); |
| 1733 | |
| 1734 | ctx_data_free_data(&server_ctx_data); |
| 1735 | ctx_data_free_data(&server2_ctx_data); |
| 1736 | ctx_data_free_data(&client_ctx_data); |
| 1737 | |
| 1738 | peer_free_data(&server); |
| 1739 | peer_free_data(&client); |
| 1740 | return ret; |
| 1741 | } |
| 1742 | |
| 1743 | HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, |
| 1744 | SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx, |
| 1745 | SSL_CTX *resume_client_ctx, |
| 1746 | const SSL_TEST_CTX *test_ctx) |
| 1747 | { |
| 1748 | HANDSHAKE_RESULT *result; |
| 1749 | SSL_SESSION *session = NULL, *serv_sess = NULL; |
| 1750 | |
| 1751 | result = do_handshake_internal(server_ctx, server2_ctx, client_ctx, |
| 1752 | test_ctx, &test_ctx->extra, |
| 1753 | NULL, NULL, &session, &serv_sess); |
| 1754 | if (result == NULL |
| 1755 | || test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME |
| 1756 | || result->result == SSL_TEST_INTERNAL_ERROR) |
| 1757 | goto end; |
| 1758 | |
| 1759 | if (result->result != SSL_TEST_SUCCESS) { |
| 1760 | result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED; |
| 1761 | goto end; |
| 1762 | } |
| 1763 | |
| 1764 | HANDSHAKE_RESULT_free(result); |
| 1765 | /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */ |
| 1766 | result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx, |
| 1767 | test_ctx, &test_ctx->resume_extra, |
| 1768 | session, serv_sess, NULL, NULL); |
| 1769 | end: |
| 1770 | SSL_SESSION_free(session); |
| 1771 | SSL_SESSION_free(serv_sess); |
| 1772 | return result; |
| 1773 | } |