xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. |
| 2 | Basic two-word fraction declaration and manipulation. |
| 3 | Copyright (C) 1997-2016 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | Contributed by Richard Henderson (rth@cygnus.com), |
| 6 | Jakub Jelinek (jj@ultra.linux.cz), |
| 7 | David S. Miller (davem@redhat.com) and |
| 8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). |
| 9 | |
| 10 | The GNU C Library is free software; you can redistribute it and/or |
| 11 | modify it under the terms of the GNU Lesser General Public |
| 12 | License as published by the Free Software Foundation; either |
| 13 | version 2.1 of the License, or (at your option) any later version. |
| 14 | |
| 15 | In addition to the permissions in the GNU Lesser General Public |
| 16 | License, the Free Software Foundation gives you unlimited |
| 17 | permission to link the compiled version of this file into |
| 18 | combinations with other programs, and to distribute those |
| 19 | combinations without any restriction coming from the use of this |
| 20 | file. (The Lesser General Public License restrictions do apply in |
| 21 | other respects; for example, they cover modification of the file, |
| 22 | and distribution when not linked into a combine executable.) |
| 23 | |
| 24 | The GNU C Library is distributed in the hope that it will be useful, |
| 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 27 | Lesser General Public License for more details. |
| 28 | |
| 29 | You should have received a copy of the GNU Lesser General Public |
| 30 | License along with the GNU C Library; if not, see |
| 31 | <http://www.gnu.org/licenses/>. */ |
| 32 | |
| 33 | #ifndef SOFT_FP_OP_2_H |
| 34 | #define SOFT_FP_OP_2_H 1 |
| 35 | |
| 36 | #define _FP_FRAC_DECL_2(X) \ |
| 37 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT |
| 38 | #define _FP_FRAC_COPY_2(D, S) (D##_f0 = S##_f0, D##_f1 = S##_f1) |
| 39 | #define _FP_FRAC_SET_2(X, I) __FP_FRAC_SET_2 (X, I) |
| 40 | #define _FP_FRAC_HIGH_2(X) (X##_f1) |
| 41 | #define _FP_FRAC_LOW_2(X) (X##_f0) |
| 42 | #define _FP_FRAC_WORD_2(X, w) (X##_f##w) |
| 43 | |
| 44 | #define _FP_FRAC_SLL_2(X, N) \ |
| 45 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 46 | ? ({ \ |
| 47 | if (__builtin_constant_p (N) && (N) == 1) \ |
| 48 | { \ |
| 49 | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \ |
| 50 | X##_f0 += X##_f0; \ |
| 51 | } \ |
| 52 | else \ |
| 53 | { \ |
| 54 | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ |
| 55 | X##_f0 <<= (N); \ |
| 56 | } \ |
| 57 | 0; \ |
| 58 | }) \ |
| 59 | : ({ \ |
| 60 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ |
| 61 | X##_f0 = 0; \ |
| 62 | })) |
| 63 | |
| 64 | |
| 65 | #define _FP_FRAC_SRL_2(X, N) \ |
| 66 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 67 | ? ({ \ |
| 68 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ |
| 69 | X##_f1 >>= (N); \ |
| 70 | }) \ |
| 71 | : ({ \ |
| 72 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ |
| 73 | X##_f1 = 0; \ |
| 74 | })) |
| 75 | |
| 76 | /* Right shift with sticky-lsb. */ |
| 77 | #define _FP_FRAC_SRST_2(X, S, N, sz) \ |
| 78 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 79 | ? ({ \ |
| 80 | S = (__builtin_constant_p (N) && (N) == 1 \ |
| 81 | ? X##_f0 & 1 \ |
| 82 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0); \ |
| 83 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \ |
| 84 | X##_f1 >>= (N); \ |
| 85 | }) \ |
| 86 | : ({ \ |
| 87 | S = ((((N) == _FP_W_TYPE_SIZE \ |
| 88 | ? 0 \ |
| 89 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
| 90 | | X##_f0) != 0); \ |
| 91 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)); \ |
| 92 | X##_f1 = 0; \ |
| 93 | })) |
| 94 | |
| 95 | #define _FP_FRAC_SRS_2(X, N, sz) \ |
| 96 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 97 | ? ({ \ |
| 98 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ |
| 99 | | (__builtin_constant_p (N) && (N) == 1 \ |
| 100 | ? X##_f0 & 1 \ |
| 101 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ |
| 102 | X##_f1 >>= (N); \ |
| 103 | }) \ |
| 104 | : ({ \ |
| 105 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \ |
| 106 | | ((((N) == _FP_W_TYPE_SIZE \ |
| 107 | ? 0 \ |
| 108 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
| 109 | | X##_f0) != 0)); \ |
| 110 | X##_f1 = 0; \ |
| 111 | })) |
| 112 | |
| 113 | #define _FP_FRAC_ADDI_2(X, I) \ |
| 114 | __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I) |
| 115 | |
| 116 | #define _FP_FRAC_ADD_2(R, X, Y) \ |
| 117 | __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 118 | |
| 119 | #define _FP_FRAC_SUB_2(R, X, Y) \ |
| 120 | __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 121 | |
| 122 | #define _FP_FRAC_DEC_2(X, Y) \ |
| 123 | __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 124 | |
| 125 | #define _FP_FRAC_CLZ_2(R, X) \ |
| 126 | do \ |
| 127 | { \ |
| 128 | if (X##_f1) \ |
| 129 | __FP_CLZ ((R), X##_f1); \ |
| 130 | else \ |
| 131 | { \ |
| 132 | __FP_CLZ ((R), X##_f0); \ |
| 133 | (R) += _FP_W_TYPE_SIZE; \ |
| 134 | } \ |
| 135 | } \ |
| 136 | while (0) |
| 137 | |
| 138 | /* Predicates. */ |
| 139 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0) |
| 140 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) |
| 141 | #define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs) |
| 142 | #define _FP_FRAC_CLEAR_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs) |
| 143 | #define _FP_FRAC_HIGHBIT_DW_2(fs, X) \ |
| 144 | (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs) |
| 145 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) |
| 146 | #define _FP_FRAC_GT_2(X, Y) \ |
| 147 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) |
| 148 | #define _FP_FRAC_GE_2(X, Y) \ |
| 149 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) |
| 150 | |
| 151 | #define _FP_ZEROFRAC_2 0, 0 |
| 152 | #define _FP_MINFRAC_2 0, 1 |
| 153 | #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0) |
| 154 | |
| 155 | /* Internals. */ |
| 156 | |
| 157 | #define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1) |
| 158 | |
| 159 | #define __FP_CLZ_2(R, xh, xl) \ |
| 160 | do \ |
| 161 | { \ |
| 162 | if (xh) \ |
| 163 | __FP_CLZ ((R), xh); \ |
| 164 | else \ |
| 165 | { \ |
| 166 | __FP_CLZ ((R), xl); \ |
| 167 | (R) += _FP_W_TYPE_SIZE; \ |
| 168 | } \ |
| 169 | } \ |
| 170 | while (0) |
| 171 | |
| 172 | #if 0 |
| 173 | |
| 174 | # ifndef __FP_FRAC_ADDI_2 |
| 175 | # define __FP_FRAC_ADDI_2(xh, xl, i) \ |
| 176 | (xh += ((xl += i) < i)) |
| 177 | # endif |
| 178 | # ifndef __FP_FRAC_ADD_2 |
| 179 | # define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ |
| 180 | (rh = xh + yh + ((rl = xl + yl) < xl)) |
| 181 | # endif |
| 182 | # ifndef __FP_FRAC_SUB_2 |
| 183 | # define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ |
| 184 | (rh = xh - yh - ((rl = xl - yl) > xl)) |
| 185 | # endif |
| 186 | # ifndef __FP_FRAC_DEC_2 |
| 187 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
| 188 | do \ |
| 189 | { \ |
| 190 | UWtype __FP_FRAC_DEC_2_t = xl; \ |
| 191 | xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t); \ |
| 192 | } \ |
| 193 | while (0) |
| 194 | # endif |
| 195 | |
| 196 | #else |
| 197 | |
| 198 | # undef __FP_FRAC_ADDI_2 |
| 199 | # define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa (xh, xl, xh, xl, 0, i) |
| 200 | # undef __FP_FRAC_ADD_2 |
| 201 | # define __FP_FRAC_ADD_2 add_ssaaaa |
| 202 | # undef __FP_FRAC_SUB_2 |
| 203 | # define __FP_FRAC_SUB_2 sub_ddmmss |
| 204 | # undef __FP_FRAC_DEC_2 |
| 205 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
| 206 | sub_ddmmss (xh, xl, xh, xl, yh, yl) |
| 207 | |
| 208 | #endif |
| 209 | |
| 210 | /* Unpack the raw bits of a native fp value. Do not classify or |
| 211 | normalize the data. */ |
| 212 | |
| 213 | #define _FP_UNPACK_RAW_2(fs, X, val) \ |
| 214 | do \ |
| 215 | { \ |
| 216 | union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo; \ |
| 217 | _FP_UNPACK_RAW_2_flo.flt = (val); \ |
| 218 | \ |
| 219 | X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0; \ |
| 220 | X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1; \ |
| 221 | X##_e = _FP_UNPACK_RAW_2_flo.bits.exp; \ |
| 222 | X##_s = _FP_UNPACK_RAW_2_flo.bits.sign; \ |
| 223 | } \ |
| 224 | while (0) |
| 225 | |
| 226 | #define _FP_UNPACK_RAW_2_P(fs, X, val) \ |
| 227 | do \ |
| 228 | { \ |
| 229 | union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo \ |
| 230 | = (union _FP_UNION_##fs *) (val); \ |
| 231 | \ |
| 232 | X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0; \ |
| 233 | X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1; \ |
| 234 | X##_e = _FP_UNPACK_RAW_2_P_flo->bits.exp; \ |
| 235 | X##_s = _FP_UNPACK_RAW_2_P_flo->bits.sign; \ |
| 236 | } \ |
| 237 | while (0) |
| 238 | |
| 239 | |
| 240 | /* Repack the raw bits of a native fp value. */ |
| 241 | |
| 242 | #define _FP_PACK_RAW_2(fs, val, X) \ |
| 243 | do \ |
| 244 | { \ |
| 245 | union _FP_UNION_##fs _FP_PACK_RAW_2_flo; \ |
| 246 | \ |
| 247 | _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0; \ |
| 248 | _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1; \ |
| 249 | _FP_PACK_RAW_2_flo.bits.exp = X##_e; \ |
| 250 | _FP_PACK_RAW_2_flo.bits.sign = X##_s; \ |
| 251 | \ |
| 252 | (val) = _FP_PACK_RAW_2_flo.flt; \ |
| 253 | } \ |
| 254 | while (0) |
| 255 | |
| 256 | #define _FP_PACK_RAW_2_P(fs, val, X) \ |
| 257 | do \ |
| 258 | { \ |
| 259 | union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo \ |
| 260 | = (union _FP_UNION_##fs *) (val); \ |
| 261 | \ |
| 262 | _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0; \ |
| 263 | _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1; \ |
| 264 | _FP_PACK_RAW_2_P_flo->bits.exp = X##_e; \ |
| 265 | _FP_PACK_RAW_2_P_flo->bits.sign = X##_s; \ |
| 266 | } \ |
| 267 | while (0) |
| 268 | |
| 269 | |
| 270 | /* Multiplication algorithms: */ |
| 271 | |
| 272 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
| 273 | |
| 274 | #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit) \ |
| 275 | do \ |
| 276 | { \ |
| 277 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b); \ |
| 278 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c); \ |
| 279 | \ |
| 280 | doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0), \ |
| 281 | X##_f0, Y##_f0); \ |
| 282 | doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
| 283 | X##_f0, Y##_f1); \ |
| 284 | doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
| 285 | X##_f1, Y##_f0); \ |
| 286 | doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 287 | X##_f1, Y##_f1); \ |
| 288 | \ |
| 289 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 290 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
| 291 | _FP_MUL_MEAT_DW_2_wide_b_f1, \ |
| 292 | _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
| 293 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 294 | _FP_FRAC_WORD_4 (R, 1)); \ |
| 295 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 296 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
| 297 | _FP_MUL_MEAT_DW_2_wide_c_f1, \ |
| 298 | _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
| 299 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 300 | _FP_FRAC_WORD_4 (R, 1)); \ |
| 301 | } \ |
| 302 | while (0) |
| 303 | |
| 304 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \ |
| 305 | do \ |
| 306 | { \ |
| 307 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z); \ |
| 308 | \ |
| 309 | _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z, \ |
| 310 | X, Y, doit); \ |
| 311 | \ |
| 312 | /* Normalize since we know where the msb of the multiplicands \ |
| 313 | were (bit B), we know that the msb of the of the product is \ |
| 314 | at either 2B or 2B-1. */ \ |
| 315 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1, \ |
| 316 | 2*(wfracbits)); \ |
| 317 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0); \ |
| 318 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1); \ |
| 319 | } \ |
| 320 | while (0) |
| 321 | |
| 322 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. |
| 323 | Do only 3 multiplications instead of four. This one is for machines |
| 324 | where multiplication is much more expensive than subtraction. */ |
| 325 | |
| 326 | #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
| 327 | do \ |
| 328 | { \ |
| 329 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b); \ |
| 330 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c); \ |
| 331 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d; \ |
| 332 | int _FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
| 333 | int _FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
| 334 | \ |
| 335 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1; \ |
| 336 | _FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
| 337 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0; \ |
| 338 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1; \ |
| 339 | _FP_MUL_MEAT_DW_2_wide_3mul_c2 \ |
| 340 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0; \ |
| 341 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0), \ |
| 342 | X##_f0, Y##_f0); \ |
| 343 | doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1), \ |
| 344 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0, \ |
| 345 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
| 346 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
| 347 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1); \ |
| 348 | \ |
| 349 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 \ |
| 350 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
| 351 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 \ |
| 352 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
| 353 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 354 | _FP_FRAC_WORD_4 (R, 1), \ |
| 355 | (_FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
| 356 | & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0, \ |
| 357 | _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
| 358 | 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \ |
| 359 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 360 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0); \ |
| 361 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 362 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
| 363 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 364 | _FP_FRAC_WORD_4 (R, 1), \ |
| 365 | 0, _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
| 366 | _FP_FRAC_WORD_4 (R, 0)); \ |
| 367 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 368 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
| 369 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
| 370 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0); \ |
| 371 | __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
| 372 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
| 373 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, \ |
| 374 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2)); \ |
| 375 | } \ |
| 376 | while (0) |
| 377 | |
| 378 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
| 379 | do \ |
| 380 | { \ |
| 381 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z); \ |
| 382 | \ |
| 383 | _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits), \ |
| 384 | _FP_MUL_MEAT_2_wide_3mul_z, \ |
| 385 | X, Y, doit); \ |
| 386 | \ |
| 387 | /* Normalize since we know where the msb of the multiplicands \ |
| 388 | were (bit B), we know that the msb of the of the product is \ |
| 389 | at either 2B or 2B-1. */ \ |
| 390 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z, \ |
| 391 | (wfracbits)-1, 2*(wfracbits)); \ |
| 392 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0); \ |
| 393 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1); \ |
| 394 | } \ |
| 395 | while (0) |
| 396 | |
| 397 | #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y) \ |
| 398 | do \ |
| 399 | { \ |
| 400 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2]; \ |
| 401 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2]; \ |
| 402 | _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0; \ |
| 403 | _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1; \ |
| 404 | _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0; \ |
| 405 | _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1; \ |
| 406 | \ |
| 407 | mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x, \ |
| 408 | _FP_MUL_MEAT_DW_2_gmp_y, 2); \ |
| 409 | } \ |
| 410 | while (0) |
| 411 | |
| 412 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ |
| 413 | do \ |
| 414 | { \ |
| 415 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z); \ |
| 416 | \ |
| 417 | _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y); \ |
| 418 | \ |
| 419 | /* Normalize since we know where the msb of the multiplicands \ |
| 420 | were (bit B), we know that the msb of the of the product is \ |
| 421 | at either 2B or 2B-1. */ \ |
| 422 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1, \ |
| 423 | 2*(wfracbits)); \ |
| 424 | R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0]; \ |
| 425 | R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1]; \ |
| 426 | } \ |
| 427 | while (0) |
| 428 | |
| 429 | /* Do at most 120x120=240 bits multiplication using double floating |
| 430 | point multiplication. This is useful if floating point |
| 431 | multiplication has much bigger throughput than integer multiply. |
| 432 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits |
| 433 | between 106 and 120 only. |
| 434 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. |
| 435 | SETFETZ is a macro which will disable all FPU exceptions and set rounding |
| 436 | towards zero, RESETFE should optionally reset it back. */ |
| 437 | |
| 438 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ |
| 439 | do \ |
| 440 | { \ |
| 441 | static const double _const[] = \ |
| 442 | { \ |
| 443 | /* 2^-24 */ 5.9604644775390625e-08, \ |
| 444 | /* 2^-48 */ 3.5527136788005009e-15, \ |
| 445 | /* 2^-72 */ 2.1175823681357508e-22, \ |
| 446 | /* 2^-96 */ 1.2621774483536189e-29, \ |
| 447 | /* 2^28 */ 2.68435456e+08, \ |
| 448 | /* 2^4 */ 1.600000e+01, \ |
| 449 | /* 2^-20 */ 9.5367431640625e-07, \ |
| 450 | /* 2^-44 */ 5.6843418860808015e-14, \ |
| 451 | /* 2^-68 */ 3.3881317890172014e-21, \ |
| 452 | /* 2^-92 */ 2.0194839173657902e-28, \ |
| 453 | /* 2^-116 */ 1.2037062152420224e-35 \ |
| 454 | }; \ |
| 455 | double _a240, _b240, _c240, _d240, _e240, _f240, \ |
| 456 | _g240, _h240, _i240, _j240, _k240; \ |
| 457 | union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ |
| 458 | _p240, _q240, _r240, _s240; \ |
| 459 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ |
| 460 | \ |
| 461 | _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120, \ |
| 462 | "wfracbits out of range"); \ |
| 463 | \ |
| 464 | setfetz; \ |
| 465 | \ |
| 466 | _e240 = (double) (long) (X##_f0 & 0xffffff); \ |
| 467 | _j240 = (double) (long) (Y##_f0 & 0xffffff); \ |
| 468 | _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff); \ |
| 469 | _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff); \ |
| 470 | _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ |
| 471 | _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ |
| 472 | _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff); \ |
| 473 | _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff); \ |
| 474 | _a240 = (double) (long) (X##_f1 >> 32); \ |
| 475 | _f240 = (double) (long) (Y##_f1 >> 32); \ |
| 476 | _e240 *= _const[3]; \ |
| 477 | _j240 *= _const[3]; \ |
| 478 | _d240 *= _const[2]; \ |
| 479 | _i240 *= _const[2]; \ |
| 480 | _c240 *= _const[1]; \ |
| 481 | _h240 *= _const[1]; \ |
| 482 | _b240 *= _const[0]; \ |
| 483 | _g240 *= _const[0]; \ |
| 484 | _s240.d = _e240*_j240; \ |
| 485 | _r240.d = _d240*_j240 + _e240*_i240; \ |
| 486 | _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240; \ |
| 487 | _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \ |
| 488 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \ |
| 489 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ |
| 490 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ |
| 491 | _l240.d = _a240*_g240 + _b240*_f240; \ |
| 492 | _k240 = _a240*_f240; \ |
| 493 | _r240.d += _s240.d; \ |
| 494 | _q240.d += _r240.d; \ |
| 495 | _p240.d += _q240.d; \ |
| 496 | _o240.d += _p240.d; \ |
| 497 | _n240.d += _o240.d; \ |
| 498 | _m240.d += _n240.d; \ |
| 499 | _l240.d += _m240.d; \ |
| 500 | _k240 += _l240.d; \ |
| 501 | _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ |
| 502 | _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ |
| 503 | _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ |
| 504 | _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ |
| 505 | _o240.d += _const[7]; \ |
| 506 | _n240.d += _const[6]; \ |
| 507 | _m240.d += _const[5]; \ |
| 508 | _l240.d += _const[4]; \ |
| 509 | if (_s240.d != 0.0) \ |
| 510 | _y240 = 1; \ |
| 511 | if (_r240.d != 0.0) \ |
| 512 | _y240 = 1; \ |
| 513 | if (_q240.d != 0.0) \ |
| 514 | _y240 = 1; \ |
| 515 | if (_p240.d != 0.0) \ |
| 516 | _y240 = 1; \ |
| 517 | _t240 = (DItype) _k240; \ |
| 518 | _u240 = _l240.i; \ |
| 519 | _v240 = _m240.i; \ |
| 520 | _w240 = _n240.i; \ |
| 521 | _x240 = _o240.i; \ |
| 522 | R##_f1 = ((_t240 << (128 - (wfracbits - 1))) \ |
| 523 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104))); \ |
| 524 | R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ |
| 525 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ |
| 526 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ |
| 527 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ |
| 528 | | _y240); \ |
| 529 | resetfe; \ |
| 530 | } \ |
| 531 | while (0) |
| 532 | |
| 533 | /* Division algorithms: */ |
| 534 | |
| 535 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ |
| 536 | do \ |
| 537 | { \ |
| 538 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2; \ |
| 539 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1; \ |
| 540 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0; \ |
| 541 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1; \ |
| 542 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0; \ |
| 543 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1; \ |
| 544 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0; \ |
| 545 | if (_FP_FRAC_GE_2 (X, Y)) \ |
| 546 | { \ |
| 547 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1; \ |
| 548 | _FP_DIV_MEAT_2_udiv_n_f1 \ |
| 549 | = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ |
| 550 | _FP_DIV_MEAT_2_udiv_n_f0 \ |
| 551 | = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ |
| 552 | } \ |
| 553 | else \ |
| 554 | { \ |
| 555 | R##_e--; \ |
| 556 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1; \ |
| 557 | _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0; \ |
| 558 | _FP_DIV_MEAT_2_udiv_n_f0 = 0; \ |
| 559 | } \ |
| 560 | \ |
| 561 | /* Normalize, i.e. make the most significant bit of the \ |
| 562 | denominator set. */ \ |
| 563 | _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \ |
| 564 | \ |
| 565 | udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \ |
| 566 | _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1, \ |
| 567 | Y##_f1); \ |
| 568 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0, \ |
| 569 | R##_f1, Y##_f0); \ |
| 570 | _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0; \ |
| 571 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r)) \ |
| 572 | { \ |
| 573 | R##_f1--; \ |
| 574 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
| 575 | _FP_DIV_MEAT_2_udiv_r); \ |
| 576 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
| 577 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
| 578 | _FP_DIV_MEAT_2_udiv_r)) \ |
| 579 | { \ |
| 580 | R##_f1--; \ |
| 581 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
| 582 | _FP_DIV_MEAT_2_udiv_r); \ |
| 583 | } \ |
| 584 | } \ |
| 585 | _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m); \ |
| 586 | \ |
| 587 | if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1) \ |
| 588 | { \ |
| 589 | /* This is a special case, not an optimization \ |
| 590 | (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype). \ |
| 591 | As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y, \ |
| 592 | R##_f0 can be either (UWtype)-1 or (UWtype)-2. But as we \ |
| 593 | know what kind of bits it is (sticky, guard, round), \ |
| 594 | we don't care. We also don't care what the reminder is, \ |
| 595 | because the guard bit will be set anyway. -jj */ \ |
| 596 | R##_f0 = -1; \ |
| 597 | } \ |
| 598 | else \ |
| 599 | { \ |
| 600 | udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1, \ |
| 601 | _FP_DIV_MEAT_2_udiv_r_f1, \ |
| 602 | _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1); \ |
| 603 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, \ |
| 604 | _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0); \ |
| 605 | _FP_DIV_MEAT_2_udiv_r_f0 = 0; \ |
| 606 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
| 607 | _FP_DIV_MEAT_2_udiv_r)) \ |
| 608 | { \ |
| 609 | R##_f0--; \ |
| 610 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
| 611 | _FP_DIV_MEAT_2_udiv_r); \ |
| 612 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
| 613 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
| 614 | _FP_DIV_MEAT_2_udiv_r)) \ |
| 615 | { \ |
| 616 | R##_f0--; \ |
| 617 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
| 618 | _FP_DIV_MEAT_2_udiv_r); \ |
| 619 | } \ |
| 620 | } \ |
| 621 | if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r, \ |
| 622 | _FP_DIV_MEAT_2_udiv_m)) \ |
| 623 | R##_f0 |= _FP_WORK_STICKY; \ |
| 624 | } \ |
| 625 | } \ |
| 626 | while (0) |
| 627 | |
| 628 | |
| 629 | /* Square root algorithms: |
| 630 | We have just one right now, maybe Newton approximation |
| 631 | should be added for those machines where division is fast. */ |
| 632 | |
| 633 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ |
| 634 | do \ |
| 635 | { \ |
| 636 | while (q) \ |
| 637 | { \ |
| 638 | T##_f1 = S##_f1 + (q); \ |
| 639 | if (T##_f1 <= X##_f1) \ |
| 640 | { \ |
| 641 | S##_f1 = T##_f1 + (q); \ |
| 642 | X##_f1 -= T##_f1; \ |
| 643 | R##_f1 += (q); \ |
| 644 | } \ |
| 645 | _FP_FRAC_SLL_2 (X, 1); \ |
| 646 | (q) >>= 1; \ |
| 647 | } \ |
| 648 | (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \ |
| 649 | while ((q) != _FP_WORK_ROUND) \ |
| 650 | { \ |
| 651 | T##_f0 = S##_f0 + (q); \ |
| 652 | T##_f1 = S##_f1; \ |
| 653 | if (T##_f1 < X##_f1 \ |
| 654 | || (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ |
| 655 | { \ |
| 656 | S##_f0 = T##_f0 + (q); \ |
| 657 | S##_f1 += (T##_f0 > S##_f0); \ |
| 658 | _FP_FRAC_DEC_2 (X, T); \ |
| 659 | R##_f0 += (q); \ |
| 660 | } \ |
| 661 | _FP_FRAC_SLL_2 (X, 1); \ |
| 662 | (q) >>= 1; \ |
| 663 | } \ |
| 664 | if (X##_f0 | X##_f1) \ |
| 665 | { \ |
| 666 | if (S##_f1 < X##_f1 \ |
| 667 | || (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ |
| 668 | R##_f0 |= _FP_WORK_ROUND; \ |
| 669 | R##_f0 |= _FP_WORK_STICKY; \ |
| 670 | } \ |
| 671 | } \ |
| 672 | while (0) |
| 673 | |
| 674 | |
| 675 | /* Assembly/disassembly for converting to/from integral types. |
| 676 | No shifting or overflow handled here. */ |
| 677 | |
| 678 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ |
| 679 | (void) (((rsize) <= _FP_W_TYPE_SIZE) \ |
| 680 | ? ({ (r) = X##_f0; }) \ |
| 681 | : ({ \ |
| 682 | (r) = X##_f1; \ |
| 683 | (r) <<= _FP_W_TYPE_SIZE; \ |
| 684 | (r) += X##_f0; \ |
| 685 | })) |
| 686 | |
| 687 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ |
| 688 | do \ |
| 689 | { \ |
| 690 | X##_f0 = (r); \ |
| 691 | X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE \ |
| 692 | ? 0 \ |
| 693 | : (r) >> _FP_W_TYPE_SIZE); \ |
| 694 | } \ |
| 695 | while (0) |
| 696 | |
| 697 | /* Convert FP values between word sizes. */ |
| 698 | |
| 699 | #define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0) |
| 700 | |
| 701 | #define _FP_FRAC_COPY_2_1(D, S) ((D##_f0 = S##_f), (D##_f1 = 0)) |
| 702 | |
| 703 | #define _FP_FRAC_COPY_2_2(D, S) _FP_FRAC_COPY_2 (D, S) |
| 704 | |
| 705 | #endif /* !SOFT_FP_OP_2_H */ |