blob: 462fd1821805d6e5fe2898beab5404072d3cd1ae [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/loop.h>
67#include <linux/compat.h>
68#include <linux/suspend.h>
69#include <linux/freezer.h>
70#include <linux/mutex.h>
71#include <linux/writeback.h>
72#include <linux/completion.h>
73#include <linux/highmem.h>
74#include <linux/kthread.h>
75#include <linux/splice.h>
76#include <linux/sysfs.h>
77#include <linux/miscdevice.h>
78#include <linux/falloc.h>
79
80#include <asm/uaccess.h>
81
82static DEFINE_IDR(loop_index_idr);
83static DEFINE_MUTEX(loop_index_mutex);
84
85static int max_part;
86static int part_shift;
87
88/*
89 * Transfer functions
90 */
91static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95{
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
104 kunmap_atomic(loop_buf);
105 kunmap_atomic(raw_buf);
106 cond_resched();
107 return 0;
108}
109
110static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114{
115 char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
133 kunmap_atomic(loop_buf);
134 kunmap_atomic(raw_buf);
135 cond_resched();
136 return 0;
137}
138
139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140{
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144}
145
146static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149};
150
151static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155};
156
157/* xfer_funcs[0] is special - its release function is never called */
158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161};
162
163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164{
165 loff_t size, loopsize;
166
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 loopsize = size - offset;
170 /* offset is beyond i_size, wierd but possible */
171 if (loopsize < 0)
172 return 0;
173
174 if (sizelimit > 0 && sizelimit < loopsize)
175 loopsize = sizelimit;
176 /*
177 * Unfortunately, if we want to do I/O on the device,
178 * the number of 512-byte sectors has to fit into a sector_t.
179 */
180 return loopsize >> 9;
181}
182
183static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184{
185 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186}
187
188static int
189figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190{
191 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 sector_t x = (sector_t)size;
193
194 if (unlikely((loff_t)x != size))
195 return -EFBIG;
196 if (lo->lo_offset != offset)
197 lo->lo_offset = offset;
198 if (lo->lo_sizelimit != sizelimit)
199 lo->lo_sizelimit = sizelimit;
200 set_capacity(lo->lo_disk, x);
201 return 0;
202}
203
204static inline int
205lo_do_transfer(struct loop_device *lo, int cmd,
206 struct page *rpage, unsigned roffs,
207 struct page *lpage, unsigned loffs,
208 int size, sector_t rblock)
209{
210 if (unlikely(!lo->transfer))
211 return 0;
212
213 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214}
215
216/**
217 * __do_lo_send_write - helper for writing data to a loop device
218 *
219 * This helper just factors out common code between do_lo_send_direct_write()
220 * and do_lo_send_write().
221 */
222static int __do_lo_send_write(struct file *file,
223 u8 *buf, const int len, loff_t pos)
224{
225 ssize_t bw;
226 mm_segment_t old_fs = get_fs();
227
228 set_fs(get_ds());
229 bw = file->f_op->write(file, buf, len, &pos);
230 set_fs(old_fs);
231 if (likely(bw == len))
232 return 0;
233 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 (unsigned long long)pos, len);
235 if (bw >= 0)
236 bw = -EIO;
237 return bw;
238}
239
240/**
241 * do_lo_send_direct_write - helper for writing data to a loop device
242 *
243 * This is the fast, non-transforming version that does not need double
244 * buffering.
245 */
246static int do_lo_send_direct_write(struct loop_device *lo,
247 struct bio_vec *bvec, loff_t pos, struct page *page)
248{
249 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 kmap(bvec->bv_page) + bvec->bv_offset,
251 bvec->bv_len, pos);
252 kunmap(bvec->bv_page);
253 cond_resched();
254 return bw;
255}
256
257/**
258 * do_lo_send_write - helper for writing data to a loop device
259 *
260 * This is the slow, transforming version that needs to double buffer the
261 * data as it cannot do the transformations in place without having direct
262 * access to the destination pages of the backing file.
263 */
264static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 loff_t pos, struct page *page)
266{
267 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 bvec->bv_offset, bvec->bv_len, pos >> 9);
269 if (likely(!ret))
270 return __do_lo_send_write(lo->lo_backing_file,
271 page_address(page), bvec->bv_len,
272 pos);
273 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 if (ret > 0)
276 ret = -EIO;
277 return ret;
278}
279
280static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281{
282 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 struct page *page);
284 struct bio_vec *bvec;
285 struct page *page = NULL;
286 int i, ret = 0;
287
288 if (lo->transfer != transfer_none) {
289 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 if (unlikely(!page))
291 goto fail;
292 kmap(page);
293 do_lo_send = do_lo_send_write;
294 } else {
295 do_lo_send = do_lo_send_direct_write;
296 }
297
298 bio_for_each_segment(bvec, bio, i) {
299 ret = do_lo_send(lo, bvec, pos, page);
300 if (ret < 0)
301 break;
302 pos += bvec->bv_len;
303 }
304 if (page) {
305 kunmap(page);
306 __free_page(page);
307 }
308out:
309 return ret;
310fail:
311 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 ret = -ENOMEM;
313 goto out;
314}
315
316struct lo_read_data {
317 struct loop_device *lo;
318 struct page *page;
319 unsigned offset;
320 int bsize;
321};
322
323static int
324lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 struct splice_desc *sd)
326{
327 struct lo_read_data *p = sd->u.data;
328 struct loop_device *lo = p->lo;
329 struct page *page = buf->page;
330 sector_t IV;
331 int size;
332
333 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 (buf->offset >> 9);
335 size = sd->len;
336 if (size > p->bsize)
337 size = p->bsize;
338
339 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 printk(KERN_ERR "loop: transfer error block %ld\n",
341 page->index);
342 size = -EINVAL;
343 }
344
345 flush_dcache_page(p->page);
346
347 if (size > 0)
348 p->offset += size;
349
350 return size;
351}
352
353static int
354lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355{
356 return __splice_from_pipe(pipe, sd, lo_splice_actor);
357}
358
359static ssize_t
360do_lo_receive(struct loop_device *lo,
361 struct bio_vec *bvec, int bsize, loff_t pos)
362{
363 struct lo_read_data cookie;
364 struct splice_desc sd;
365 struct file *file;
366 ssize_t retval;
367
368 cookie.lo = lo;
369 cookie.page = bvec->bv_page;
370 cookie.offset = bvec->bv_offset;
371 cookie.bsize = bsize;
372
373 sd.len = 0;
374 sd.total_len = bvec->bv_len;
375 sd.flags = 0;
376 sd.pos = pos;
377 sd.u.data = &cookie;
378
379 file = lo->lo_backing_file;
380 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381
382 return retval;
383}
384
385static int
386lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
387{
388 struct bio_vec *bvec;
389 ssize_t s;
390 int i;
391
392 bio_for_each_segment(bvec, bio, i) {
393 s = do_lo_receive(lo, bvec, bsize, pos);
394 if (s < 0)
395 return s;
396
397 if (s != bvec->bv_len) {
398 zero_fill_bio(bio);
399 break;
400 }
401 pos += bvec->bv_len;
402 }
403 return 0;
404}
405
406static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407{
408 loff_t pos;
409 int ret;
410
411 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412
413 if (bio_rw(bio) == WRITE) {
414 struct file *file = lo->lo_backing_file;
415
416 if (bio->bi_rw & REQ_FLUSH) {
417 ret = vfs_fsync(file, 0);
418 if (unlikely(ret && ret != -EINVAL)) {
419 ret = -EIO;
420 goto out;
421 }
422 }
423
424 /*
425 * We use punch hole to reclaim the free space used by the
426 * image a.k.a. discard. However we do not support discard if
427 * encryption is enabled, because it may give an attacker
428 * useful information.
429 */
430 if (bio->bi_rw & REQ_DISCARD) {
431 struct file *file = lo->lo_backing_file;
432 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
433
434 if ((!file->f_op->fallocate) ||
435 lo->lo_encrypt_key_size) {
436 ret = -EOPNOTSUPP;
437 goto out;
438 }
439 ret = file->f_op->fallocate(file, mode, pos,
440 bio->bi_size);
441 if (unlikely(ret && ret != -EINVAL &&
442 ret != -EOPNOTSUPP))
443 ret = -EIO;
444 goto out;
445 }
446
447 ret = lo_send(lo, bio, pos);
448
449 if ((bio->bi_rw & REQ_FUA) && !ret) {
450 ret = vfs_fsync(file, 0);
451 if (unlikely(ret && ret != -EINVAL))
452 ret = -EIO;
453 }
454 } else
455 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456
457out:
458 return ret;
459}
460
461/*
462 * Add bio to back of pending list
463 */
464static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465{
466 bio_list_add(&lo->lo_bio_list, bio);
467}
468
469/*
470 * Grab first pending buffer
471 */
472static struct bio *loop_get_bio(struct loop_device *lo)
473{
474 return bio_list_pop(&lo->lo_bio_list);
475}
476
477static void loop_make_request(struct request_queue *q, struct bio *old_bio)
478{
479 struct loop_device *lo = q->queuedata;
480 int rw = bio_rw(old_bio);
481
482 if (rw == READA)
483 rw = READ;
484
485 BUG_ON(!lo || (rw != READ && rw != WRITE));
486
487 spin_lock_irq(&lo->lo_lock);
488 if (lo->lo_state != Lo_bound)
489 goto out;
490 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
491 goto out;
492 loop_add_bio(lo, old_bio);
493 wake_up(&lo->lo_event);
494 spin_unlock_irq(&lo->lo_lock);
495 return;
496
497out:
498 spin_unlock_irq(&lo->lo_lock);
499 bio_io_error(old_bio);
500}
501
502struct switch_request {
503 struct file *file;
504 struct completion wait;
505};
506
507static void do_loop_switch(struct loop_device *, struct switch_request *);
508
509static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
510{
511 if (unlikely(!bio->bi_bdev)) {
512 do_loop_switch(lo, bio->bi_private);
513 bio_put(bio);
514 } else {
515 int ret = do_bio_filebacked(lo, bio);
516 bio_endio(bio, ret);
517 }
518}
519
520/*
521 * worker thread that handles reads/writes to file backed loop devices,
522 * to avoid blocking in our make_request_fn. it also does loop decrypting
523 * on reads for block backed loop, as that is too heavy to do from
524 * b_end_io context where irqs may be disabled.
525 *
526 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
527 * calling kthread_stop(). Therefore once kthread_should_stop() is
528 * true, make_request will not place any more requests. Therefore
529 * once kthread_should_stop() is true and lo_bio is NULL, we are
530 * done with the loop.
531 */
532static int loop_thread(void *data)
533{
534 struct loop_device *lo = data;
535 struct bio *bio;
536
537 set_user_nice(current, -20);
538
539 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
540
541 wait_event_interruptible(lo->lo_event,
542 !bio_list_empty(&lo->lo_bio_list) ||
543 kthread_should_stop());
544
545 if (bio_list_empty(&lo->lo_bio_list))
546 continue;
547 spin_lock_irq(&lo->lo_lock);
548 bio = loop_get_bio(lo);
549 spin_unlock_irq(&lo->lo_lock);
550
551 BUG_ON(!bio);
552 loop_handle_bio(lo, bio);
553 }
554
555 return 0;
556}
557
558/*
559 * loop_switch performs the hard work of switching a backing store.
560 * First it needs to flush existing IO, it does this by sending a magic
561 * BIO down the pipe. The completion of this BIO does the actual switch.
562 */
563static int loop_switch(struct loop_device *lo, struct file *file)
564{
565 struct switch_request w;
566 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
567 if (!bio)
568 return -ENOMEM;
569 init_completion(&w.wait);
570 w.file = file;
571 bio->bi_private = &w;
572 bio->bi_bdev = NULL;
573 loop_make_request(lo->lo_queue, bio);
574 wait_for_completion(&w.wait);
575 return 0;
576}
577
578/*
579 * Helper to flush the IOs in loop, but keeping loop thread running
580 */
581static int loop_flush(struct loop_device *lo)
582{
583 /* loop not yet configured, no running thread, nothing to flush */
584 if (!lo->lo_thread)
585 return 0;
586
587 return loop_switch(lo, NULL);
588}
589
590/*
591 * Do the actual switch; called from the BIO completion routine
592 */
593static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
594{
595 struct file *file = p->file;
596 struct file *old_file = lo->lo_backing_file;
597 struct address_space *mapping;
598
599 /* if no new file, only flush of queued bios requested */
600 if (!file)
601 goto out;
602
603 mapping = file->f_mapping;
604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
605 lo->lo_backing_file = file;
606 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
607 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
608 lo->old_gfp_mask = mapping_gfp_mask(mapping);
609 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
610out:
611 complete(&p->wait);
612}
613
614
615/*
616 * loop_change_fd switched the backing store of a loopback device to
617 * a new file. This is useful for operating system installers to free up
618 * the original file and in High Availability environments to switch to
619 * an alternative location for the content in case of server meltdown.
620 * This can only work if the loop device is used read-only, and if the
621 * new backing store is the same size and type as the old backing store.
622 */
623static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
624 unsigned int arg)
625{
626 struct file *file, *old_file;
627 struct inode *inode;
628 int error;
629
630 error = -ENXIO;
631 if (lo->lo_state != Lo_bound)
632 goto out;
633
634 /* the loop device has to be read-only */
635 error = -EINVAL;
636 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
637 goto out;
638
639 error = -EBADF;
640 file = fget(arg);
641 if (!file)
642 goto out;
643
644 inode = file->f_mapping->host;
645 old_file = lo->lo_backing_file;
646
647 error = -EINVAL;
648
649 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
650 goto out_putf;
651
652 /* size of the new backing store needs to be the same */
653 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
654 goto out_putf;
655
656 /* and ... switch */
657 error = loop_switch(lo, file);
658 if (error)
659 goto out_putf;
660
661 fput(old_file);
662 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
663 ioctl_by_bdev(bdev, BLKRRPART, 0);
664 return 0;
665
666 out_putf:
667 fput(file);
668 out:
669 return error;
670}
671
672static inline int is_loop_device(struct file *file)
673{
674 struct inode *i = file->f_mapping->host;
675
676 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677}
678
679/* loop sysfs attributes */
680
681static ssize_t loop_attr_show(struct device *dev, char *page,
682 ssize_t (*callback)(struct loop_device *, char *))
683{
684 struct gendisk *disk = dev_to_disk(dev);
685 struct loop_device *lo = disk->private_data;
686
687 return callback(lo, page);
688}
689
690#define LOOP_ATTR_RO(_name) \
691static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
692static ssize_t loop_attr_do_show_##_name(struct device *d, \
693 struct device_attribute *attr, char *b) \
694{ \
695 return loop_attr_show(d, b, loop_attr_##_name##_show); \
696} \
697static struct device_attribute loop_attr_##_name = \
698 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699
700static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701{
702 ssize_t ret;
703 char *p = NULL;
704
705 spin_lock_irq(&lo->lo_lock);
706 if (lo->lo_backing_file)
707 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
708 spin_unlock_irq(&lo->lo_lock);
709
710 if (IS_ERR_OR_NULL(p))
711 ret = PTR_ERR(p);
712 else {
713 ret = strlen(p);
714 memmove(buf, p, ret);
715 buf[ret++] = '\n';
716 buf[ret] = 0;
717 }
718
719 return ret;
720}
721
722static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723{
724 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725}
726
727static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728{
729 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730}
731
732static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733{
734 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735
736 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737}
738
739static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740{
741 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742
743 return sprintf(buf, "%s\n", partscan ? "1" : "0");
744}
745
746LOOP_ATTR_RO(backing_file);
747LOOP_ATTR_RO(offset);
748LOOP_ATTR_RO(sizelimit);
749LOOP_ATTR_RO(autoclear);
750LOOP_ATTR_RO(partscan);
751
752static struct attribute *loop_attrs[] = {
753 &loop_attr_backing_file.attr,
754 &loop_attr_offset.attr,
755 &loop_attr_sizelimit.attr,
756 &loop_attr_autoclear.attr,
757 &loop_attr_partscan.attr,
758 NULL,
759};
760
761static struct attribute_group loop_attribute_group = {
762 .name = "loop",
763 .attrs= loop_attrs,
764};
765
766static int loop_sysfs_init(struct loop_device *lo)
767{
768 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
769 &loop_attribute_group);
770}
771
772static void loop_sysfs_exit(struct loop_device *lo)
773{
774 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
775 &loop_attribute_group);
776}
777
778static void loop_config_discard(struct loop_device *lo)
779{
780 struct file *file = lo->lo_backing_file;
781 struct inode *inode = file->f_mapping->host;
782 struct request_queue *q = lo->lo_queue;
783
784 /*
785 * We use punch hole to reclaim the free space used by the
786 * image a.k.a. discard. However we do support discard if
787 * encryption is enabled, because it may give an attacker
788 * useful information.
789 */
790 if ((!file->f_op->fallocate) ||
791 lo->lo_encrypt_key_size) {
792 q->limits.discard_granularity = 0;
793 q->limits.discard_alignment = 0;
794 q->limits.max_discard_sectors = 0;
795 q->limits.discard_zeroes_data = 0;
796 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
797 return;
798 }
799
800 q->limits.discard_granularity = inode->i_sb->s_blocksize;
801 q->limits.discard_alignment = 0;
802 q->limits.max_discard_sectors = UINT_MAX >> 9;
803 q->limits.discard_zeroes_data = 1;
804 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
805}
806
807static int loop_set_fd(struct loop_device *lo, fmode_t mode,
808 struct block_device *bdev, unsigned int arg)
809{
810 struct file *file, *f;
811 struct inode *inode;
812 struct address_space *mapping;
813 unsigned lo_blocksize;
814 int lo_flags = 0;
815 int error;
816 loff_t size;
817
818 /* This is safe, since we have a reference from open(). */
819 __module_get(THIS_MODULE);
820
821 error = -EBADF;
822 file = fget(arg);
823 if (!file)
824 goto out;
825
826 error = -EBUSY;
827 if (lo->lo_state != Lo_unbound)
828 goto out_putf;
829
830 /* Avoid recursion */
831 f = file;
832 while (is_loop_device(f)) {
833 struct loop_device *l;
834
835 if (f->f_mapping->host->i_bdev == bdev)
836 goto out_putf;
837
838 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
839 if (l->lo_state == Lo_unbound) {
840 error = -EINVAL;
841 goto out_putf;
842 }
843 f = l->lo_backing_file;
844 }
845
846 mapping = file->f_mapping;
847 inode = mapping->host;
848
849 error = -EINVAL;
850 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
851 goto out_putf;
852
853 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
854 !file->f_op->write)
855 lo_flags |= LO_FLAGS_READ_ONLY;
856
857 lo_blocksize = S_ISBLK(inode->i_mode) ?
858 inode->i_bdev->bd_block_size : PAGE_SIZE;
859
860 error = -EFBIG;
861 size = get_loop_size(lo, file);
862 if ((loff_t)(sector_t)size != size)
863 goto out_putf;
864
865 error = 0;
866
867 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
868
869 lo->lo_blocksize = lo_blocksize;
870 lo->lo_device = bdev;
871 lo->lo_flags = lo_flags;
872 lo->lo_backing_file = file;
873 lo->transfer = transfer_none;
874 lo->ioctl = NULL;
875 lo->lo_sizelimit = 0;
876 lo->old_gfp_mask = mapping_gfp_mask(mapping);
877 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
878
879 bio_list_init(&lo->lo_bio_list);
880
881 /*
882 * set queue make_request_fn, and add limits based on lower level
883 * device
884 */
885 blk_queue_make_request(lo->lo_queue, loop_make_request);
886 lo->lo_queue->queuedata = lo;
887
888 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
889 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
890
891 set_capacity(lo->lo_disk, size);
892 bd_set_size(bdev, size << 9);
893 loop_sysfs_init(lo);
894 /* let user-space know about the new size */
895 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
896
897 set_blocksize(bdev, lo_blocksize);
898
899 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
900 lo->lo_number);
901 if (IS_ERR(lo->lo_thread)) {
902 error = PTR_ERR(lo->lo_thread);
903 goto out_clr;
904 }
905 lo->lo_state = Lo_bound;
906 wake_up_process(lo->lo_thread);
907 if (part_shift)
908 lo->lo_flags |= LO_FLAGS_PARTSCAN;
909 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
910 ioctl_by_bdev(bdev, BLKRRPART, 0);
911
912 /* Grab the block_device to prevent its destruction after we
913 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
914 */
915 bdgrab(bdev);
916 return 0;
917
918out_clr:
919 loop_sysfs_exit(lo);
920 lo->lo_thread = NULL;
921 lo->lo_device = NULL;
922 lo->lo_backing_file = NULL;
923 lo->lo_flags = 0;
924 set_capacity(lo->lo_disk, 0);
925 invalidate_bdev(bdev);
926 bd_set_size(bdev, 0);
927 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
928 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
929 lo->lo_state = Lo_unbound;
930 out_putf:
931 fput(file);
932 out:
933 /* This is safe: open() is still holding a reference. */
934 module_put(THIS_MODULE);
935 return error;
936}
937
938static int
939loop_release_xfer(struct loop_device *lo)
940{
941 int err = 0;
942 struct loop_func_table *xfer = lo->lo_encryption;
943
944 if (xfer) {
945 if (xfer->release)
946 err = xfer->release(lo);
947 lo->transfer = NULL;
948 lo->lo_encryption = NULL;
949 module_put(xfer->owner);
950 }
951 return err;
952}
953
954static int
955loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
956 const struct loop_info64 *i)
957{
958 int err = 0;
959
960 if (xfer) {
961 struct module *owner = xfer->owner;
962
963 if (!try_module_get(owner))
964 return -EINVAL;
965 if (xfer->init)
966 err = xfer->init(lo, i);
967 if (err)
968 module_put(owner);
969 else
970 lo->lo_encryption = xfer;
971 }
972 return err;
973}
974
975static int loop_clr_fd(struct loop_device *lo)
976{
977 struct file *filp = lo->lo_backing_file;
978 gfp_t gfp = lo->old_gfp_mask;
979 struct block_device *bdev = lo->lo_device;
980
981 if (lo->lo_state != Lo_bound)
982 return -ENXIO;
983
984 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
985 return -EBUSY;
986
987 if (filp == NULL)
988 return -EINVAL;
989
990 spin_lock_irq(&lo->lo_lock);
991 lo->lo_state = Lo_rundown;
992 spin_unlock_irq(&lo->lo_lock);
993
994 kthread_stop(lo->lo_thread);
995
996 spin_lock_irq(&lo->lo_lock);
997 lo->lo_backing_file = NULL;
998 spin_unlock_irq(&lo->lo_lock);
999
1000 loop_release_xfer(lo);
1001 lo->transfer = NULL;
1002 lo->ioctl = NULL;
1003 lo->lo_device = NULL;
1004 lo->lo_encryption = NULL;
1005 lo->lo_offset = 0;
1006 lo->lo_sizelimit = 0;
1007 lo->lo_encrypt_key_size = 0;
1008 lo->lo_thread = NULL;
1009 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1010 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1011 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1012 if (bdev) {
1013 bdput(bdev);
1014 invalidate_bdev(bdev);
1015 }
1016 set_capacity(lo->lo_disk, 0);
1017 loop_sysfs_exit(lo);
1018 if (bdev) {
1019 bd_set_size(bdev, 0);
1020 /* let user-space know about this change */
1021 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1022 }
1023 mapping_set_gfp_mask(filp->f_mapping, gfp);
1024 lo->lo_state = Lo_unbound;
1025 /* This is safe: open() is still holding a reference. */
1026 module_put(THIS_MODULE);
1027 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1028 ioctl_by_bdev(bdev, BLKRRPART, 0);
1029 lo->lo_flags = 0;
1030 if (!part_shift)
1031 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1032 mutex_unlock(&lo->lo_ctl_mutex);
1033 /*
1034 * Need not hold lo_ctl_mutex to fput backing file.
1035 * Calling fput holding lo_ctl_mutex triggers a circular
1036 * lock dependency possibility warning as fput can take
1037 * bd_mutex which is usually taken before lo_ctl_mutex.
1038 */
1039 fput(filp);
1040 return 0;
1041}
1042
1043static int
1044loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1045{
1046 int err;
1047 struct loop_func_table *xfer;
1048 uid_t uid = current_uid();
1049
1050 if (lo->lo_encrypt_key_size &&
1051 lo->lo_key_owner != uid &&
1052 !capable(CAP_SYS_ADMIN))
1053 return -EPERM;
1054 if (lo->lo_state != Lo_bound)
1055 return -ENXIO;
1056 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1057 return -EINVAL;
1058
1059 err = loop_release_xfer(lo);
1060 if (err)
1061 return err;
1062
1063 if (info->lo_encrypt_type) {
1064 unsigned int type = info->lo_encrypt_type;
1065
1066 if (type >= MAX_LO_CRYPT)
1067 return -EINVAL;
1068 xfer = xfer_funcs[type];
1069 if (xfer == NULL)
1070 return -EINVAL;
1071 } else
1072 xfer = NULL;
1073
1074 err = loop_init_xfer(lo, xfer, info);
1075 if (err)
1076 return err;
1077
1078 if (lo->lo_offset != info->lo_offset ||
1079 lo->lo_sizelimit != info->lo_sizelimit) {
1080 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1081 return -EFBIG;
1082 }
1083 loop_config_discard(lo);
1084
1085 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1086 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1087 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1088 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1089
1090 if (!xfer)
1091 xfer = &none_funcs;
1092 lo->transfer = xfer->transfer;
1093 lo->ioctl = xfer->ioctl;
1094
1095 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1096 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1097 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1098
1099 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1100 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1101 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1102 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1103 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1104 }
1105
1106 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1107 lo->lo_init[0] = info->lo_init[0];
1108 lo->lo_init[1] = info->lo_init[1];
1109 if (info->lo_encrypt_key_size) {
1110 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1111 info->lo_encrypt_key_size);
1112 lo->lo_key_owner = uid;
1113 }
1114
1115 return 0;
1116}
1117
1118static int
1119loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1120{
1121 struct file *file = lo->lo_backing_file;
1122 struct kstat stat;
1123 int error;
1124
1125 if (lo->lo_state != Lo_bound)
1126 return -ENXIO;
1127 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1128 if (error)
1129 return error;
1130 memset(info, 0, sizeof(*info));
1131 info->lo_number = lo->lo_number;
1132 info->lo_device = huge_encode_dev(stat.dev);
1133 info->lo_inode = stat.ino;
1134 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1135 info->lo_offset = lo->lo_offset;
1136 info->lo_sizelimit = lo->lo_sizelimit;
1137 info->lo_flags = lo->lo_flags;
1138 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1139 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1140 info->lo_encrypt_type =
1141 lo->lo_encryption ? lo->lo_encryption->number : 0;
1142 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1143 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1144 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1145 lo->lo_encrypt_key_size);
1146 }
1147 return 0;
1148}
1149
1150static void
1151loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1152{
1153 memset(info64, 0, sizeof(*info64));
1154 info64->lo_number = info->lo_number;
1155 info64->lo_device = info->lo_device;
1156 info64->lo_inode = info->lo_inode;
1157 info64->lo_rdevice = info->lo_rdevice;
1158 info64->lo_offset = info->lo_offset;
1159 info64->lo_sizelimit = 0;
1160 info64->lo_encrypt_type = info->lo_encrypt_type;
1161 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1162 info64->lo_flags = info->lo_flags;
1163 info64->lo_init[0] = info->lo_init[0];
1164 info64->lo_init[1] = info->lo_init[1];
1165 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1166 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1167 else
1168 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1169 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1170}
1171
1172static int
1173loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1174{
1175 memset(info, 0, sizeof(*info));
1176 info->lo_number = info64->lo_number;
1177 info->lo_device = info64->lo_device;
1178 info->lo_inode = info64->lo_inode;
1179 info->lo_rdevice = info64->lo_rdevice;
1180 info->lo_offset = info64->lo_offset;
1181 info->lo_encrypt_type = info64->lo_encrypt_type;
1182 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1183 info->lo_flags = info64->lo_flags;
1184 info->lo_init[0] = info64->lo_init[0];
1185 info->lo_init[1] = info64->lo_init[1];
1186 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1187 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1188 else
1189 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1190 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1191
1192 /* error in case values were truncated */
1193 if (info->lo_device != info64->lo_device ||
1194 info->lo_rdevice != info64->lo_rdevice ||
1195 info->lo_inode != info64->lo_inode ||
1196 info->lo_offset != info64->lo_offset)
1197 return -EOVERFLOW;
1198
1199 return 0;
1200}
1201
1202static int
1203loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1204{
1205 struct loop_info info;
1206 struct loop_info64 info64;
1207
1208 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1209 return -EFAULT;
1210 loop_info64_from_old(&info, &info64);
1211 return loop_set_status(lo, &info64);
1212}
1213
1214static int
1215loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1216{
1217 struct loop_info64 info64;
1218
1219 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1220 return -EFAULT;
1221 return loop_set_status(lo, &info64);
1222}
1223
1224static int
1225loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1226 struct loop_info info;
1227 struct loop_info64 info64;
1228 int err = 0;
1229
1230 if (!arg)
1231 err = -EINVAL;
1232 if (!err)
1233 err = loop_get_status(lo, &info64);
1234 if (!err)
1235 err = loop_info64_to_old(&info64, &info);
1236 if (!err && copy_to_user(arg, &info, sizeof(info)))
1237 err = -EFAULT;
1238
1239 return err;
1240}
1241
1242static int
1243loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1244 struct loop_info64 info64;
1245 int err = 0;
1246
1247 if (!arg)
1248 err = -EINVAL;
1249 if (!err)
1250 err = loop_get_status(lo, &info64);
1251 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1252 err = -EFAULT;
1253
1254 return err;
1255}
1256
1257static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1258{
1259 int err;
1260 sector_t sec;
1261 loff_t sz;
1262
1263 err = -ENXIO;
1264 if (unlikely(lo->lo_state != Lo_bound))
1265 goto out;
1266 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1267 if (unlikely(err))
1268 goto out;
1269 sec = get_capacity(lo->lo_disk);
1270 /* the width of sector_t may be narrow for bit-shift */
1271 sz = sec;
1272 sz <<= 9;
1273 bd_set_size(bdev, sz);
1274 /* let user-space know about the new size */
1275 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1276
1277 out:
1278 return err;
1279}
1280
1281static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1282 unsigned int cmd, unsigned long arg)
1283{
1284 struct loop_device *lo = bdev->bd_disk->private_data;
1285 int err;
1286
1287 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1288 switch (cmd) {
1289 case LOOP_SET_FD:
1290 err = loop_set_fd(lo, mode, bdev, arg);
1291 break;
1292 case LOOP_CHANGE_FD:
1293 err = loop_change_fd(lo, bdev, arg);
1294 break;
1295 case LOOP_CLR_FD:
1296 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1297 err = loop_clr_fd(lo);
1298 if (!err)
1299 goto out_unlocked;
1300 break;
1301 case LOOP_SET_STATUS:
1302 err = -EPERM;
1303 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1304 err = loop_set_status_old(lo,
1305 (struct loop_info __user *)arg);
1306 break;
1307 case LOOP_GET_STATUS:
1308 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1309 break;
1310 case LOOP_SET_STATUS64:
1311 err = -EPERM;
1312 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1313 err = loop_set_status64(lo,
1314 (struct loop_info64 __user *) arg);
1315 break;
1316 case LOOP_GET_STATUS64:
1317 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1318 break;
1319 case LOOP_SET_CAPACITY:
1320 err = -EPERM;
1321 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1322 err = loop_set_capacity(lo, bdev);
1323 break;
1324 default:
1325 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1326 }
1327 mutex_unlock(&lo->lo_ctl_mutex);
1328
1329out_unlocked:
1330 return err;
1331}
1332
1333#ifdef CONFIG_COMPAT
1334struct compat_loop_info {
1335 compat_int_t lo_number; /* ioctl r/o */
1336 compat_dev_t lo_device; /* ioctl r/o */
1337 compat_ulong_t lo_inode; /* ioctl r/o */
1338 compat_dev_t lo_rdevice; /* ioctl r/o */
1339 compat_int_t lo_offset;
1340 compat_int_t lo_encrypt_type;
1341 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1342 compat_int_t lo_flags; /* ioctl r/o */
1343 char lo_name[LO_NAME_SIZE];
1344 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1345 compat_ulong_t lo_init[2];
1346 char reserved[4];
1347};
1348
1349/*
1350 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1351 * - noinlined to reduce stack space usage in main part of driver
1352 */
1353static noinline int
1354loop_info64_from_compat(const struct compat_loop_info __user *arg,
1355 struct loop_info64 *info64)
1356{
1357 struct compat_loop_info info;
1358
1359 if (copy_from_user(&info, arg, sizeof(info)))
1360 return -EFAULT;
1361
1362 memset(info64, 0, sizeof(*info64));
1363 info64->lo_number = info.lo_number;
1364 info64->lo_device = info.lo_device;
1365 info64->lo_inode = info.lo_inode;
1366 info64->lo_rdevice = info.lo_rdevice;
1367 info64->lo_offset = info.lo_offset;
1368 info64->lo_sizelimit = 0;
1369 info64->lo_encrypt_type = info.lo_encrypt_type;
1370 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1371 info64->lo_flags = info.lo_flags;
1372 info64->lo_init[0] = info.lo_init[0];
1373 info64->lo_init[1] = info.lo_init[1];
1374 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1375 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1376 else
1377 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1378 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1379 return 0;
1380}
1381
1382/*
1383 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1384 * - noinlined to reduce stack space usage in main part of driver
1385 */
1386static noinline int
1387loop_info64_to_compat(const struct loop_info64 *info64,
1388 struct compat_loop_info __user *arg)
1389{
1390 struct compat_loop_info info;
1391
1392 memset(&info, 0, sizeof(info));
1393 info.lo_number = info64->lo_number;
1394 info.lo_device = info64->lo_device;
1395 info.lo_inode = info64->lo_inode;
1396 info.lo_rdevice = info64->lo_rdevice;
1397 info.lo_offset = info64->lo_offset;
1398 info.lo_encrypt_type = info64->lo_encrypt_type;
1399 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1400 info.lo_flags = info64->lo_flags;
1401 info.lo_init[0] = info64->lo_init[0];
1402 info.lo_init[1] = info64->lo_init[1];
1403 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1404 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1405 else
1406 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1407 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1408
1409 /* error in case values were truncated */
1410 if (info.lo_device != info64->lo_device ||
1411 info.lo_rdevice != info64->lo_rdevice ||
1412 info.lo_inode != info64->lo_inode ||
1413 info.lo_offset != info64->lo_offset ||
1414 info.lo_init[0] != info64->lo_init[0] ||
1415 info.lo_init[1] != info64->lo_init[1])
1416 return -EOVERFLOW;
1417
1418 if (copy_to_user(arg, &info, sizeof(info)))
1419 return -EFAULT;
1420 return 0;
1421}
1422
1423static int
1424loop_set_status_compat(struct loop_device *lo,
1425 const struct compat_loop_info __user *arg)
1426{
1427 struct loop_info64 info64;
1428 int ret;
1429
1430 ret = loop_info64_from_compat(arg, &info64);
1431 if (ret < 0)
1432 return ret;
1433 return loop_set_status(lo, &info64);
1434}
1435
1436static int
1437loop_get_status_compat(struct loop_device *lo,
1438 struct compat_loop_info __user *arg)
1439{
1440 struct loop_info64 info64;
1441 int err = 0;
1442
1443 if (!arg)
1444 err = -EINVAL;
1445 if (!err)
1446 err = loop_get_status(lo, &info64);
1447 if (!err)
1448 err = loop_info64_to_compat(&info64, arg);
1449 return err;
1450}
1451
1452static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1453 unsigned int cmd, unsigned long arg)
1454{
1455 struct loop_device *lo = bdev->bd_disk->private_data;
1456 int err;
1457
1458 switch(cmd) {
1459 case LOOP_SET_STATUS:
1460 mutex_lock(&lo->lo_ctl_mutex);
1461 err = loop_set_status_compat(
1462 lo, (const struct compat_loop_info __user *) arg);
1463 mutex_unlock(&lo->lo_ctl_mutex);
1464 break;
1465 case LOOP_GET_STATUS:
1466 mutex_lock(&lo->lo_ctl_mutex);
1467 err = loop_get_status_compat(
1468 lo, (struct compat_loop_info __user *) arg);
1469 mutex_unlock(&lo->lo_ctl_mutex);
1470 break;
1471 case LOOP_SET_CAPACITY:
1472 case LOOP_CLR_FD:
1473 case LOOP_GET_STATUS64:
1474 case LOOP_SET_STATUS64:
1475 arg = (unsigned long) compat_ptr(arg);
1476 case LOOP_SET_FD:
1477 case LOOP_CHANGE_FD:
1478 err = lo_ioctl(bdev, mode, cmd, arg);
1479 break;
1480 default:
1481 err = -ENOIOCTLCMD;
1482 break;
1483 }
1484 return err;
1485}
1486#endif
1487
1488static int lo_open(struct block_device *bdev, fmode_t mode)
1489{
1490 struct loop_device *lo;
1491 int err = 0;
1492
1493 mutex_lock(&loop_index_mutex);
1494 lo = bdev->bd_disk->private_data;
1495 if (!lo) {
1496 err = -ENXIO;
1497 goto out;
1498 }
1499
1500 mutex_lock(&lo->lo_ctl_mutex);
1501 lo->lo_refcnt++;
1502 mutex_unlock(&lo->lo_ctl_mutex);
1503out:
1504 mutex_unlock(&loop_index_mutex);
1505 return err;
1506}
1507
1508static int lo_release(struct gendisk *disk, fmode_t mode)
1509{
1510 struct loop_device *lo = disk->private_data;
1511 int err;
1512
1513 mutex_lock(&lo->lo_ctl_mutex);
1514
1515 if (--lo->lo_refcnt)
1516 goto out;
1517
1518 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1519 /*
1520 * In autoclear mode, stop the loop thread
1521 * and remove configuration after last close.
1522 */
1523 err = loop_clr_fd(lo);
1524 if (!err)
1525 goto out_unlocked;
1526 } else {
1527 /*
1528 * Otherwise keep thread (if running) and config,
1529 * but flush possible ongoing bios in thread.
1530 */
1531 loop_flush(lo);
1532 }
1533
1534out:
1535 mutex_unlock(&lo->lo_ctl_mutex);
1536out_unlocked:
1537 return 0;
1538}
1539
1540static const struct block_device_operations lo_fops = {
1541 .owner = THIS_MODULE,
1542 .open = lo_open,
1543 .release = lo_release,
1544 .ioctl = lo_ioctl,
1545#ifdef CONFIG_COMPAT
1546 .compat_ioctl = lo_compat_ioctl,
1547#endif
1548};
1549
1550/*
1551 * And now the modules code and kernel interface.
1552 */
1553static int max_loop;
1554module_param(max_loop, int, S_IRUGO);
1555MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1556module_param(max_part, int, S_IRUGO);
1557MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1558MODULE_LICENSE("GPL");
1559MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1560
1561int loop_register_transfer(struct loop_func_table *funcs)
1562{
1563 unsigned int n = funcs->number;
1564
1565 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1566 return -EINVAL;
1567 xfer_funcs[n] = funcs;
1568 return 0;
1569}
1570
1571static int unregister_transfer_cb(int id, void *ptr, void *data)
1572{
1573 struct loop_device *lo = ptr;
1574 struct loop_func_table *xfer = data;
1575
1576 mutex_lock(&lo->lo_ctl_mutex);
1577 if (lo->lo_encryption == xfer)
1578 loop_release_xfer(lo);
1579 mutex_unlock(&lo->lo_ctl_mutex);
1580 return 0;
1581}
1582
1583int loop_unregister_transfer(int number)
1584{
1585 unsigned int n = number;
1586 struct loop_func_table *xfer;
1587
1588 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1589 return -EINVAL;
1590
1591 xfer_funcs[n] = NULL;
1592 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1593 return 0;
1594}
1595
1596EXPORT_SYMBOL(loop_register_transfer);
1597EXPORT_SYMBOL(loop_unregister_transfer);
1598
1599static int loop_add(struct loop_device **l, int i)
1600{
1601 struct loop_device *lo;
1602 struct gendisk *disk;
1603 int err;
1604
1605 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1606 if (!lo) {
1607 err = -ENOMEM;
1608 goto out;
1609 }
1610
1611 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1612 if (err < 0)
1613 goto out_free_dev;
1614
1615 if (i >= 0) {
1616 int m;
1617
1618 /* create specific i in the index */
1619 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1620 if (err >= 0 && i != m) {
1621 idr_remove(&loop_index_idr, m);
1622 err = -EEXIST;
1623 }
1624 } else if (i == -1) {
1625 int m;
1626
1627 /* get next free nr */
1628 err = idr_get_new(&loop_index_idr, lo, &m);
1629 if (err >= 0)
1630 i = m;
1631 } else {
1632 err = -EINVAL;
1633 }
1634 if (err < 0)
1635 goto out_free_dev;
1636
1637 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1638 if (!lo->lo_queue)
1639 goto out_free_idr;
1640
1641 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1642 if (!disk)
1643 goto out_free_queue;
1644
1645 /*
1646 * Disable partition scanning by default. The in-kernel partition
1647 * scanning can be requested individually per-device during its
1648 * setup. Userspace can always add and remove partitions from all
1649 * devices. The needed partition minors are allocated from the
1650 * extended minor space, the main loop device numbers will continue
1651 * to match the loop minors, regardless of the number of partitions
1652 * used.
1653 *
1654 * If max_part is given, partition scanning is globally enabled for
1655 * all loop devices. The minors for the main loop devices will be
1656 * multiples of max_part.
1657 *
1658 * Note: Global-for-all-devices, set-only-at-init, read-only module
1659 * parameteters like 'max_loop' and 'max_part' make things needlessly
1660 * complicated, are too static, inflexible and may surprise
1661 * userspace tools. Parameters like this in general should be avoided.
1662 */
1663 if (!part_shift)
1664 disk->flags |= GENHD_FL_NO_PART_SCAN;
1665 disk->flags |= GENHD_FL_EXT_DEVT;
1666 mutex_init(&lo->lo_ctl_mutex);
1667 lo->lo_number = i;
1668 lo->lo_thread = NULL;
1669 init_waitqueue_head(&lo->lo_event);
1670 spin_lock_init(&lo->lo_lock);
1671 disk->major = LOOP_MAJOR;
1672 disk->first_minor = i << part_shift;
1673 disk->fops = &lo_fops;
1674 disk->private_data = lo;
1675 disk->queue = lo->lo_queue;
1676 sprintf(disk->disk_name, "loop%d", i);
1677 add_disk(disk);
1678 *l = lo;
1679 return lo->lo_number;
1680
1681out_free_queue:
1682 blk_cleanup_queue(lo->lo_queue);
1683out_free_idr:
1684 idr_remove(&loop_index_idr, i);
1685out_free_dev:
1686 kfree(lo);
1687out:
1688 return err;
1689}
1690
1691static void loop_remove(struct loop_device *lo)
1692{
1693 del_gendisk(lo->lo_disk);
1694 blk_cleanup_queue(lo->lo_queue);
1695 put_disk(lo->lo_disk);
1696 kfree(lo);
1697}
1698
1699static int find_free_cb(int id, void *ptr, void *data)
1700{
1701 struct loop_device *lo = ptr;
1702 struct loop_device **l = data;
1703
1704 if (lo->lo_state == Lo_unbound) {
1705 *l = lo;
1706 return 1;
1707 }
1708 return 0;
1709}
1710
1711static int loop_lookup(struct loop_device **l, int i)
1712{
1713 struct loop_device *lo;
1714 int ret = -ENODEV;
1715
1716 if (i < 0) {
1717 int err;
1718
1719 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1720 if (err == 1) {
1721 *l = lo;
1722 ret = lo->lo_number;
1723 }
1724 goto out;
1725 }
1726
1727 /* lookup and return a specific i */
1728 lo = idr_find(&loop_index_idr, i);
1729 if (lo) {
1730 *l = lo;
1731 ret = lo->lo_number;
1732 }
1733out:
1734 return ret;
1735}
1736
1737static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1738{
1739 struct loop_device *lo;
1740 struct kobject *kobj;
1741 int err;
1742
1743 mutex_lock(&loop_index_mutex);
1744 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1745 if (err < 0)
1746 err = loop_add(&lo, MINOR(dev) >> part_shift);
1747 if (err < 0)
1748 kobj = NULL;
1749 else
1750 kobj = get_disk(lo->lo_disk);
1751 mutex_unlock(&loop_index_mutex);
1752
1753 *part = 0;
1754 return kobj;
1755}
1756
1757static long loop_control_ioctl(struct file *file, unsigned int cmd,
1758 unsigned long parm)
1759{
1760 struct loop_device *lo;
1761 int ret = -ENOSYS;
1762
1763 mutex_lock(&loop_index_mutex);
1764 switch (cmd) {
1765 case LOOP_CTL_ADD:
1766 ret = loop_lookup(&lo, parm);
1767 if (ret >= 0) {
1768 ret = -EEXIST;
1769 break;
1770 }
1771 ret = loop_add(&lo, parm);
1772 break;
1773 case LOOP_CTL_REMOVE:
1774 ret = loop_lookup(&lo, parm);
1775 if (ret < 0)
1776 break;
1777 mutex_lock(&lo->lo_ctl_mutex);
1778 if (lo->lo_state != Lo_unbound) {
1779 ret = -EBUSY;
1780 mutex_unlock(&lo->lo_ctl_mutex);
1781 break;
1782 }
1783 if (lo->lo_refcnt > 0) {
1784 ret = -EBUSY;
1785 mutex_unlock(&lo->lo_ctl_mutex);
1786 break;
1787 }
1788 lo->lo_disk->private_data = NULL;
1789 mutex_unlock(&lo->lo_ctl_mutex);
1790 idr_remove(&loop_index_idr, lo->lo_number);
1791 loop_remove(lo);
1792 break;
1793 case LOOP_CTL_GET_FREE:
1794 ret = loop_lookup(&lo, -1);
1795 if (ret >= 0)
1796 break;
1797 ret = loop_add(&lo, -1);
1798 }
1799 mutex_unlock(&loop_index_mutex);
1800
1801 return ret;
1802}
1803
1804static const struct file_operations loop_ctl_fops = {
1805 .open = nonseekable_open,
1806 .unlocked_ioctl = loop_control_ioctl,
1807 .compat_ioctl = loop_control_ioctl,
1808 .owner = THIS_MODULE,
1809 .llseek = noop_llseek,
1810};
1811
1812static struct miscdevice loop_misc = {
1813 .minor = LOOP_CTRL_MINOR,
1814 .name = "loop-control",
1815 .fops = &loop_ctl_fops,
1816};
1817
1818MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1819MODULE_ALIAS("devname:loop-control");
1820
1821static int __init loop_init(void)
1822{
1823 int i, nr;
1824 unsigned long range;
1825 struct loop_device *lo;
1826 int err;
1827
1828 err = misc_register(&loop_misc);
1829 if (err < 0)
1830 return err;
1831
1832 part_shift = 0;
1833 if (max_part > 0) {
1834 part_shift = fls(max_part);
1835
1836 /*
1837 * Adjust max_part according to part_shift as it is exported
1838 * to user space so that user can decide correct minor number
1839 * if [s]he want to create more devices.
1840 *
1841 * Note that -1 is required because partition 0 is reserved
1842 * for the whole disk.
1843 */
1844 max_part = (1UL << part_shift) - 1;
1845 }
1846
1847 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1848 err = -EINVAL;
1849 goto misc_out;
1850 }
1851
1852 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1853 err = -EINVAL;
1854 goto misc_out;
1855 }
1856
1857 /*
1858 * If max_loop is specified, create that many devices upfront.
1859 * This also becomes a hard limit. If max_loop is not specified,
1860 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861 * init time. Loop devices can be requested on-demand with the
1862 * /dev/loop-control interface, or be instantiated by accessing
1863 * a 'dead' device node.
1864 */
1865 if (max_loop) {
1866 nr = max_loop;
1867 range = max_loop << part_shift;
1868 } else {
1869 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870 range = 1UL << MINORBITS;
1871 }
1872
1873 if (register_blkdev(LOOP_MAJOR, "loop")) {
1874 err = -EIO;
1875 goto misc_out;
1876 }
1877
1878 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1879 THIS_MODULE, loop_probe, NULL, NULL);
1880
1881 /* pre-create number of devices given by config or max_loop */
1882 mutex_lock(&loop_index_mutex);
1883 for (i = 0; i < nr; i++)
1884 loop_add(&lo, i);
1885 mutex_unlock(&loop_index_mutex);
1886
1887 printk(KERN_INFO "loop: module loaded\n");
1888 return 0;
1889
1890misc_out:
1891 misc_deregister(&loop_misc);
1892 return err;
1893}
1894
1895static int loop_exit_cb(int id, void *ptr, void *data)
1896{
1897 struct loop_device *lo = ptr;
1898
1899 loop_remove(lo);
1900 return 0;
1901}
1902
1903static void __exit loop_exit(void)
1904{
1905 unsigned long range;
1906
1907 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1908
1909 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1910 idr_remove_all(&loop_index_idr);
1911 idr_destroy(&loop_index_idr);
1912
1913 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1914 unregister_blkdev(LOOP_MAJOR, "loop");
1915
1916 misc_deregister(&loop_misc);
1917}
1918
1919module_init(loop_init);
1920module_exit(loop_exit);
1921
1922#ifndef MODULE
1923static int __init max_loop_setup(char *str)
1924{
1925 max_loop = simple_strtol(str, NULL, 0);
1926 return 1;
1927}
1928
1929__setup("max_loop=", max_loop_setup);
1930#endif