lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * (c) 2003-2012 Advanced Micro Devices, Inc. |
| 3 | * Your use of this code is subject to the terms and conditions of the |
| 4 | * GNU general public license version 2. See "COPYING" or |
| 5 | * http://www.gnu.org/licenses/gpl.html |
| 6 | * |
| 7 | * Maintainer: |
| 8 | * Andreas Herrmann <andreas.herrmann3@amd.com> |
| 9 | * |
| 10 | * Based on the powernow-k7.c module written by Dave Jones. |
| 11 | * (C) 2003 Dave Jones on behalf of SuSE Labs |
| 12 | * (C) 2004 Dominik Brodowski <linux@brodo.de> |
| 13 | * (C) 2004 Pavel Machek <pavel@ucw.cz> |
| 14 | * Licensed under the terms of the GNU GPL License version 2. |
| 15 | * Based upon datasheets & sample CPUs kindly provided by AMD. |
| 16 | * |
| 17 | * Valuable input gratefully received from Dave Jones, Pavel Machek, |
| 18 | * Dominik Brodowski, Jacob Shin, and others. |
| 19 | * Originally developed by Paul Devriendt. |
| 20 | * |
| 21 | * Processor information obtained from Chapter 9 (Power and Thermal |
| 22 | * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for |
| 23 | * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x |
| 24 | * Power Management" in BKDGs for newer AMD CPU families. |
| 25 | * |
| 26 | * Tables for specific CPUs can be inferred from AMD's processor |
| 27 | * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) |
| 28 | */ |
| 29 | |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/smp.h> |
| 32 | #include <linux/module.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/cpufreq.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/string.h> |
| 37 | #include <linux/cpumask.h> |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/delay.h> |
| 40 | |
| 41 | #include <asm/msr.h> |
| 42 | #include <asm/cpu_device_id.h> |
| 43 | |
| 44 | #include <linux/acpi.h> |
| 45 | #include <linux/mutex.h> |
| 46 | #include <acpi/processor.h> |
| 47 | |
| 48 | #define PFX "powernow-k8: " |
| 49 | #define VERSION "version 2.20.00" |
| 50 | #include "powernow-k8.h" |
| 51 | #include "mperf.h" |
| 52 | |
| 53 | /* serialize freq changes */ |
| 54 | static DEFINE_MUTEX(fidvid_mutex); |
| 55 | |
| 56 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); |
| 57 | |
| 58 | static int cpu_family = CPU_OPTERON; |
| 59 | |
| 60 | /* array to map SW pstate number to acpi state */ |
| 61 | static u32 ps_to_as[8]; |
| 62 | |
| 63 | /* core performance boost */ |
| 64 | static bool cpb_capable, cpb_enabled; |
| 65 | static struct msr __percpu *msrs; |
| 66 | |
| 67 | static struct cpufreq_driver cpufreq_amd64_driver; |
| 68 | |
| 69 | #ifndef CONFIG_SMP |
| 70 | static inline const struct cpumask *cpu_core_mask(int cpu) |
| 71 | { |
| 72 | return cpumask_of(0); |
| 73 | } |
| 74 | #endif |
| 75 | |
| 76 | /* Return a frequency in MHz, given an input fid */ |
| 77 | static u32 find_freq_from_fid(u32 fid) |
| 78 | { |
| 79 | return 800 + (fid * 100); |
| 80 | } |
| 81 | |
| 82 | /* Return a frequency in KHz, given an input fid */ |
| 83 | static u32 find_khz_freq_from_fid(u32 fid) |
| 84 | { |
| 85 | return 1000 * find_freq_from_fid(fid); |
| 86 | } |
| 87 | |
| 88 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, |
| 89 | u32 pstate) |
| 90 | { |
| 91 | return data[ps_to_as[pstate]].frequency; |
| 92 | } |
| 93 | |
| 94 | /* Return the vco fid for an input fid |
| 95 | * |
| 96 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids |
| 97 | * only from corresponding high fids. This returns "high" fid corresponding to |
| 98 | * "low" one. |
| 99 | */ |
| 100 | static u32 convert_fid_to_vco_fid(u32 fid) |
| 101 | { |
| 102 | if (fid < HI_FID_TABLE_BOTTOM) |
| 103 | return 8 + (2 * fid); |
| 104 | else |
| 105 | return fid; |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Return 1 if the pending bit is set. Unless we just instructed the processor |
| 110 | * to transition to a new state, seeing this bit set is really bad news. |
| 111 | */ |
| 112 | static int pending_bit_stuck(void) |
| 113 | { |
| 114 | u32 lo, hi; |
| 115 | |
| 116 | if (cpu_family == CPU_HW_PSTATE) |
| 117 | return 0; |
| 118 | |
| 119 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| 120 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * Update the global current fid / vid values from the status msr. |
| 125 | * Returns 1 on error. |
| 126 | */ |
| 127 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) |
| 128 | { |
| 129 | u32 lo, hi; |
| 130 | u32 i = 0; |
| 131 | |
| 132 | if (cpu_family == CPU_HW_PSTATE) { |
| 133 | rdmsr(MSR_PSTATE_STATUS, lo, hi); |
| 134 | i = lo & HW_PSTATE_MASK; |
| 135 | data->currpstate = i; |
| 136 | |
| 137 | /* |
| 138 | * a workaround for family 11h erratum 311 might cause |
| 139 | * an "out-of-range Pstate if the core is in Pstate-0 |
| 140 | */ |
| 141 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) |
| 142 | data->currpstate = HW_PSTATE_0; |
| 143 | |
| 144 | return 0; |
| 145 | } |
| 146 | do { |
| 147 | if (i++ > 10000) { |
| 148 | pr_debug("detected change pending stuck\n"); |
| 149 | return 1; |
| 150 | } |
| 151 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| 152 | } while (lo & MSR_S_LO_CHANGE_PENDING); |
| 153 | |
| 154 | data->currvid = hi & MSR_S_HI_CURRENT_VID; |
| 155 | data->currfid = lo & MSR_S_LO_CURRENT_FID; |
| 156 | |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | /* the isochronous relief time */ |
| 161 | static void count_off_irt(struct powernow_k8_data *data) |
| 162 | { |
| 163 | udelay((1 << data->irt) * 10); |
| 164 | return; |
| 165 | } |
| 166 | |
| 167 | /* the voltage stabilization time */ |
| 168 | static void count_off_vst(struct powernow_k8_data *data) |
| 169 | { |
| 170 | udelay(data->vstable * VST_UNITS_20US); |
| 171 | return; |
| 172 | } |
| 173 | |
| 174 | /* need to init the control msr to a safe value (for each cpu) */ |
| 175 | static void fidvid_msr_init(void) |
| 176 | { |
| 177 | u32 lo, hi; |
| 178 | u8 fid, vid; |
| 179 | |
| 180 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| 181 | vid = hi & MSR_S_HI_CURRENT_VID; |
| 182 | fid = lo & MSR_S_LO_CURRENT_FID; |
| 183 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); |
| 184 | hi = MSR_C_HI_STP_GNT_BENIGN; |
| 185 | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); |
| 186 | wrmsr(MSR_FIDVID_CTL, lo, hi); |
| 187 | } |
| 188 | |
| 189 | /* write the new fid value along with the other control fields to the msr */ |
| 190 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) |
| 191 | { |
| 192 | u32 lo; |
| 193 | u32 savevid = data->currvid; |
| 194 | u32 i = 0; |
| 195 | |
| 196 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { |
| 197 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); |
| 198 | return 1; |
| 199 | } |
| 200 | |
| 201 | lo = fid; |
| 202 | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); |
| 203 | lo |= MSR_C_LO_INIT_FID_VID; |
| 204 | |
| 205 | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", |
| 206 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); |
| 207 | |
| 208 | do { |
| 209 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); |
| 210 | if (i++ > 100) { |
| 211 | printk(KERN_ERR PFX |
| 212 | "Hardware error - pending bit very stuck - " |
| 213 | "no further pstate changes possible\n"); |
| 214 | return 1; |
| 215 | } |
| 216 | } while (query_current_values_with_pending_wait(data)); |
| 217 | |
| 218 | count_off_irt(data); |
| 219 | |
| 220 | if (savevid != data->currvid) { |
| 221 | printk(KERN_ERR PFX |
| 222 | "vid change on fid trans, old 0x%x, new 0x%x\n", |
| 223 | savevid, data->currvid); |
| 224 | return 1; |
| 225 | } |
| 226 | |
| 227 | if (fid != data->currfid) { |
| 228 | printk(KERN_ERR PFX |
| 229 | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, |
| 230 | data->currfid); |
| 231 | return 1; |
| 232 | } |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | /* Write a new vid to the hardware */ |
| 238 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) |
| 239 | { |
| 240 | u32 lo; |
| 241 | u32 savefid = data->currfid; |
| 242 | int i = 0; |
| 243 | |
| 244 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { |
| 245 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); |
| 246 | return 1; |
| 247 | } |
| 248 | |
| 249 | lo = data->currfid; |
| 250 | lo |= (vid << MSR_C_LO_VID_SHIFT); |
| 251 | lo |= MSR_C_LO_INIT_FID_VID; |
| 252 | |
| 253 | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", |
| 254 | vid, lo, STOP_GRANT_5NS); |
| 255 | |
| 256 | do { |
| 257 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); |
| 258 | if (i++ > 100) { |
| 259 | printk(KERN_ERR PFX "internal error - pending bit " |
| 260 | "very stuck - no further pstate " |
| 261 | "changes possible\n"); |
| 262 | return 1; |
| 263 | } |
| 264 | } while (query_current_values_with_pending_wait(data)); |
| 265 | |
| 266 | if (savefid != data->currfid) { |
| 267 | printk(KERN_ERR PFX "fid changed on vid trans, old " |
| 268 | "0x%x new 0x%x\n", |
| 269 | savefid, data->currfid); |
| 270 | return 1; |
| 271 | } |
| 272 | |
| 273 | if (vid != data->currvid) { |
| 274 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " |
| 275 | "curr 0x%x\n", |
| 276 | vid, data->currvid); |
| 277 | return 1; |
| 278 | } |
| 279 | |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Reduce the vid by the max of step or reqvid. |
| 285 | * Decreasing vid codes represent increasing voltages: |
| 286 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. |
| 287 | */ |
| 288 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, |
| 289 | u32 reqvid, u32 step) |
| 290 | { |
| 291 | if ((data->currvid - reqvid) > step) |
| 292 | reqvid = data->currvid - step; |
| 293 | |
| 294 | if (write_new_vid(data, reqvid)) |
| 295 | return 1; |
| 296 | |
| 297 | count_off_vst(data); |
| 298 | |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | /* Change hardware pstate by single MSR write */ |
| 303 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) |
| 304 | { |
| 305 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); |
| 306 | data->currpstate = pstate; |
| 307 | return 0; |
| 308 | } |
| 309 | |
| 310 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ |
| 311 | static int transition_fid_vid(struct powernow_k8_data *data, |
| 312 | u32 reqfid, u32 reqvid) |
| 313 | { |
| 314 | if (core_voltage_pre_transition(data, reqvid, reqfid)) |
| 315 | return 1; |
| 316 | |
| 317 | if (core_frequency_transition(data, reqfid)) |
| 318 | return 1; |
| 319 | |
| 320 | if (core_voltage_post_transition(data, reqvid)) |
| 321 | return 1; |
| 322 | |
| 323 | if (query_current_values_with_pending_wait(data)) |
| 324 | return 1; |
| 325 | |
| 326 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { |
| 327 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " |
| 328 | "curr 0x%x 0x%x\n", |
| 329 | smp_processor_id(), |
| 330 | reqfid, reqvid, data->currfid, data->currvid); |
| 331 | return 1; |
| 332 | } |
| 333 | |
| 334 | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", |
| 335 | smp_processor_id(), data->currfid, data->currvid); |
| 336 | |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | /* Phase 1 - core voltage transition ... setup voltage */ |
| 341 | static int core_voltage_pre_transition(struct powernow_k8_data *data, |
| 342 | u32 reqvid, u32 reqfid) |
| 343 | { |
| 344 | u32 rvosteps = data->rvo; |
| 345 | u32 savefid = data->currfid; |
| 346 | u32 maxvid, lo, rvomult = 1; |
| 347 | |
| 348 | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " |
| 349 | "reqvid 0x%x, rvo 0x%x\n", |
| 350 | smp_processor_id(), |
| 351 | data->currfid, data->currvid, reqvid, data->rvo); |
| 352 | |
| 353 | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) |
| 354 | rvomult = 2; |
| 355 | rvosteps *= rvomult; |
| 356 | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); |
| 357 | maxvid = 0x1f & (maxvid >> 16); |
| 358 | pr_debug("ph1 maxvid=0x%x\n", maxvid); |
| 359 | if (reqvid < maxvid) /* lower numbers are higher voltages */ |
| 360 | reqvid = maxvid; |
| 361 | |
| 362 | while (data->currvid > reqvid) { |
| 363 | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", |
| 364 | data->currvid, reqvid); |
| 365 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) |
| 366 | return 1; |
| 367 | } |
| 368 | |
| 369 | while ((rvosteps > 0) && |
| 370 | ((rvomult * data->rvo + data->currvid) > reqvid)) { |
| 371 | if (data->currvid == maxvid) { |
| 372 | rvosteps = 0; |
| 373 | } else { |
| 374 | pr_debug("ph1: changing vid for rvo, req 0x%x\n", |
| 375 | data->currvid - 1); |
| 376 | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) |
| 377 | return 1; |
| 378 | rvosteps--; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (query_current_values_with_pending_wait(data)) |
| 383 | return 1; |
| 384 | |
| 385 | if (savefid != data->currfid) { |
| 386 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", |
| 387 | data->currfid); |
| 388 | return 1; |
| 389 | } |
| 390 | |
| 391 | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", |
| 392 | data->currfid, data->currvid); |
| 393 | |
| 394 | return 0; |
| 395 | } |
| 396 | |
| 397 | /* Phase 2 - core frequency transition */ |
| 398 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) |
| 399 | { |
| 400 | u32 vcoreqfid, vcocurrfid, vcofiddiff; |
| 401 | u32 fid_interval, savevid = data->currvid; |
| 402 | |
| 403 | if (data->currfid == reqfid) { |
| 404 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", |
| 405 | data->currfid); |
| 406 | return 0; |
| 407 | } |
| 408 | |
| 409 | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " |
| 410 | "reqfid 0x%x\n", |
| 411 | smp_processor_id(), |
| 412 | data->currfid, data->currvid, reqfid); |
| 413 | |
| 414 | vcoreqfid = convert_fid_to_vco_fid(reqfid); |
| 415 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| 416 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| 417 | : vcoreqfid - vcocurrfid; |
| 418 | |
| 419 | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) |
| 420 | vcofiddiff = 0; |
| 421 | |
| 422 | while (vcofiddiff > 2) { |
| 423 | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); |
| 424 | |
| 425 | if (reqfid > data->currfid) { |
| 426 | if (data->currfid > LO_FID_TABLE_TOP) { |
| 427 | if (write_new_fid(data, |
| 428 | data->currfid + fid_interval)) |
| 429 | return 1; |
| 430 | } else { |
| 431 | if (write_new_fid |
| 432 | (data, |
| 433 | 2 + convert_fid_to_vco_fid(data->currfid))) |
| 434 | return 1; |
| 435 | } |
| 436 | } else { |
| 437 | if (write_new_fid(data, data->currfid - fid_interval)) |
| 438 | return 1; |
| 439 | } |
| 440 | |
| 441 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| 442 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| 443 | : vcoreqfid - vcocurrfid; |
| 444 | } |
| 445 | |
| 446 | if (write_new_fid(data, reqfid)) |
| 447 | return 1; |
| 448 | |
| 449 | if (query_current_values_with_pending_wait(data)) |
| 450 | return 1; |
| 451 | |
| 452 | if (data->currfid != reqfid) { |
| 453 | printk(KERN_ERR PFX |
| 454 | "ph2: mismatch, failed fid transition, " |
| 455 | "curr 0x%x, req 0x%x\n", |
| 456 | data->currfid, reqfid); |
| 457 | return 1; |
| 458 | } |
| 459 | |
| 460 | if (savevid != data->currvid) { |
| 461 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", |
| 462 | savevid, data->currvid); |
| 463 | return 1; |
| 464 | } |
| 465 | |
| 466 | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", |
| 467 | data->currfid, data->currvid); |
| 468 | |
| 469 | return 0; |
| 470 | } |
| 471 | |
| 472 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ |
| 473 | static int core_voltage_post_transition(struct powernow_k8_data *data, |
| 474 | u32 reqvid) |
| 475 | { |
| 476 | u32 savefid = data->currfid; |
| 477 | u32 savereqvid = reqvid; |
| 478 | |
| 479 | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", |
| 480 | smp_processor_id(), |
| 481 | data->currfid, data->currvid); |
| 482 | |
| 483 | if (reqvid != data->currvid) { |
| 484 | if (write_new_vid(data, reqvid)) |
| 485 | return 1; |
| 486 | |
| 487 | if (savefid != data->currfid) { |
| 488 | printk(KERN_ERR PFX |
| 489 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", |
| 490 | savefid, data->currfid); |
| 491 | return 1; |
| 492 | } |
| 493 | |
| 494 | if (data->currvid != reqvid) { |
| 495 | printk(KERN_ERR PFX |
| 496 | "ph3: failed vid transition\n, " |
| 497 | "req 0x%x, curr 0x%x", |
| 498 | reqvid, data->currvid); |
| 499 | return 1; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | if (query_current_values_with_pending_wait(data)) |
| 504 | return 1; |
| 505 | |
| 506 | if (savereqvid != data->currvid) { |
| 507 | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); |
| 508 | return 1; |
| 509 | } |
| 510 | |
| 511 | if (savefid != data->currfid) { |
| 512 | pr_debug("ph3 failed, currfid changed 0x%x\n", |
| 513 | data->currfid); |
| 514 | return 1; |
| 515 | } |
| 516 | |
| 517 | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", |
| 518 | data->currfid, data->currvid); |
| 519 | |
| 520 | return 0; |
| 521 | } |
| 522 | |
| 523 | static const struct x86_cpu_id powernow_k8_ids[] = { |
| 524 | /* IO based frequency switching */ |
| 525 | { X86_VENDOR_AMD, 0xf }, |
| 526 | /* MSR based frequency switching supported */ |
| 527 | X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), |
| 528 | {} |
| 529 | }; |
| 530 | MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); |
| 531 | |
| 532 | static void check_supported_cpu(void *_rc) |
| 533 | { |
| 534 | u32 eax, ebx, ecx, edx; |
| 535 | int *rc = _rc; |
| 536 | |
| 537 | *rc = -ENODEV; |
| 538 | |
| 539 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| 540 | |
| 541 | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { |
| 542 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || |
| 543 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { |
| 544 | printk(KERN_INFO PFX |
| 545 | "Processor cpuid %x not supported\n", eax); |
| 546 | return; |
| 547 | } |
| 548 | |
| 549 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); |
| 550 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { |
| 551 | printk(KERN_INFO PFX |
| 552 | "No frequency change capabilities detected\n"); |
| 553 | return; |
| 554 | } |
| 555 | |
| 556 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
| 557 | if ((edx & P_STATE_TRANSITION_CAPABLE) |
| 558 | != P_STATE_TRANSITION_CAPABLE) { |
| 559 | printk(KERN_INFO PFX |
| 560 | "Power state transitions not supported\n"); |
| 561 | return; |
| 562 | } |
| 563 | } else { /* must be a HW Pstate capable processor */ |
| 564 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
| 565 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) |
| 566 | cpu_family = CPU_HW_PSTATE; |
| 567 | else |
| 568 | return; |
| 569 | } |
| 570 | |
| 571 | *rc = 0; |
| 572 | } |
| 573 | |
| 574 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, |
| 575 | u8 maxvid) |
| 576 | { |
| 577 | unsigned int j; |
| 578 | u8 lastfid = 0xff; |
| 579 | |
| 580 | for (j = 0; j < data->numps; j++) { |
| 581 | if (pst[j].vid > LEAST_VID) { |
| 582 | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", |
| 583 | j, pst[j].vid); |
| 584 | return -EINVAL; |
| 585 | } |
| 586 | if (pst[j].vid < data->rvo) { |
| 587 | /* vid + rvo >= 0 */ |
| 588 | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" |
| 589 | " %d\n", j); |
| 590 | return -ENODEV; |
| 591 | } |
| 592 | if (pst[j].vid < maxvid + data->rvo) { |
| 593 | /* vid + rvo >= maxvid */ |
| 594 | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" |
| 595 | " %d\n", j); |
| 596 | return -ENODEV; |
| 597 | } |
| 598 | if (pst[j].fid > MAX_FID) { |
| 599 | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" |
| 600 | " %d\n", j); |
| 601 | return -ENODEV; |
| 602 | } |
| 603 | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { |
| 604 | /* Only first fid is allowed to be in "low" range */ |
| 605 | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " |
| 606 | "0x%x\n", j, pst[j].fid); |
| 607 | return -EINVAL; |
| 608 | } |
| 609 | if (pst[j].fid < lastfid) |
| 610 | lastfid = pst[j].fid; |
| 611 | } |
| 612 | if (lastfid & 1) { |
| 613 | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); |
| 614 | return -EINVAL; |
| 615 | } |
| 616 | if (lastfid > LO_FID_TABLE_TOP) |
| 617 | printk(KERN_INFO FW_BUG PFX |
| 618 | "first fid not from lo freq table\n"); |
| 619 | |
| 620 | return 0; |
| 621 | } |
| 622 | |
| 623 | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, |
| 624 | unsigned int entry) |
| 625 | { |
| 626 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; |
| 627 | } |
| 628 | |
| 629 | static void print_basics(struct powernow_k8_data *data) |
| 630 | { |
| 631 | int j; |
| 632 | for (j = 0; j < data->numps; j++) { |
| 633 | if (data->powernow_table[j].frequency != |
| 634 | CPUFREQ_ENTRY_INVALID) { |
| 635 | if (cpu_family == CPU_HW_PSTATE) { |
| 636 | printk(KERN_INFO PFX |
| 637 | " %d : pstate %d (%d MHz)\n", j, |
| 638 | data->powernow_table[j].index, |
| 639 | data->powernow_table[j].frequency/1000); |
| 640 | } else { |
| 641 | printk(KERN_INFO PFX |
| 642 | "fid 0x%x (%d MHz), vid 0x%x\n", |
| 643 | data->powernow_table[j].index & 0xff, |
| 644 | data->powernow_table[j].frequency/1000, |
| 645 | data->powernow_table[j].index >> 8); |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | if (data->batps) |
| 650 | printk(KERN_INFO PFX "Only %d pstates on battery\n", |
| 651 | data->batps); |
| 652 | } |
| 653 | |
| 654 | static u32 freq_from_fid_did(u32 fid, u32 did) |
| 655 | { |
| 656 | u32 mhz = 0; |
| 657 | |
| 658 | if (boot_cpu_data.x86 == 0x10) |
| 659 | mhz = (100 * (fid + 0x10)) >> did; |
| 660 | else if (boot_cpu_data.x86 == 0x11) |
| 661 | mhz = (100 * (fid + 8)) >> did; |
| 662 | else |
| 663 | BUG(); |
| 664 | |
| 665 | return mhz * 1000; |
| 666 | } |
| 667 | |
| 668 | static int fill_powernow_table(struct powernow_k8_data *data, |
| 669 | struct pst_s *pst, u8 maxvid) |
| 670 | { |
| 671 | struct cpufreq_frequency_table *powernow_table; |
| 672 | unsigned int j; |
| 673 | |
| 674 | if (data->batps) { |
| 675 | /* use ACPI support to get full speed on mains power */ |
| 676 | printk(KERN_WARNING PFX |
| 677 | "Only %d pstates usable (use ACPI driver for full " |
| 678 | "range\n", data->batps); |
| 679 | data->numps = data->batps; |
| 680 | } |
| 681 | |
| 682 | for (j = 1; j < data->numps; j++) { |
| 683 | if (pst[j-1].fid >= pst[j].fid) { |
| 684 | printk(KERN_ERR PFX "PST out of sequence\n"); |
| 685 | return -EINVAL; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | if (data->numps < 2) { |
| 690 | printk(KERN_ERR PFX "no p states to transition\n"); |
| 691 | return -ENODEV; |
| 692 | } |
| 693 | |
| 694 | if (check_pst_table(data, pst, maxvid)) |
| 695 | return -EINVAL; |
| 696 | |
| 697 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| 698 | * (data->numps + 1)), GFP_KERNEL); |
| 699 | if (!powernow_table) { |
| 700 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); |
| 701 | return -ENOMEM; |
| 702 | } |
| 703 | |
| 704 | for (j = 0; j < data->numps; j++) { |
| 705 | int freq; |
| 706 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ |
| 707 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ |
| 708 | freq = find_khz_freq_from_fid(pst[j].fid); |
| 709 | powernow_table[j].frequency = freq; |
| 710 | } |
| 711 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; |
| 712 | powernow_table[data->numps].index = 0; |
| 713 | |
| 714 | if (query_current_values_with_pending_wait(data)) { |
| 715 | kfree(powernow_table); |
| 716 | return -EIO; |
| 717 | } |
| 718 | |
| 719 | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); |
| 720 | data->powernow_table = powernow_table; |
| 721 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
| 722 | print_basics(data); |
| 723 | |
| 724 | for (j = 0; j < data->numps; j++) |
| 725 | if ((pst[j].fid == data->currfid) && |
| 726 | (pst[j].vid == data->currvid)) |
| 727 | return 0; |
| 728 | |
| 729 | pr_debug("currfid/vid do not match PST, ignoring\n"); |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | /* Find and validate the PSB/PST table in BIOS. */ |
| 734 | static int find_psb_table(struct powernow_k8_data *data) |
| 735 | { |
| 736 | struct psb_s *psb; |
| 737 | unsigned int i; |
| 738 | u32 mvs; |
| 739 | u8 maxvid; |
| 740 | u32 cpst = 0; |
| 741 | u32 thiscpuid; |
| 742 | |
| 743 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { |
| 744 | /* Scan BIOS looking for the signature. */ |
| 745 | /* It can not be at ffff0 - it is too big. */ |
| 746 | |
| 747 | psb = phys_to_virt(i); |
| 748 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) |
| 749 | continue; |
| 750 | |
| 751 | pr_debug("found PSB header at 0x%p\n", psb); |
| 752 | |
| 753 | pr_debug("table vers: 0x%x\n", psb->tableversion); |
| 754 | if (psb->tableversion != PSB_VERSION_1_4) { |
| 755 | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); |
| 756 | return -ENODEV; |
| 757 | } |
| 758 | |
| 759 | pr_debug("flags: 0x%x\n", psb->flags1); |
| 760 | if (psb->flags1) { |
| 761 | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); |
| 762 | return -ENODEV; |
| 763 | } |
| 764 | |
| 765 | data->vstable = psb->vstable; |
| 766 | pr_debug("voltage stabilization time: %d(*20us)\n", |
| 767 | data->vstable); |
| 768 | |
| 769 | pr_debug("flags2: 0x%x\n", psb->flags2); |
| 770 | data->rvo = psb->flags2 & 3; |
| 771 | data->irt = ((psb->flags2) >> 2) & 3; |
| 772 | mvs = ((psb->flags2) >> 4) & 3; |
| 773 | data->vidmvs = 1 << mvs; |
| 774 | data->batps = ((psb->flags2) >> 6) & 3; |
| 775 | |
| 776 | pr_debug("ramp voltage offset: %d\n", data->rvo); |
| 777 | pr_debug("isochronous relief time: %d\n", data->irt); |
| 778 | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); |
| 779 | |
| 780 | pr_debug("numpst: 0x%x\n", psb->num_tables); |
| 781 | cpst = psb->num_tables; |
| 782 | if ((psb->cpuid == 0x00000fc0) || |
| 783 | (psb->cpuid == 0x00000fe0)) { |
| 784 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| 785 | if ((thiscpuid == 0x00000fc0) || |
| 786 | (thiscpuid == 0x00000fe0)) |
| 787 | cpst = 1; |
| 788 | } |
| 789 | if (cpst != 1) { |
| 790 | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); |
| 791 | return -ENODEV; |
| 792 | } |
| 793 | |
| 794 | data->plllock = psb->plllocktime; |
| 795 | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); |
| 796 | pr_debug("maxfid: 0x%x\n", psb->maxfid); |
| 797 | pr_debug("maxvid: 0x%x\n", psb->maxvid); |
| 798 | maxvid = psb->maxvid; |
| 799 | |
| 800 | data->numps = psb->numps; |
| 801 | pr_debug("numpstates: 0x%x\n", data->numps); |
| 802 | return fill_powernow_table(data, |
| 803 | (struct pst_s *)(psb+1), maxvid); |
| 804 | } |
| 805 | /* |
| 806 | * If you see this message, complain to BIOS manufacturer. If |
| 807 | * he tells you "we do not support Linux" or some similar |
| 808 | * nonsense, remember that Windows 2000 uses the same legacy |
| 809 | * mechanism that the old Linux PSB driver uses. Tell them it |
| 810 | * is broken with Windows 2000. |
| 811 | * |
| 812 | * The reference to the AMD documentation is chapter 9 in the |
| 813 | * BIOS and Kernel Developer's Guide, which is available on |
| 814 | * www.amd.com |
| 815 | */ |
| 816 | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); |
| 817 | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" |
| 818 | " and Cool'N'Quiet support is enabled in BIOS setup\n"); |
| 819 | return -ENODEV; |
| 820 | } |
| 821 | |
| 822 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, |
| 823 | unsigned int index) |
| 824 | { |
| 825 | u64 control; |
| 826 | |
| 827 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) |
| 828 | return; |
| 829 | |
| 830 | control = data->acpi_data.states[index].control; |
| 831 | data->irt = (control >> IRT_SHIFT) & IRT_MASK; |
| 832 | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; |
| 833 | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; |
| 834 | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; |
| 835 | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); |
| 836 | data->vstable = (control >> VST_SHIFT) & VST_MASK; |
| 837 | } |
| 838 | |
| 839 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) |
| 840 | { |
| 841 | struct cpufreq_frequency_table *powernow_table; |
| 842 | int ret_val = -ENODEV; |
| 843 | u64 control, status; |
| 844 | |
| 845 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { |
| 846 | pr_debug("register performance failed: bad ACPI data\n"); |
| 847 | return -EIO; |
| 848 | } |
| 849 | |
| 850 | /* verify the data contained in the ACPI structures */ |
| 851 | if (data->acpi_data.state_count <= 1) { |
| 852 | pr_debug("No ACPI P-States\n"); |
| 853 | goto err_out; |
| 854 | } |
| 855 | |
| 856 | control = data->acpi_data.control_register.space_id; |
| 857 | status = data->acpi_data.status_register.space_id; |
| 858 | |
| 859 | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || |
| 860 | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { |
| 861 | pr_debug("Invalid control/status registers (%llx - %llx)\n", |
| 862 | control, status); |
| 863 | goto err_out; |
| 864 | } |
| 865 | |
| 866 | /* fill in data->powernow_table */ |
| 867 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| 868 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); |
| 869 | if (!powernow_table) { |
| 870 | pr_debug("powernow_table memory alloc failure\n"); |
| 871 | goto err_out; |
| 872 | } |
| 873 | |
| 874 | /* fill in data */ |
| 875 | data->numps = data->acpi_data.state_count; |
| 876 | powernow_k8_acpi_pst_values(data, 0); |
| 877 | |
| 878 | if (cpu_family == CPU_HW_PSTATE) |
| 879 | ret_val = fill_powernow_table_pstate(data, powernow_table); |
| 880 | else |
| 881 | ret_val = fill_powernow_table_fidvid(data, powernow_table); |
| 882 | if (ret_val) |
| 883 | goto err_out_mem; |
| 884 | |
| 885 | powernow_table[data->acpi_data.state_count].frequency = |
| 886 | CPUFREQ_TABLE_END; |
| 887 | powernow_table[data->acpi_data.state_count].index = 0; |
| 888 | data->powernow_table = powernow_table; |
| 889 | |
| 890 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
| 891 | print_basics(data); |
| 892 | |
| 893 | /* notify BIOS that we exist */ |
| 894 | acpi_processor_notify_smm(THIS_MODULE); |
| 895 | |
| 896 | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { |
| 897 | printk(KERN_ERR PFX |
| 898 | "unable to alloc powernow_k8_data cpumask\n"); |
| 899 | ret_val = -ENOMEM; |
| 900 | goto err_out_mem; |
| 901 | } |
| 902 | |
| 903 | return 0; |
| 904 | |
| 905 | err_out_mem: |
| 906 | kfree(powernow_table); |
| 907 | |
| 908 | err_out: |
| 909 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
| 910 | |
| 911 | /* data->acpi_data.state_count informs us at ->exit() |
| 912 | * whether ACPI was used */ |
| 913 | data->acpi_data.state_count = 0; |
| 914 | |
| 915 | return ret_val; |
| 916 | } |
| 917 | |
| 918 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, |
| 919 | struct cpufreq_frequency_table *powernow_table) |
| 920 | { |
| 921 | int i; |
| 922 | u32 hi = 0, lo = 0; |
| 923 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); |
| 924 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; |
| 925 | |
| 926 | for (i = 0; i < data->acpi_data.state_count; i++) { |
| 927 | u32 index; |
| 928 | |
| 929 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; |
| 930 | if (index > data->max_hw_pstate) { |
| 931 | printk(KERN_ERR PFX "invalid pstate %d - " |
| 932 | "bad value %d.\n", i, index); |
| 933 | printk(KERN_ERR PFX "Please report to BIOS " |
| 934 | "manufacturer\n"); |
| 935 | invalidate_entry(powernow_table, i); |
| 936 | continue; |
| 937 | } |
| 938 | |
| 939 | ps_to_as[index] = i; |
| 940 | |
| 941 | /* Frequency may be rounded for these */ |
| 942 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) |
| 943 | || boot_cpu_data.x86 == 0x11) { |
| 944 | |
| 945 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); |
| 946 | if (!(hi & HW_PSTATE_VALID_MASK)) { |
| 947 | pr_debug("invalid pstate %d, ignoring\n", index); |
| 948 | invalidate_entry(powernow_table, i); |
| 949 | continue; |
| 950 | } |
| 951 | |
| 952 | powernow_table[i].frequency = |
| 953 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); |
| 954 | } else |
| 955 | powernow_table[i].frequency = |
| 956 | data->acpi_data.states[i].core_frequency * 1000; |
| 957 | |
| 958 | powernow_table[i].index = index; |
| 959 | } |
| 960 | return 0; |
| 961 | } |
| 962 | |
| 963 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, |
| 964 | struct cpufreq_frequency_table *powernow_table) |
| 965 | { |
| 966 | int i; |
| 967 | |
| 968 | for (i = 0; i < data->acpi_data.state_count; i++) { |
| 969 | u32 fid; |
| 970 | u32 vid; |
| 971 | u32 freq, index; |
| 972 | u64 status, control; |
| 973 | |
| 974 | if (data->exttype) { |
| 975 | status = data->acpi_data.states[i].status; |
| 976 | fid = status & EXT_FID_MASK; |
| 977 | vid = (status >> VID_SHIFT) & EXT_VID_MASK; |
| 978 | } else { |
| 979 | control = data->acpi_data.states[i].control; |
| 980 | fid = control & FID_MASK; |
| 981 | vid = (control >> VID_SHIFT) & VID_MASK; |
| 982 | } |
| 983 | |
| 984 | pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); |
| 985 | |
| 986 | index = fid | (vid<<8); |
| 987 | powernow_table[i].index = index; |
| 988 | |
| 989 | freq = find_khz_freq_from_fid(fid); |
| 990 | powernow_table[i].frequency = freq; |
| 991 | |
| 992 | /* verify frequency is OK */ |
| 993 | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { |
| 994 | pr_debug("invalid freq %u kHz, ignoring\n", freq); |
| 995 | invalidate_entry(powernow_table, i); |
| 996 | continue; |
| 997 | } |
| 998 | |
| 999 | /* verify voltage is OK - |
| 1000 | * BIOSs are using "off" to indicate invalid */ |
| 1001 | if (vid == VID_OFF) { |
| 1002 | pr_debug("invalid vid %u, ignoring\n", vid); |
| 1003 | invalidate_entry(powernow_table, i); |
| 1004 | continue; |
| 1005 | } |
| 1006 | |
| 1007 | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { |
| 1008 | printk(KERN_INFO PFX "invalid freq entries " |
| 1009 | "%u kHz vs. %u kHz\n", freq, |
| 1010 | (unsigned int) |
| 1011 | (data->acpi_data.states[i].core_frequency |
| 1012 | * 1000)); |
| 1013 | invalidate_entry(powernow_table, i); |
| 1014 | continue; |
| 1015 | } |
| 1016 | } |
| 1017 | return 0; |
| 1018 | } |
| 1019 | |
| 1020 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) |
| 1021 | { |
| 1022 | if (data->acpi_data.state_count) |
| 1023 | acpi_processor_unregister_performance(&data->acpi_data, |
| 1024 | data->cpu); |
| 1025 | free_cpumask_var(data->acpi_data.shared_cpu_map); |
| 1026 | } |
| 1027 | |
| 1028 | static int get_transition_latency(struct powernow_k8_data *data) |
| 1029 | { |
| 1030 | int max_latency = 0; |
| 1031 | int i; |
| 1032 | for (i = 0; i < data->acpi_data.state_count; i++) { |
| 1033 | int cur_latency = data->acpi_data.states[i].transition_latency |
| 1034 | + data->acpi_data.states[i].bus_master_latency; |
| 1035 | if (cur_latency > max_latency) |
| 1036 | max_latency = cur_latency; |
| 1037 | } |
| 1038 | if (max_latency == 0) { |
| 1039 | /* |
| 1040 | * Fam 11h and later may return 0 as transition latency. This |
| 1041 | * is intended and means "very fast". While cpufreq core and |
| 1042 | * governors currently can handle that gracefully, better set it |
| 1043 | * to 1 to avoid problems in the future. |
| 1044 | */ |
| 1045 | if (boot_cpu_data.x86 < 0x11) |
| 1046 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " |
| 1047 | "latency\n"); |
| 1048 | max_latency = 1; |
| 1049 | } |
| 1050 | /* value in usecs, needs to be in nanoseconds */ |
| 1051 | return 1000 * max_latency; |
| 1052 | } |
| 1053 | |
| 1054 | /* Take a frequency, and issue the fid/vid transition command */ |
| 1055 | static int transition_frequency_fidvid(struct powernow_k8_data *data, |
| 1056 | unsigned int index) |
| 1057 | { |
| 1058 | u32 fid = 0; |
| 1059 | u32 vid = 0; |
| 1060 | int res, i; |
| 1061 | struct cpufreq_freqs freqs; |
| 1062 | |
| 1063 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
| 1064 | |
| 1065 | /* fid/vid correctness check for k8 */ |
| 1066 | /* fid are the lower 8 bits of the index we stored into |
| 1067 | * the cpufreq frequency table in find_psb_table, vid |
| 1068 | * are the upper 8 bits. |
| 1069 | */ |
| 1070 | fid = data->powernow_table[index].index & 0xFF; |
| 1071 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; |
| 1072 | |
| 1073 | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); |
| 1074 | |
| 1075 | if (query_current_values_with_pending_wait(data)) |
| 1076 | return 1; |
| 1077 | |
| 1078 | if ((data->currvid == vid) && (data->currfid == fid)) { |
| 1079 | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", |
| 1080 | fid, vid); |
| 1081 | return 0; |
| 1082 | } |
| 1083 | |
| 1084 | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", |
| 1085 | smp_processor_id(), fid, vid); |
| 1086 | freqs.old = find_khz_freq_from_fid(data->currfid); |
| 1087 | freqs.new = find_khz_freq_from_fid(fid); |
| 1088 | |
| 1089 | for_each_cpu(i, data->available_cores) { |
| 1090 | freqs.cpu = i; |
| 1091 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| 1092 | } |
| 1093 | |
| 1094 | res = transition_fid_vid(data, fid, vid); |
| 1095 | if (res) |
| 1096 | return res; |
| 1097 | |
| 1098 | freqs.new = find_khz_freq_from_fid(data->currfid); |
| 1099 | |
| 1100 | for_each_cpu(i, data->available_cores) { |
| 1101 | freqs.cpu = i; |
| 1102 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| 1103 | } |
| 1104 | return res; |
| 1105 | } |
| 1106 | |
| 1107 | /* Take a frequency, and issue the hardware pstate transition command */ |
| 1108 | static int transition_frequency_pstate(struct powernow_k8_data *data, |
| 1109 | unsigned int index) |
| 1110 | { |
| 1111 | u32 pstate = 0; |
| 1112 | int res, i; |
| 1113 | struct cpufreq_freqs freqs; |
| 1114 | |
| 1115 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
| 1116 | |
| 1117 | /* get MSR index for hardware pstate transition */ |
| 1118 | pstate = index & HW_PSTATE_MASK; |
| 1119 | if (pstate > data->max_hw_pstate) |
| 1120 | return -EINVAL; |
| 1121 | |
| 1122 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, |
| 1123 | data->currpstate); |
| 1124 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
| 1125 | |
| 1126 | for_each_cpu(i, data->available_cores) { |
| 1127 | freqs.cpu = i; |
| 1128 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| 1129 | } |
| 1130 | |
| 1131 | res = transition_pstate(data, pstate); |
| 1132 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
| 1133 | |
| 1134 | for_each_cpu(i, data->available_cores) { |
| 1135 | freqs.cpu = i; |
| 1136 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| 1137 | } |
| 1138 | return res; |
| 1139 | } |
| 1140 | |
| 1141 | struct powernowk8_target_arg { |
| 1142 | struct cpufreq_policy *pol; |
| 1143 | unsigned targfreq; |
| 1144 | unsigned relation; |
| 1145 | }; |
| 1146 | |
| 1147 | static long powernowk8_target_fn(void *arg) |
| 1148 | { |
| 1149 | struct powernowk8_target_arg *pta = arg; |
| 1150 | struct cpufreq_policy *pol = pta->pol; |
| 1151 | unsigned targfreq = pta->targfreq; |
| 1152 | unsigned relation = pta->relation; |
| 1153 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| 1154 | u32 checkfid; |
| 1155 | u32 checkvid; |
| 1156 | unsigned int newstate; |
| 1157 | int ret; |
| 1158 | |
| 1159 | if (!data) |
| 1160 | return -EINVAL; |
| 1161 | |
| 1162 | checkfid = data->currfid; |
| 1163 | checkvid = data->currvid; |
| 1164 | |
| 1165 | if (pending_bit_stuck()) { |
| 1166 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); |
| 1167 | return -EIO; |
| 1168 | } |
| 1169 | |
| 1170 | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", |
| 1171 | pol->cpu, targfreq, pol->min, pol->max, relation); |
| 1172 | |
| 1173 | if (query_current_values_with_pending_wait(data)) |
| 1174 | return -EIO; |
| 1175 | |
| 1176 | if (cpu_family != CPU_HW_PSTATE) { |
| 1177 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", |
| 1178 | data->currfid, data->currvid); |
| 1179 | |
| 1180 | if ((checkvid != data->currvid) || |
| 1181 | (checkfid != data->currfid)) { |
| 1182 | printk(KERN_INFO PFX |
| 1183 | "error - out of sync, fix 0x%x 0x%x, " |
| 1184 | "vid 0x%x 0x%x\n", |
| 1185 | checkfid, data->currfid, |
| 1186 | checkvid, data->currvid); |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | if (cpufreq_frequency_table_target(pol, data->powernow_table, |
| 1191 | targfreq, relation, &newstate)) |
| 1192 | return -EIO; |
| 1193 | |
| 1194 | mutex_lock(&fidvid_mutex); |
| 1195 | |
| 1196 | powernow_k8_acpi_pst_values(data, newstate); |
| 1197 | |
| 1198 | if (cpu_family == CPU_HW_PSTATE) |
| 1199 | ret = transition_frequency_pstate(data, |
| 1200 | data->powernow_table[newstate].index); |
| 1201 | else |
| 1202 | ret = transition_frequency_fidvid(data, newstate); |
| 1203 | if (ret) { |
| 1204 | printk(KERN_ERR PFX "transition frequency failed\n"); |
| 1205 | mutex_unlock(&fidvid_mutex); |
| 1206 | return 1; |
| 1207 | } |
| 1208 | mutex_unlock(&fidvid_mutex); |
| 1209 | |
| 1210 | if (cpu_family == CPU_HW_PSTATE) |
| 1211 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
| 1212 | data->powernow_table[newstate].index); |
| 1213 | else |
| 1214 | pol->cur = find_khz_freq_from_fid(data->currfid); |
| 1215 | |
| 1216 | return 0; |
| 1217 | } |
| 1218 | |
| 1219 | /* Driver entry point to switch to the target frequency */ |
| 1220 | static int powernowk8_target(struct cpufreq_policy *pol, |
| 1221 | unsigned targfreq, unsigned relation) |
| 1222 | { |
| 1223 | struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq, |
| 1224 | .relation = relation }; |
| 1225 | |
| 1226 | return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta); |
| 1227 | } |
| 1228 | |
| 1229 | /* Driver entry point to verify the policy and range of frequencies */ |
| 1230 | static int powernowk8_verify(struct cpufreq_policy *pol) |
| 1231 | { |
| 1232 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| 1233 | |
| 1234 | if (!data) |
| 1235 | return -EINVAL; |
| 1236 | |
| 1237 | return cpufreq_frequency_table_verify(pol, data->powernow_table); |
| 1238 | } |
| 1239 | |
| 1240 | struct init_on_cpu { |
| 1241 | struct powernow_k8_data *data; |
| 1242 | int rc; |
| 1243 | }; |
| 1244 | |
| 1245 | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) |
| 1246 | { |
| 1247 | struct init_on_cpu *init_on_cpu = _init_on_cpu; |
| 1248 | |
| 1249 | if (pending_bit_stuck()) { |
| 1250 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); |
| 1251 | init_on_cpu->rc = -ENODEV; |
| 1252 | return; |
| 1253 | } |
| 1254 | |
| 1255 | if (query_current_values_with_pending_wait(init_on_cpu->data)) { |
| 1256 | init_on_cpu->rc = -ENODEV; |
| 1257 | return; |
| 1258 | } |
| 1259 | |
| 1260 | if (cpu_family == CPU_OPTERON) |
| 1261 | fidvid_msr_init(); |
| 1262 | |
| 1263 | init_on_cpu->rc = 0; |
| 1264 | } |
| 1265 | |
| 1266 | /* per CPU init entry point to the driver */ |
| 1267 | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) |
| 1268 | { |
| 1269 | static const char ACPI_PSS_BIOS_BUG_MSG[] = |
| 1270 | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" |
| 1271 | FW_BUG PFX "Try again with latest BIOS.\n"; |
| 1272 | struct powernow_k8_data *data; |
| 1273 | struct init_on_cpu init_on_cpu; |
| 1274 | int rc; |
| 1275 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); |
| 1276 | |
| 1277 | if (!cpu_online(pol->cpu)) |
| 1278 | return -ENODEV; |
| 1279 | |
| 1280 | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); |
| 1281 | if (rc) |
| 1282 | return -ENODEV; |
| 1283 | |
| 1284 | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); |
| 1285 | if (!data) { |
| 1286 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); |
| 1287 | return -ENOMEM; |
| 1288 | } |
| 1289 | |
| 1290 | data->cpu = pol->cpu; |
| 1291 | data->currpstate = HW_PSTATE_INVALID; |
| 1292 | |
| 1293 | if (powernow_k8_cpu_init_acpi(data)) { |
| 1294 | /* |
| 1295 | * Use the PSB BIOS structure. This is only available on |
| 1296 | * an UP version, and is deprecated by AMD. |
| 1297 | */ |
| 1298 | if (num_online_cpus() != 1) { |
| 1299 | printk_once(ACPI_PSS_BIOS_BUG_MSG); |
| 1300 | goto err_out; |
| 1301 | } |
| 1302 | if (pol->cpu != 0) { |
| 1303 | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " |
| 1304 | "CPU other than CPU0. Complain to your BIOS " |
| 1305 | "vendor.\n"); |
| 1306 | goto err_out; |
| 1307 | } |
| 1308 | rc = find_psb_table(data); |
| 1309 | if (rc) |
| 1310 | goto err_out; |
| 1311 | |
| 1312 | /* Take a crude guess here. |
| 1313 | * That guess was in microseconds, so multiply with 1000 */ |
| 1314 | pol->cpuinfo.transition_latency = ( |
| 1315 | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + |
| 1316 | ((1 << data->irt) * 30)) * 1000; |
| 1317 | } else /* ACPI _PSS objects available */ |
| 1318 | pol->cpuinfo.transition_latency = get_transition_latency(data); |
| 1319 | |
| 1320 | /* only run on specific CPU from here on */ |
| 1321 | init_on_cpu.data = data; |
| 1322 | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, |
| 1323 | &init_on_cpu, 1); |
| 1324 | rc = init_on_cpu.rc; |
| 1325 | if (rc != 0) |
| 1326 | goto err_out_exit_acpi; |
| 1327 | |
| 1328 | if (cpu_family == CPU_HW_PSTATE) |
| 1329 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); |
| 1330 | else |
| 1331 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); |
| 1332 | data->available_cores = pol->cpus; |
| 1333 | |
| 1334 | if (cpu_family == CPU_HW_PSTATE) |
| 1335 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
| 1336 | data->currpstate); |
| 1337 | else |
| 1338 | pol->cur = find_khz_freq_from_fid(data->currfid); |
| 1339 | pr_debug("policy current frequency %d kHz\n", pol->cur); |
| 1340 | |
| 1341 | /* min/max the cpu is capable of */ |
| 1342 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { |
| 1343 | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); |
| 1344 | powernow_k8_cpu_exit_acpi(data); |
| 1345 | kfree(data->powernow_table); |
| 1346 | kfree(data); |
| 1347 | return -EINVAL; |
| 1348 | } |
| 1349 | |
| 1350 | /* Check for APERF/MPERF support in hardware */ |
| 1351 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) |
| 1352 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; |
| 1353 | |
| 1354 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
| 1355 | |
| 1356 | if (cpu_family == CPU_HW_PSTATE) |
| 1357 | pr_debug("cpu_init done, current pstate 0x%x\n", |
| 1358 | data->currpstate); |
| 1359 | else |
| 1360 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", |
| 1361 | data->currfid, data->currvid); |
| 1362 | |
| 1363 | per_cpu(powernow_data, pol->cpu) = data; |
| 1364 | |
| 1365 | return 0; |
| 1366 | |
| 1367 | err_out_exit_acpi: |
| 1368 | powernow_k8_cpu_exit_acpi(data); |
| 1369 | |
| 1370 | err_out: |
| 1371 | kfree(data); |
| 1372 | return -ENODEV; |
| 1373 | } |
| 1374 | |
| 1375 | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) |
| 1376 | { |
| 1377 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| 1378 | |
| 1379 | if (!data) |
| 1380 | return -EINVAL; |
| 1381 | |
| 1382 | powernow_k8_cpu_exit_acpi(data); |
| 1383 | |
| 1384 | cpufreq_frequency_table_put_attr(pol->cpu); |
| 1385 | |
| 1386 | kfree(data->powernow_table); |
| 1387 | kfree(data); |
| 1388 | per_cpu(powernow_data, pol->cpu) = NULL; |
| 1389 | |
| 1390 | return 0; |
| 1391 | } |
| 1392 | |
| 1393 | static void query_values_on_cpu(void *_err) |
| 1394 | { |
| 1395 | int *err = _err; |
| 1396 | struct powernow_k8_data *data = __this_cpu_read(powernow_data); |
| 1397 | |
| 1398 | *err = query_current_values_with_pending_wait(data); |
| 1399 | } |
| 1400 | |
| 1401 | static unsigned int powernowk8_get(unsigned int cpu) |
| 1402 | { |
| 1403 | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); |
| 1404 | unsigned int khz = 0; |
| 1405 | int err; |
| 1406 | |
| 1407 | if (!data) |
| 1408 | return 0; |
| 1409 | |
| 1410 | smp_call_function_single(cpu, query_values_on_cpu, &err, true); |
| 1411 | if (err) |
| 1412 | goto out; |
| 1413 | |
| 1414 | if (cpu_family == CPU_HW_PSTATE) |
| 1415 | khz = find_khz_freq_from_pstate(data->powernow_table, |
| 1416 | data->currpstate); |
| 1417 | else |
| 1418 | khz = find_khz_freq_from_fid(data->currfid); |
| 1419 | |
| 1420 | |
| 1421 | out: |
| 1422 | return khz; |
| 1423 | } |
| 1424 | |
| 1425 | static void _cpb_toggle_msrs(bool t) |
| 1426 | { |
| 1427 | int cpu; |
| 1428 | |
| 1429 | get_online_cpus(); |
| 1430 | |
| 1431 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
| 1432 | |
| 1433 | for_each_cpu(cpu, cpu_online_mask) { |
| 1434 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
| 1435 | if (t) |
| 1436 | reg->l &= ~BIT(25); |
| 1437 | else |
| 1438 | reg->l |= BIT(25); |
| 1439 | } |
| 1440 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
| 1441 | |
| 1442 | put_online_cpus(); |
| 1443 | } |
| 1444 | |
| 1445 | /* |
| 1446 | * Switch on/off core performance boosting. |
| 1447 | * |
| 1448 | * 0=disable |
| 1449 | * 1=enable. |
| 1450 | */ |
| 1451 | static void cpb_toggle(bool t) |
| 1452 | { |
| 1453 | if (!cpb_capable) |
| 1454 | return; |
| 1455 | |
| 1456 | if (t && !cpb_enabled) { |
| 1457 | cpb_enabled = true; |
| 1458 | _cpb_toggle_msrs(t); |
| 1459 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); |
| 1460 | } else if (!t && cpb_enabled) { |
| 1461 | cpb_enabled = false; |
| 1462 | _cpb_toggle_msrs(t); |
| 1463 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, |
| 1468 | size_t count) |
| 1469 | { |
| 1470 | int ret = -EINVAL; |
| 1471 | unsigned long val = 0; |
| 1472 | |
| 1473 | ret = strict_strtoul(buf, 10, &val); |
| 1474 | if (!ret && (val == 0 || val == 1) && cpb_capable) |
| 1475 | cpb_toggle(val); |
| 1476 | else |
| 1477 | return -EINVAL; |
| 1478 | |
| 1479 | return count; |
| 1480 | } |
| 1481 | |
| 1482 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) |
| 1483 | { |
| 1484 | return sprintf(buf, "%u\n", cpb_enabled); |
| 1485 | } |
| 1486 | |
| 1487 | #define define_one_rw(_name) \ |
| 1488 | static struct freq_attr _name = \ |
| 1489 | __ATTR(_name, 0644, show_##_name, store_##_name) |
| 1490 | |
| 1491 | define_one_rw(cpb); |
| 1492 | |
| 1493 | static struct freq_attr *powernow_k8_attr[] = { |
| 1494 | &cpufreq_freq_attr_scaling_available_freqs, |
| 1495 | &cpb, |
| 1496 | NULL, |
| 1497 | }; |
| 1498 | |
| 1499 | static struct cpufreq_driver cpufreq_amd64_driver = { |
| 1500 | .verify = powernowk8_verify, |
| 1501 | .target = powernowk8_target, |
| 1502 | .bios_limit = acpi_processor_get_bios_limit, |
| 1503 | .init = powernowk8_cpu_init, |
| 1504 | .exit = __devexit_p(powernowk8_cpu_exit), |
| 1505 | .get = powernowk8_get, |
| 1506 | .name = "powernow-k8", |
| 1507 | .owner = THIS_MODULE, |
| 1508 | .attr = powernow_k8_attr, |
| 1509 | }; |
| 1510 | |
| 1511 | /* |
| 1512 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu |
| 1513 | * cannot block the remaining ones from boosting. On the CPU_UP path we |
| 1514 | * simply keep the boost-disable flag in sync with the current global |
| 1515 | * state. |
| 1516 | */ |
| 1517 | static int cpb_notify(struct notifier_block *nb, unsigned long action, |
| 1518 | void *hcpu) |
| 1519 | { |
| 1520 | unsigned cpu = (long)hcpu; |
| 1521 | u32 lo, hi; |
| 1522 | |
| 1523 | switch (action) { |
| 1524 | case CPU_UP_PREPARE: |
| 1525 | case CPU_UP_PREPARE_FROZEN: |
| 1526 | |
| 1527 | if (!cpb_enabled) { |
| 1528 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); |
| 1529 | lo |= BIT(25); |
| 1530 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); |
| 1531 | } |
| 1532 | break; |
| 1533 | |
| 1534 | case CPU_DOWN_PREPARE: |
| 1535 | case CPU_DOWN_PREPARE_FROZEN: |
| 1536 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); |
| 1537 | lo &= ~BIT(25); |
| 1538 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); |
| 1539 | break; |
| 1540 | |
| 1541 | default: |
| 1542 | break; |
| 1543 | } |
| 1544 | |
| 1545 | return NOTIFY_OK; |
| 1546 | } |
| 1547 | |
| 1548 | static struct notifier_block cpb_nb = { |
| 1549 | .notifier_call = cpb_notify, |
| 1550 | }; |
| 1551 | |
| 1552 | /* driver entry point for init */ |
| 1553 | static int __cpuinit powernowk8_init(void) |
| 1554 | { |
| 1555 | unsigned int i, supported_cpus = 0, cpu; |
| 1556 | int rv; |
| 1557 | |
| 1558 | if (!x86_match_cpu(powernow_k8_ids)) |
| 1559 | return -ENODEV; |
| 1560 | |
| 1561 | for_each_online_cpu(i) { |
| 1562 | int rc; |
| 1563 | smp_call_function_single(i, check_supported_cpu, &rc, 1); |
| 1564 | if (rc == 0) |
| 1565 | supported_cpus++; |
| 1566 | } |
| 1567 | |
| 1568 | if (supported_cpus != num_online_cpus()) |
| 1569 | return -ENODEV; |
| 1570 | |
| 1571 | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", |
| 1572 | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); |
| 1573 | |
| 1574 | if (boot_cpu_has(X86_FEATURE_CPB)) { |
| 1575 | |
| 1576 | cpb_capable = true; |
| 1577 | |
| 1578 | msrs = msrs_alloc(); |
| 1579 | if (!msrs) { |
| 1580 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); |
| 1581 | return -ENOMEM; |
| 1582 | } |
| 1583 | |
| 1584 | register_cpu_notifier(&cpb_nb); |
| 1585 | |
| 1586 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
| 1587 | |
| 1588 | for_each_cpu(cpu, cpu_online_mask) { |
| 1589 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
| 1590 | cpb_enabled |= !(!!(reg->l & BIT(25))); |
| 1591 | } |
| 1592 | |
| 1593 | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", |
| 1594 | (cpb_enabled ? "on" : "off")); |
| 1595 | } |
| 1596 | |
| 1597 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); |
| 1598 | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { |
| 1599 | unregister_cpu_notifier(&cpb_nb); |
| 1600 | msrs_free(msrs); |
| 1601 | msrs = NULL; |
| 1602 | } |
| 1603 | return rv; |
| 1604 | } |
| 1605 | |
| 1606 | /* driver entry point for term */ |
| 1607 | static void __exit powernowk8_exit(void) |
| 1608 | { |
| 1609 | pr_debug("exit\n"); |
| 1610 | |
| 1611 | if (boot_cpu_has(X86_FEATURE_CPB)) { |
| 1612 | msrs_free(msrs); |
| 1613 | msrs = NULL; |
| 1614 | |
| 1615 | unregister_cpu_notifier(&cpb_nb); |
| 1616 | } |
| 1617 | |
| 1618 | cpufreq_unregister_driver(&cpufreq_amd64_driver); |
| 1619 | } |
| 1620 | |
| 1621 | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " |
| 1622 | "Mark Langsdorf <mark.langsdorf@amd.com>"); |
| 1623 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); |
| 1624 | MODULE_LICENSE("GPL"); |
| 1625 | |
| 1626 | late_initcall(powernowk8_init); |
| 1627 | module_exit(powernowk8_exit); |