blob: d3ed5fa16aebd343a4aeb63a7a21fd0df5a84f50 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * zx297510 spi controller driver
3 * Author: ZTER
4 * from original zx297510 driver
5 *
6 * Copyright (C) 2005, 2006 ZTE Corporation
7 * Author: ZTER
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <linux/kernel.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/module.h>
28#include <linux/device.h>
29#include <linux/delay.h>
30#include <linux/platform_device.h>
31#include <linux/err.h>
32#include <linux/clk.h>
33#include <linux/io.h>
34#include <linux/gpio.h>
35#include <linux/slab.h>
36#include <linux/dmaengine.h>
37#include <linux/dma-mapping.h>
38#include <linux/scatterlist.h>
39#include <linux/pm_runtime.h>
40
41#include <linux/spi/spi.h>
42
43#include <mach/clock.h>
44#include <mach/spi.h>
45#include <mach/gpio.h>
46/*
47 * This macro is used to define some register default values.
48 * reg is masked with mask, the OR:ed with an (again masked)
49 * val shifted sb steps to the left.
50 */
51#define SPI_WRITE_BITS(reg, val, mask, sb) \
52 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53
54/*
55 * This macro is also used to define some default values.
56 * It will just shift val by sb steps to the left and mask
57 * the result with mask.
58 */
59#define GEN_MASK_BITS(val, mask, sb) \
60 (((val)<<(sb)) & (mask))
61
62#define DRIVE_TX 0
63#define DO_NOT_DRIVE_TX 1
64
65#define DO_NOT_QUEUE_DMA 0
66#define QUEUE_DMA 1
67
68#define RX_TRANSFER 1
69#define TX_TRANSFER 2
70
71/* registers */
72#define SPI_VER_REG(r) (r + 0x00)
73#define SPI_COM_CTRL(r) (r + 0x04)
74#define SPI_FMT_CTRL(r) (r + 0x08)
75#define SPI_DR(r) (r + 0x0C)
76#define SPI_FIFO_CTRL(r) (r + 0x10)
77#define SPI_FIFO_SR(r) (r + 0x14)
78#define SPI_INTR_EN(r) (r + 0x18)
79#define SPI_INTR_SR_SCLR(r) (r + 0x1C)
80
81/*
82 * SPI Version Register - SPI_VER_REG
83 */
84#define SPI_VER_REG_MASK_Y (0xFFUL << 16)
85#define SPI_VER_REG_MASK_X (0xFFUL << 24)
86
87/*
88 * SPI Common Control Register - SPI_COM_CTRL
89 */
90#define SPI_COM_CTRL_MASK_LBM (0x1UL << 0)
91#define SPI_COM_CTRL_MASK_SSPE (0x1UL << 1)
92#define SPI_COM_CTRL_MASK_MS (0x1UL << 2)
93#define SPI_COM_CTRL_MASK_SOD (0x1UL << 3)
94
95/*
96 * SPI Format Control Register - SPI_FMT_CTRL
97 */
98#define SPI_FMT_CTRL_MASK_FRF (0x3UL << 0)
99#define SPI_FMT_CTRL_MASK_POL (0x1UL << 2)
100#define SPI_FMT_CTRL_MASK_PHA (0x1UL << 3)
101#define SPI_FMT_CTRL_MASK_DSS (0x1FUL << 4)
102
103/*
104 * SPI FIFO Control Register - SPI_FIFO_CTRL
105 */
106#define SPI_FIFO_CTRL_MASK_RX_DMA_EN (0x1UL << 2)
107#define SPI_FIFO_CTRL_MASK_TX_DMA_EN (0x1UL << 3)
108#define SPI_FIFO_CTRL_MASK_RX_FIFO_THRES (0xFUL << 4)
109#define SPI_FIFO_CTRL_MASK_TX_FIFO_THRES (0xFUL << 8)
110/*
111 * SPI FIFO Status Register - SPI_FIFO_SR
112 */
113
114#define SPI_FIFO_SR_MASK_RX_BEYOND_THRES (0x1UL << 0)
115#define SPI_FIFO_SR_MASK_TX_BEYOND_THRES (0x1UL << 1)
116#define SPI_FIFO_SR_MASK_RX_FIFO_FULL (0x1UL << 2)
117#define SPI_FIFO_SR_MASK_TX_FIFO_EMPTY (0x1UL << 3)
118#define SPI_FIFO_SR_MASK_BUSY (0x1UL << 4)
119#define SPI_FIFO_SR_MASK_RX_FIFO_CNTR (0x1FUL << 5)
120#define SPI_FIFO_SR_MASK_TX_FIFO_CNTR (0x1FUL << 10)
121
122/*
123 * SPI Interrupt Enable Register - SPI_INTR_EN
124 */
125#define SPI_INTR_EN_MASK_RX_OVERRUN_IE (0x1UL << 0)
126#define SPI_INTR_EN_MASK_TX_UNDERRUN_IE (0x1UL << 1)
127#define SPI_INTR_EN_MASK_RX_FULL_IE (0x1UL << 2)
128#define SPI_INTR_EN_MASK_TX_EMPTY_IE (0x1UL << 3)
129#define SPI_INTR_EN_MASK_RX_THRES_IE (0x1UL << 4)
130#define SPI_INTR_EN_MASK_TX_THRES_IE (0x1UL << 5)
131
132/*
133 * SPI Interrupt Status Register OR Interrupt Clear Register - SPI_INTR_SR_SCLR
134 */
135
136#define SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR (0x1UL << 0)
137#define SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR (0x1UL << 1)
138#define SPI_INTR_SR_SCLR_MASK_RX_FULL_INTR (0x1UL << 2)
139#define SPI_INTR_SR_SCLR_MASK_TX_EMPTY_INTR (0x1UL << 3)
140#define SPI_INTR_SR_SCLR_MASK_RX_THRES_INTR (0x1UL << 4)
141#define SPI_INTR_SR_SCLR_MASK_TX_THRES_INTR (0x1UL << 5)
142
143/* SPI State */
144#define SPI_RUNNING 0
145#define SPI_SHUTDOWN 1
146
147/* SPI WCLK Freqency */
148#define SPI_SPICLK_FREQ_104M 104000000
149
150#define CLEAR_ALL_INTERRUPTS 0x3FUL
151#define ENABLE_ALL_INTERRUPTS 0x3FUL
152#define DISABLE_ALL_INTERRUPTS 0x0UL
153/*
154 * Message State
155 * we use the spi_message.state (void *) pointer to
156 * hold a single state value, that's why all this
157 * (void *) casting is done here.
158 */
159#define STATE_START ((void *) 0)
160#define STATE_RUNNING ((void *) 1)
161#define STATE_DONE ((void *) 2)
162#define STATE_ERROR ((void *) -1)
163
164/*
165 * SPI State - Whether Enabled or Disabled
166 */
167#define SPI_DISABLED (0)
168#define SPI_ENABLED (1)
169
170/*
171 * SPI DMA State - Whether DMA Enabled or Disabled
172 */
173#define SPI_DMA_DISABLED (0)
174#define SPI_DMA_ENABLED (1)
175
176/*
177 * SPI SOD State - Whether SOD Enabled or Disabled
178 */
179#define SPI_SOD_DISABLED (1)
180#define SPI_SOD_ENABLED (0)
181
182
183enum spi_fifo_threshold_level {
184 SPI_FIFO_THRES_1,
185 SPI_FIFO_THRES_2,
186 SPI_FIFO_THRES_3,
187 SPI_FIFO_THRES_4,
188 SPI_FIFO_THRES_5,
189 SPI_FIFO_THRES_6,
190 SPI_FIFO_THRES_7,
191 SPI_FIFO_THRES_8,
192 SPI_FIFO_THRES_9,
193 SPI_FIFO_THRES_10,
194 SPI_FIFO_THRES_11,
195 SPI_FIFO_THRES_12,
196 SPI_FIFO_THRES_13,
197 SPI_FIFO_THRES_14,
198 SPI_FIFO_THRES_15,
199 SPI_FIFO_THRES_16
200
201};
202
203
204/*
205 * SPI Clock Parameter ranges
206 */
207#define DIV_MIN 0x00
208#define DIV_MAX 0x0F
209
210#define SPI_POLLING_TIMEOUT 1000
211
212/*
213 * The type of reading going on on this chip
214 */
215enum spi_reading {
216 READING_NULL,
217 READING_U8,
218 READING_U16,
219 READING_U32
220};
221
222/**
223 * The type of writing going on on this chip
224 */
225enum spi_writing {
226 WRITING_NULL,
227 WRITING_U8,
228 WRITING_U16,
229 WRITING_U32
230};
231
232/**
233 * struct vendor_data - vendor-specific config parameters
234 * for PL022 derivates
235 * @fifodepth: depth of FIFOs (both)
236 * @max_bpw: maximum number of bits per word
237 * @unidir: supports unidirection transfers
238 * @extended_cr: 32 bit wide control register 0 with extra
239 * features and extra features in CR1 as found in the ST variants
240 * @pl023: supports a subset of the ST extensions called "PL023"
241 */
242struct vendor_data {
243 int fifodepth;
244 int max_bpw;
245 bool loopback;
246};
247/**
248 * struct pl022 - This is the private SSP driver data structure
249 * @adev: AMBA device model hookup
250 * @vendor: vendor data for the IP block
251 * @phybase: the physical memory where the SSP device resides
252 * @virtbase: the virtual memory where the SSP is mapped
253 * @clk: outgoing clock "SPICLK" for the SPI bus
254 * @master: SPI framework hookup
255 * @master_info: controller-specific data from machine setup
256 * @kworker: thread struct for message pump
257 * @kworker_task: pointer to task for message pump kworker thread
258 * @pump_messages: work struct for scheduling work to the message pump
259 * @queue_lock: spinlock to syncronise access to message queue
260 * @queue: message queue
261 * @busy: message pump is busy
262 * @running: message pump is running
263 * @pump_transfers: Tasklet used in Interrupt Transfer mode
264 * @cur_msg: Pointer to current spi_message being processed
265 * @cur_transfer: Pointer to current spi_transfer
266 * @cur_chip: pointer to current clients chip(assigned from controller_state)
267 * @next_msg_cs_active: the next message in the queue has been examined
268 * and it was found that it uses the same chip select as the previous
269 * message, so we left it active after the previous transfer, and it's
270 * active already.
271 * @tx: current position in TX buffer to be read
272 * @tx_end: end position in TX buffer to be read
273 * @rx: current position in RX buffer to be written
274 * @rx_end: end position in RX buffer to be written
275 * @read: the type of read currently going on
276 * @write: the type of write currently going on
277 * @exp_fifo_level: expected FIFO level
278 * @dma_rx_channel: optional channel for RX DMA
279 * @dma_tx_channel: optional channel for TX DMA
280 * @sgt_rx: scattertable for the RX transfer
281 * @sgt_tx: scattertable for the TX transfer
282 * @dummypage: a dummy page used for driving data on the bus with DMA
283 */
284struct zx297510_spi {
285 struct platform_device *pdev;
286 struct vendor_data *vendor;
287 resource_size_t phybase;
288 void __iomem *virtbase;
289 struct clk *pclk;/* spi controller work clock */
290 struct clk *spi_clk;/* spi clk line clock */
291 u32 clkfreq;
292 struct spi_master *master;
293 struct zx297510_spi_controller *master_info;
294 /* Message per-transfer pump */
295 struct tasklet_struct pump_transfers;
296 struct spi_message *cur_msg;
297 struct spi_transfer *cur_transfer;
298 struct chip_data *cur_chip;
299 bool next_msg_cs_active;
300 void *tx;
301 void *tx_end;
302 void *rx;
303 void *rx_end;
304 enum spi_reading read;
305 enum spi_writing write;
306 u32 exp_fifo_level;
307 enum spi_rx_level_trig rx_lev_trig;
308 enum spi_tx_level_trig tx_lev_trig;
309 /* DMA settings */
310#ifdef CONFIG_DMA_ENGINE
311 struct dma_chan *dma_rx_channel;
312 struct dma_chan *dma_tx_channel;
313 struct sg_table sgt_rx;
314 struct sg_table sgt_tx;
315 char *dummypage;
316 bool dma_running;
317#endif
318};
319
320/**
321 * struct chip_data - To maintain runtime state of SSP for each client chip
322 * @cr0: Value of control register CR0 of SSP - on later ST variants this
323 * register is 32 bits wide rather than just 16
324 * @cr1: Value of control register CR1 of SSP
325 * @dmacr: Value of DMA control Register of SSP
326 * @cpsr: Value of Clock prescale register
327 * @cs: Value of cs register
328 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
329 * @enable_dma: Whether to enable DMA or not
330 * @read: function ptr to be used to read when doing xfer for this chip
331 * @write: function ptr to be used to write when doing xfer for this chip
332 * @cs_control: chip select callback provided by chip
333 * @xfer_type: polling/interrupt/DMA
334 *
335 * Runtime state of the SSP controller, maintained per chip,
336 * This would be set according to the current message that would be served
337 */
338struct chip_data {
339 u32 ver_reg;
340 u32 com_ctrl;
341 u32 fmt_ctrl;
342 u32 fifo_ctrl;
343// u32 intr_en;
344 u8 n_bytes;
345 u8 clk_div;/* spi clk divider */
346 bool enable_dma;
347 enum spi_reading read;
348 enum spi_writing write;
349 //void (*cs_control) (u32 command);
350 int xfer_type;
351};
352/**
353 * null_cs_control - Dummy chip select function
354 * @command: select/delect the chip
355 *
356 * If no chip select function is provided by client this is used as dummy
357 * chip select
358 */
359static void null_cs_control(u32 command)
360{
361 pr_debug("zx297510 spi: dummy chip select control, CS=0x%x\n", command);
362}
363
364/**
365 * giveback - current spi_message is over, schedule next message and call
366 * callback of this message. Assumes that caller already
367 * set message->status; dma and pio irqs are blocked
368 * @pl022: SSP driver private data structure
369 */
370static void giveback(struct zx297510_spi *zx297510spi)
371{
372 struct spi_transfer *last_transfer;
373 zx297510spi->next_msg_cs_active = false;
374
375 last_transfer = list_entry(zx297510spi->cur_msg->transfers.prev,
376 struct spi_transfer,
377 transfer_list);
378
379 /* Delay if requested before any change in chip select */
380 if (last_transfer->delay_usecs)
381 /*
382 * FIXME: This runs in interrupt context.
383 * Is this really smart?
384 */
385 udelay(last_transfer->delay_usecs);
386
387 if (!last_transfer->cs_change) {
388 struct spi_message *next_msg;
389
390 /*
391 * cs_change was not set. We can keep the chip select
392 * enabled if there is message in the queue and it is
393 * for the same spi device.
394 *
395 * We cannot postpone this until pump_messages, because
396 * after calling msg->complete (below) the driver that
397 * sent the current message could be unloaded, which
398 * could invalidate the cs_control() callback...
399 */
400 /* get a pointer to the next message, if any */
401 next_msg = spi_get_next_queued_message(zx297510spi->master);
402
403 /*
404 * see if the next and current messages point
405 * to the same spi device.
406 */
407 if (next_msg && next_msg->spi != zx297510spi->cur_msg->spi)
408 next_msg = NULL;
409 //if (!next_msg || zx297510spi->cur_msg->state == STATE_ERROR)
410 // zx297510spi->cur_chip->cs_control(SSP_CHIP_DESELECT);
411 //else
412 // zx297510spi->next_msg_cs_active = true;
413
414 }
415
416 zx297510spi->cur_msg = NULL;
417 zx297510spi->cur_transfer = NULL;
418 zx297510spi->cur_chip = NULL;
419 spi_finalize_current_message(zx297510spi->master);
420}
421
422/**
423 * flush - flush the FIFO to reach a clean state
424 * @pl022: SSP driver private data structure
425 */
426static int flush(struct zx297510_spi *zx297510spi)
427{
428 unsigned long limit = loops_per_jiffy << 1;
429
430 dev_dbg(&zx297510spi->pdev->dev, "flush\n");
431 do {
432 while (readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
433 readl(SPI_DR(zx297510spi->virtbase));
434 } while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_BUSY) && limit--);
435
436 zx297510spi->exp_fifo_level = 0;
437
438 return limit;
439}
440
441/**
442 * restore_state - Load configuration of current chip
443 * @pl022: SSP driver private data structure
444 */
445static void restore_state(struct zx297510_spi *zx297510spi)
446{
447 struct chip_data *chip = zx297510spi->cur_chip;
448
449 writel(chip->com_ctrl, SPI_COM_CTRL(zx297510spi->virtbase));
450 writel(chip->fmt_ctrl, SPI_FMT_CTRL(zx297510spi->virtbase));
451 writel(chip->fifo_ctrl, SPI_FIFO_CTRL(zx297510spi->virtbase));
452// writel(chip->intr_en, SPI_INTR_EN(zx297510spi->virtbase));
453 /* disable all interrupts */
454 writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
455 writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
456}
457
458/*
459 * Default spi Register Values
460 */
461#define DEFAULT_SPI_COM_CTRL ( \
462 GEN_MASK_BITS(LOOPBACK_DISABLED, SPI_COM_CTRL_MASK_LBM, 0) | \
463 GEN_MASK_BITS(SPI_DISABLED, SPI_COM_CTRL_MASK_SSPE, 1) | \
464 GEN_MASK_BITS(SPI_MASTER, SPI_COM_CTRL_MASK_MS, 2) | \
465 GEN_MASK_BITS(SPI_SOD_DISABLED, SPI_COM_CTRL_MASK_SOD, 3) \
466)
467
468#define DEFAULT_SPI_FMT_CTRL ( \
469 GEN_MASK_BITS(SPI_INTERFACE_MOTOROLA_SPI, SPI_FMT_CTRL_MASK_FRF, 0) | \
470 GEN_MASK_BITS(SPI_CLK_POL_IDLE_LOW, SPI_FMT_CTRL_MASK_POL, 2) | \
471 GEN_MASK_BITS(SPI_CLK_FIRST_EDGE, SPI_FMT_CTRL_MASK_PHA, 3) | \
472 GEN_MASK_BITS(SPI_DATA_BITS_8, SPI_FMT_CTRL_MASK_DSS, 4) \
473)
474
475#define DEFAULT_SPI_FIFO_CTRL ( \
476 GEN_MASK_BITS(SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2) | \
477 GEN_MASK_BITS(SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3) | \
478 GEN_MASK_BITS(SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_RX_FIFO_THRES, 4) | \
479 GEN_MASK_BITS(SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_TX_FIFO_THRES, 8) \
480)
481
482
483/**
484 * load_ssp_default_config - Load default configuration for SSP
485 * @pl022: SSP driver private data structure
486 */
487static void load_spi_default_config(struct zx297510_spi *zx297510spi)
488{
489 writel(DEFAULT_SPI_COM_CTRL, SPI_COM_CTRL(zx297510spi->virtbase));
490 writel(DEFAULT_SPI_FMT_CTRL, SPI_FMT_CTRL(zx297510spi->virtbase));
491 writel(DEFAULT_SPI_FIFO_CTRL, SPI_FIFO_CTRL(zx297510spi->virtbase));
492 writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
493 writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
494}
495
496/**
497 * This will write to TX according to the parameters
498 * set in pl022.
499 */
500static void write(struct zx297510_spi *zx297510spi)
501{
502
503 /*
504 * The FIFO depth is different between primecell variants.
505 * I believe filling in too much in the FIFO might cause
506 * errons in 8bit wide transfers on ARM variants (just 8 words
507 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
508 *
509 * To prevent this issue, the TX FIFO is only filled to the
510 * unused RX FIFO fill length, regardless of what the TX
511 * FIFO status flag indicates.
512 */
513 dev_dbg(&zx297510spi->pdev->dev,
514 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
515 __func__, zx297510spi->rx, zx297510spi->rx_end, zx297510spi->tx, zx297510spi->tx_end);
516
517 while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_TX_FIFO_EMPTY)
518 && (zx297510spi->tx < zx297510spi->tx_end)) {
519 switch (zx297510spi->write) {
520 case WRITING_NULL:
521 writew(0x0, SPI_DR(zx297510spi->virtbase));
522 break;
523 case WRITING_U8:
524 writew(*(u8 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
525 break;
526 case WRITING_U16:
527 writew((*(u16 *) (zx297510spi->tx)), SPI_DR(zx297510spi->virtbase));
528 break;
529 case WRITING_U32:
530 writel(*(u32 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
531 break;
532 }
533 while(readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_BUSY) ;
534 zx297510spi->tx += (zx297510spi->cur_chip->n_bytes);
535 }
536}
537
538/**
539 * This will write to TX and read from RX according to the parameters
540 * set in pl022.
541 */
542static void readwriter(struct zx297510_spi *zx297510spi)
543{
544
545 /*
546 * The FIFO depth is different between primecell variants.
547 * I believe filling in too much in the FIFO might cause
548 * errons in 8bit wide transfers on ARM variants (just 8 words
549 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
550 *
551 * To prevent this issue, the TX FIFO is only filled to the
552 * unused RX FIFO fill length, regardless of what the TX
553 * FIFO status flag indicates.
554 */
555 dev_dbg(&zx297510spi->pdev->dev,
556 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
557 __func__, zx297510spi->rx, zx297510spi->rx_end, zx297510spi->tx, zx297510spi->tx_end);
558
559 /* Read as much as you can */
560 while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
561 && (zx297510spi->rx < zx297510spi->rx_end)) {
562 switch (zx297510spi->read) {
563 case READING_NULL:
564 readl(SPI_DR(zx297510spi->virtbase));
565 break;
566 case READING_U8:
567 *(u8 *) (zx297510spi->rx) =
568 readw(SPI_DR(zx297510spi->virtbase)) & 0xFFU;
569 break;
570 case READING_U16:
571 *(u16 *) (zx297510spi->rx) =
572 (u16) readw(SPI_DR(zx297510spi->virtbase));
573 break;
574 case READING_U32:
575 *(u32 *) (zx297510spi->rx) =
576 readl(SPI_DR(zx297510spi->virtbase));
577 break;
578 }
579 zx297510spi->rx += (zx297510spi->cur_chip->n_bytes);
580 zx297510spi->exp_fifo_level--;
581 }
582 /*
583 * Write as much as possible up to the TX FIFO size
584 */
585 while ((zx297510spi->exp_fifo_level < zx297510spi->vendor->fifodepth)
586 && (zx297510spi->tx < zx297510spi->tx_end)) {
587 switch (zx297510spi->write) {
588 case WRITING_NULL:
589 writew(0x0, SPI_DR(zx297510spi->virtbase));
590 break;
591 case WRITING_U8:
592 writew(*(u8 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
593 break;
594 case WRITING_U16:
595 writew((*(u16 *) (zx297510spi->tx)), SPI_DR(zx297510spi->virtbase));
596 break;
597 case WRITING_U32:
598 writel(*(u32 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
599 break;
600 }
601 zx297510spi->tx += (zx297510spi->cur_chip->n_bytes);
602 zx297510spi->exp_fifo_level++;
603 /*
604 * This inner reader takes care of things appearing in the RX
605 * FIFO as we're transmitting. This will happen a lot since the
606 * clock starts running when you put things into the TX FIFO,
607 * and then things are continuously clocked into the RX FIFO.
608 */
609 while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
610 && (zx297510spi->rx < zx297510spi->rx_end)) {
611 switch (zx297510spi->read) {
612 case READING_NULL:
613 readw(SPI_DR(zx297510spi->virtbase));
614 break;
615 case READING_U8:
616 *(u8 *) (zx297510spi->rx) =
617 readw(SPI_DR(zx297510spi->virtbase)) & 0xFFU;
618 break;
619 case READING_U16:
620 *(u16 *) (zx297510spi->rx) =
621 (u16) readw(SPI_DR(zx297510spi->virtbase));
622 break;
623 case READING_U32:
624 *(u32 *) (zx297510spi->rx) =
625 readl(SPI_DR(zx297510spi->virtbase));
626 break;
627 }
628 zx297510spi->rx += (zx297510spi->cur_chip->n_bytes);
629 zx297510spi->exp_fifo_level--;
630 }
631 }
632 /*
633 * When we exit here the TX FIFO should be full and the RX FIFO
634 * should be empty
635 */
636}
637
638/**
639 * next_transfer - Move to the Next transfer in the current spi message
640 * @pl022: SSP driver private data structure
641 *
642 * This function moves though the linked list of spi transfers in the
643 * current spi message and returns with the state of current spi
644 * message i.e whether its last transfer is done(STATE_DONE) or
645 * Next transfer is ready(STATE_RUNNING)
646 */
647static void *next_transfer(struct zx297510_spi *zx297510spi)
648{
649 struct spi_message *msg = zx297510spi->cur_msg;
650 struct spi_transfer *trans = zx297510spi->cur_transfer;
651
652 /* Move to next transfer */
653 if (trans->transfer_list.next != &msg->transfers) {
654 zx297510spi->cur_transfer =
655 list_entry(trans->transfer_list.next,
656 struct spi_transfer, transfer_list);
657 return STATE_RUNNING;
658 }
659 return STATE_DONE;
660}
661
662/*
663 * This DMA functionality is only compiled in if we have
664 * access to the generic DMA devices/DMA engine.
665 */
666#ifdef CONFIG_DMA_ENGINE
667static void unmap_free_dma_scatter(struct zx297510_spi *zx297510spi)
668{
669 /* Unmap and free the SG tables */
670 dma_unmap_sg(zx297510spi->dma_tx_channel->device->dev, zx297510spi->sgt_tx.sgl,
671 zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
672 dma_unmap_sg(zx297510spi->dma_rx_channel->device->dev, zx297510spi->sgt_rx.sgl,
673 zx297510spi->sgt_rx.nents, DMA_FROM_DEVICE);
674 sg_free_table(&zx297510spi->sgt_rx);
675 sg_free_table(&zx297510spi->sgt_tx);
676}
677
678static void dma_callback(void *data)
679{
680 struct zx297510_spi *zx297510spi = data;
681 struct spi_message *msg = zx297510spi->cur_msg;
682
683 BUG_ON(!zx297510spi->sgt_rx.sgl);
684
685#ifdef VERBOSE_DEBUG
686 /*
687 * Optionally dump out buffers to inspect contents, this is
688 * good if you want to convince yourself that the loopback
689 * read/write contents are the same, when adopting to a new
690 * DMA engine.
691 */
692 {
693 struct scatterlist *sg;
694 unsigned int i;
695
696 dma_sync_sg_for_cpu(&zx297510spi->adev->dev,
697 zx297510spi->sgt_rx.sgl,
698 zx297510spi->sgt_rx.nents,
699 DMA_FROM_DEVICE);
700
701 for_each_sg(zx297510spi->sgt_rx.sgl, sg, zx297510spi->sgt_rx.nents, i) {
702 dev_dbg(&zx297510spi->adev->dev, "SPI RX SG ENTRY: %d", i);
703 print_hex_dump(KERN_ERR, "SPI RX: ",
704 DUMP_PREFIX_OFFSET,
705 16,
706 1,
707 sg_virt(sg),
708 sg_dma_len(sg),
709 1);
710 }
711 for_each_sg(zx297510spi->sgt_tx.sgl, sg, zx297510spi->sgt_tx.nents, i) {
712 dev_dbg(&zx297510spi->adev->dev, "SPI TX SG ENTRY: %d", i);
713 print_hex_dump(KERN_ERR, "SPI TX: ",
714 DUMP_PREFIX_OFFSET,
715 16,
716 1,
717 sg_virt(sg),
718 sg_dma_len(sg),
719 1);
720 }
721 }
722#endif
723
724 unmap_free_dma_scatter(zx297510spi);
725
726 /* Update total bytes transferred */
727 msg->actual_length += zx297510spi->cur_transfer->len;
728 /*if (zx297510spi->cur_transfer->cs_change)
729 zx297510spi->cur_chip->
730 cs_control(SSP_CHIP_DESELECT);*/
731
732 /* Move to next transfer */
733 msg->state = next_transfer(zx297510spi);
734 tasklet_schedule(&zx297510spi->pump_transfers);
735}
736
737static void setup_dma_scatter(struct zx297510_spi *zx297510spi,
738 void *buffer,
739 unsigned int length,
740 struct sg_table *sgtab)
741{
742 struct scatterlist *sg;
743 int bytesleft = length;
744 void *bufp = buffer;
745 int mapbytes;
746 int i;
747
748 if (buffer) {
749 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
750 /*
751 * If there are less bytes left than what fits
752 * in the current page (plus page alignment offset)
753 * we just feed in this, else we stuff in as much
754 * as we can.
755 */
756 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
757 mapbytes = bytesleft;
758 else
759 mapbytes = PAGE_SIZE - offset_in_page(bufp);
760 sg_set_page(sg, virt_to_page(bufp),
761 mapbytes, offset_in_page(bufp));
762 bufp += mapbytes;
763 bytesleft -= mapbytes;
764 dev_dbg(&zx297510spi->pdev->dev,
765 "set RX/TX target page @ %p, %d bytes, %d left\n",
766 bufp, mapbytes, bytesleft);
767 }
768 } else {
769 /* Map the dummy buffer on every page */
770 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
771 if (bytesleft < PAGE_SIZE)
772 mapbytes = bytesleft;
773 else
774 mapbytes = PAGE_SIZE;
775 sg_set_page(sg, virt_to_page(zx297510spi->dummypage),
776 mapbytes, 0);
777 bytesleft -= mapbytes;
778 dev_dbg(&zx297510spi->pdev->dev,
779 "set RX/TX to dummy page %d bytes, %d left\n",
780 mapbytes, bytesleft);
781
782 }
783 }
784 BUG_ON(bytesleft);
785}
786
787/**
788 * configure_dma - configures the channels for the next transfer
789 * @pl022: SSP driver's private data structure
790 */
791static int configure_dma(struct zx297510_spi *zx297510spi)
792{
793 struct dma_slave_config rx_conf = {
794 .src_addr = SPI_DR(zx297510spi->phybase),
795 .direction = DMA_DEV_TO_MEM,
796 .device_fc = false,
797 };
798 struct dma_slave_config tx_conf = {
799 .dst_addr = SPI_DR(zx297510spi->phybase),
800 .direction = DMA_MEM_TO_DEV,
801 .device_fc = false,
802 };
803 unsigned int pages;
804 int ret;
805 int rx_sglen, tx_sglen;
806 struct dma_chan *rxchan = zx297510spi->dma_rx_channel;
807 struct dma_chan *txchan = zx297510spi->dma_tx_channel;
808 struct dma_async_tx_descriptor *rxdesc;
809 struct dma_async_tx_descriptor *txdesc;
810
811 /* Check that the channels are available */
812 if (!rxchan || !txchan)
813 return -ENODEV;
814
815 /*
816 * If supplied, the DMA burstsize should equal the FIFO trigger level.
817 * Notice that the DMA engine uses one-to-one mapping. Since we can
818 * not trigger on 2 elements this needs explicit mapping rather than
819 * calculation.
820 */
821 switch (zx297510spi->rx_lev_trig) {
822 case SPI_RX_1_OR_MORE_ELEM:
823 rx_conf.src_maxburst = 1;
824 break;
825 case SPI_RX_4_OR_MORE_ELEM:
826 rx_conf.src_maxburst = 4;
827 break;
828 case SPI_RX_8_OR_MORE_ELEM:
829 rx_conf.src_maxburst = 8;
830 break;
831 case SPI_RX_16_OR_MORE_ELEM:
832 rx_conf.src_maxburst = 16;
833 break;
834 case SPI_RX_32_OR_MORE_ELEM:
835 rx_conf.src_maxburst = 32;
836 break;
837 default:
838 rx_conf.src_maxburst = zx297510spi->vendor->fifodepth >> 1;
839 break;
840 }
841
842 switch (zx297510spi->tx_lev_trig) {
843 case SPI_TX_1_OR_MORE_EMPTY_LOC:
844 tx_conf.dst_maxburst = 1;
845 break;
846 case SPI_TX_4_OR_MORE_EMPTY_LOC:
847 tx_conf.dst_maxburst = 4;
848 break;
849 case SPI_TX_8_OR_MORE_EMPTY_LOC:
850 tx_conf.dst_maxburst = 8;
851 break;
852 case SPI_TX_16_OR_MORE_EMPTY_LOC:
853 tx_conf.dst_maxburst = 16;
854 break;
855 case SPI_TX_32_OR_MORE_EMPTY_LOC:
856 tx_conf.dst_maxburst = 32;
857 break;
858 default:
859 tx_conf.dst_maxburst = zx297510spi->vendor->fifodepth >> 1;
860 break;
861 }
862
863 switch (zx297510spi->read) {
864 case READING_NULL:
865 /* Use the same as for writing */
866 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
867 break;
868 case READING_U8:
869 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
870 break;
871 case READING_U16:
872 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
873 break;
874 case READING_U32:
875 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
876 break;
877 }
878
879 switch (zx297510spi->write) {
880 case WRITING_NULL:
881 /* Use the same as for reading */
882 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
883 break;
884 case WRITING_U8:
885 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
886 break;
887 case WRITING_U16:
888 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
889 break;
890 case WRITING_U32:
891 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
892 break;
893 }
894
895 /* SPI pecularity: we need to read and write the same width */
896 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
897 rx_conf.src_addr_width = tx_conf.dst_addr_width;
898 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
899 tx_conf.dst_addr_width = rx_conf.src_addr_width;
900 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
901
902 dmaengine_slave_config(rxchan, &rx_conf);
903 dmaengine_slave_config(txchan, &tx_conf);
904
905 /* Create sglists for the transfers */
906 pages = DIV_ROUND_UP(zx297510spi->cur_transfer->len, PAGE_SIZE);
907 dev_dbg(&zx297510spi->pdev->dev, "using %d pages for transfer\n", pages);
908
909 ret = sg_alloc_table(&zx297510spi->sgt_rx, pages, GFP_ATOMIC);
910 if (ret)
911 goto err_alloc_rx_sg;
912
913 ret = sg_alloc_table(&zx297510spi->sgt_tx, pages, GFP_ATOMIC);
914 if (ret)
915 goto err_alloc_tx_sg;
916
917 /* Fill in the scatterlists for the RX+TX buffers */
918 setup_dma_scatter(zx297510spi, zx297510spi->rx,
919 zx297510spi->cur_transfer->len, &zx297510spi->sgt_rx);
920 setup_dma_scatter(zx297510spi, zx297510spi->tx,
921 zx297510spi->cur_transfer->len, &zx297510spi->sgt_tx);
922
923 /* Map DMA buffers */
924 rx_sglen = dma_map_sg(rxchan->device->dev, zx297510spi->sgt_rx.sgl,
925 zx297510spi->sgt_rx.nents, DMA_FROM_DEVICE);
926 if (!rx_sglen)
927 goto err_rx_sgmap;
928
929 tx_sglen = dma_map_sg(txchan->device->dev, zx297510spi->sgt_tx.sgl,
930 zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
931 if (!tx_sglen)
932 goto err_tx_sgmap;
933
934 /* Send both scatterlists */
935 rxdesc = dmaengine_prep_slave_sg(rxchan,
936 zx297510spi->sgt_rx.sgl,
937 rx_sglen,
938 DMA_DEV_TO_MEM,
939 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
940 if (!rxdesc)
941 goto err_rxdesc;
942
943 txdesc = dmaengine_prep_slave_sg(txchan,
944 zx297510spi->sgt_tx.sgl,
945 tx_sglen,
946 DMA_MEM_TO_DEV,
947 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
948 if (!txdesc)
949 goto err_txdesc;
950
951 /* Put the callback on the RX transfer only, that should finish last */
952 rxdesc->callback = dma_callback;
953 rxdesc->callback_param = zx297510spi;
954
955 /* Submit and fire RX and TX with TX last so we're ready to read! */
956 dmaengine_submit(rxdesc);
957 dmaengine_submit(txdesc);
958 dma_async_issue_pending(rxchan);
959 dma_async_issue_pending(txchan);
960 zx297510spi->dma_running = true;
961
962 return 0;
963
964err_txdesc:
965 dmaengine_terminate_all(txchan);
966err_rxdesc:
967 dmaengine_terminate_all(rxchan);
968 dma_unmap_sg(txchan->device->dev, zx297510spi->sgt_tx.sgl,
969 zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
970err_tx_sgmap:
971 dma_unmap_sg(rxchan->device->dev, zx297510spi->sgt_rx.sgl,
972 zx297510spi->sgt_tx.nents, DMA_FROM_DEVICE);
973err_rx_sgmap:
974 sg_free_table(&zx297510spi->sgt_tx);
975err_alloc_tx_sg:
976 sg_free_table(&zx297510spi->sgt_rx);
977err_alloc_rx_sg:
978 return -ENOMEM;
979}
980
981static int __devinit zx297510_dma_probe(struct zx297510_spi *zx297510spi)
982{
983 dma_cap_mask_t mask;
984
985 /* Try to acquire a generic DMA engine slave channel */
986 dma_cap_zero(mask);
987 dma_cap_set(DMA_SLAVE, mask);
988 /*
989 * We need both RX and TX channels to do DMA, else do none
990 * of them.
991 */
992 zx297510spi->dma_rx_channel = dma_request_channel(mask,
993 zx297510spi->master_info->dma_filter,
994 zx297510spi->master_info->dma_rx_param);
995 if (!zx297510spi->dma_rx_channel) {
996 dev_dbg(&zx297510spi->pdev->dev, "no RX DMA channel!\n");
997 goto err_no_rxchan;
998 }
999
1000 zx297510spi->dma_tx_channel = dma_request_channel(mask,
1001 zx297510spi->master_info->dma_filter,
1002 zx297510spi->master_info->dma_tx_param);
1003 if (!zx297510spi->dma_tx_channel) {
1004 dev_dbg(&zx297510spi->pdev->dev, "no TX DMA channel!\n");
1005 goto err_no_txchan;
1006 }
1007
1008 zx297510spi->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1009 if (!zx297510spi->dummypage) {
1010 dev_dbg(&zx297510spi->pdev->dev, "no DMA dummypage!\n");
1011 goto err_no_dummypage;
1012 }
1013
1014 dev_info(&zx297510spi->pdev->dev, "setup for DMA on RX %s, TX %s\n",
1015 dma_chan_name(zx297510spi->dma_rx_channel),
1016 dma_chan_name(zx297510spi->dma_tx_channel));
1017
1018 return 0;
1019
1020err_no_dummypage:
1021 dma_release_channel(zx297510spi->dma_tx_channel);
1022err_no_txchan:
1023 dma_release_channel(zx297510spi->dma_rx_channel);
1024 zx297510spi->dma_rx_channel = NULL;
1025err_no_rxchan:
1026 dev_err(&zx297510spi->pdev->dev,
1027 "Failed to work in dma mode, work without dma!\n");
1028 return -ENODEV;
1029}
1030
1031static void terminate_dma(struct zx297510_spi *zx297510spi)
1032{
1033 struct dma_chan *rxchan = zx297510spi->dma_rx_channel;
1034 struct dma_chan *txchan = zx297510spi->dma_tx_channel;
1035
1036 dmaengine_terminate_all(rxchan);
1037 dmaengine_terminate_all(txchan);
1038 unmap_free_dma_scatter(zx297510spi);
1039 zx297510spi->dma_running = false;
1040}
1041
1042static void zx297510_dma_remove(struct zx297510_spi *zx297510spi)
1043{
1044 if (zx297510spi->dma_running)
1045 terminate_dma(zx297510spi);
1046 if (zx297510spi->dma_tx_channel)
1047 dma_release_channel(zx297510spi->dma_tx_channel);
1048 if (zx297510spi->dma_rx_channel)
1049 dma_release_channel(zx297510spi->dma_rx_channel);
1050 kfree(zx297510spi->dummypage);
1051}
1052
1053#else
1054static inline int configure_dma(struct zx297510_spi *zx297510spi)
1055{
1056 return -ENODEV;
1057}
1058
1059static inline int zx297510_dma_probe(struct zx297510_spi *zx297510spi)
1060{
1061 return 0;
1062}
1063
1064static inline void zx297510_dma_remove(struct zx297510_spi *zx297510spi)
1065{
1066}
1067#endif
1068
1069/**
1070 * pl022_interrupt_handler - Interrupt handler for SSP controller
1071 *
1072 * This function handles interrupts generated for an interrupt based transfer.
1073 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1074 * current message's state as STATE_ERROR and schedule the tasklet
1075 * pump_transfers which will do the postprocessing of the current message by
1076 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1077 * more data, and writes data in TX FIFO till it is not full. If we complete
1078 * the transfer we move to the next transfer and schedule the tasklet.
1079 */
1080static irqreturn_t zx297510_interrupt_handler(int irq, void *dev_id)
1081{
1082 struct zx297510_spi *zx297510spi = dev_id;
1083 struct spi_message *msg = zx297510spi->cur_msg;
1084 u32 irq_status = 0;
1085 u16 flag = 0;
1086
1087 dev_dbg(&zx297510spi->pdev->dev,"in function %s \n", __FUNCTION__);
1088
1089 if (unlikely(!msg)) {
1090 dev_err(&zx297510spi->pdev->dev,
1091 "bad message state in interrupt handler");
1092 /* Never fail */
1093 return IRQ_HANDLED;
1094 }
1095
1096 /* Read the Interrupt Status Register */
1097 irq_status = readl(SPI_INTR_SR_SCLR(zx297510spi->virtbase));
1098 /* clear all Interrupt */
1099 writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
1100
1101 dev_dbg(&zx297510spi->pdev->dev, "irq status 0x%X", irq_status);
1102
1103 if (unlikely(!irq_status))
1104 return IRQ_NONE;
1105
1106 /*
1107 * This handles the FIFO interrupts, the timeout
1108 * interrupts are flatly ignored, they cannot be
1109 * trusted.
1110 */
1111 if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR)
1112 || unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR) ) {
1113 /*
1114 * Overrun interrupt - bail out since our Data has been
1115 * corrupted
1116 */
1117 if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR) )
1118 dev_err(&zx297510spi->pdev->dev, "RXFIFO is OVERRUN \n");
1119 if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR))
1120 dev_err(&zx297510spi->pdev->dev, "TXFIFO is UNDERRUN \n");
1121
1122 /*
1123 * Disable and clear interrupts, disable SSP,
1124 * mark message with bad status so it can be
1125 * retried.
1126 */
1127 writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
1128 writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
1129 writel((readl(SPI_COM_CTRL(zx297510spi->virtbase)) & (~SPI_COM_CTRL_MASK_SSPE)),
1130 SPI_COM_CTRL(zx297510spi->virtbase));
1131 msg->state = STATE_ERROR;
1132
1133 /* Schedule message queue handler */
1134 tasklet_schedule(&zx297510spi->pump_transfers);
1135 return IRQ_HANDLED;
1136 }
1137
1138 if (zx297510spi->rx != NULL )
1139 readwriter(zx297510spi);
1140 else
1141 write(zx297510spi);
1142
1143 dev_dbg( &zx297510spi->pdev->dev, "%s tx %p tx_end %p rx %p rx_end %p\n", __FUNCTION__,
1144 zx297510spi->tx,
1145 zx297510spi->tx_end,
1146 zx297510spi->rx,
1147 zx297510spi->rx_end);
1148
1149 if ((zx297510spi->tx == zx297510spi->tx_end) && (flag == 0)) {
1150 u32 irq_flag = SPI_INTR_EN_MASK_RX_FULL_IE|SPI_INTR_EN_MASK_RX_OVERRUN_IE|SPI_INTR_EN_MASK_RX_THRES_IE;
1151 flag = 1;
1152 /* Disable Transmit interrupt, enable receive interrupt */
1153 /*writel((readl(SPI_INTR_EN(zx297510spi->virtbase)) &
1154 ~SSP_CR1_MASK_TIE) | SSP_CR1_MASK_RIE,
1155 SSP_CR1(zx297502ssp->virtbase));*/
1156 writel(irq_flag, SPI_INTR_EN(zx297510spi ->virtbase));
1157 }
1158
1159 /*
1160 * Since all transactions must write as much as shall be read,
1161 * we can conclude the entire transaction once RX is complete.
1162 * At this point, all TX will always be finished.
1163 */
1164 if (zx297510spi->rx >= zx297510spi->rx_end) {
1165 /*writew(DISABLE_ALL_INTERRUPTS,
1166 SSP_IMSC(pl022->virtbase));*/
1167 writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
1168 writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
1169 if (unlikely(zx297510spi->rx > zx297510spi->rx_end)) {
1170 dev_warn(&zx297510spi->pdev->dev, "read %u surplus "
1171 "bytes (did you request an odd "
1172 "number of bytes on a 16bit bus?)\n",
1173 (u32) (zx297510spi->rx - zx297510spi->rx_end));
1174 }
1175 /* Update total bytes transferred */
1176 msg->actual_length += zx297510spi->cur_transfer->len;
1177// if (zx297502ssp->cur_transfer->cs_change)
1178// zx297502ssp->cur_chip->cs_control(SSP_CHIP_DESELECT);
1179 /* Move to next transfer */
1180 msg->state = next_transfer(zx297510spi);
1181 tasklet_schedule(&zx297510spi->pump_transfers);
1182 return IRQ_HANDLED;
1183 }
1184 return IRQ_HANDLED;
1185}
1186
1187/**
1188 * This sets up the pointers to memory for the next message to
1189 * send out on the SPI bus.
1190 */
1191static int set_up_next_transfer(struct zx297510_spi *zx297510spi,
1192 struct spi_transfer *transfer)
1193{
1194 int residue;
1195
1196 /* Sanity check the message for this bus width */
1197 residue = zx297510spi->cur_transfer->len % zx297510spi->cur_chip->n_bytes;
1198 if (unlikely(residue != 0)) {
1199 dev_err(&zx297510spi->pdev->dev,
1200 "message of %u bytes to transmit but the current "
1201 "chip bus has a data width of %u bytes!\n",
1202 zx297510spi->cur_transfer->len,
1203 zx297510spi->cur_chip->n_bytes);
1204 dev_err(&zx297510spi->pdev->dev, "skipping this message\n");
1205 return -EIO;
1206 }
1207 if((void *)transfer->tx_buf != NULL){
1208 zx297510spi->tx = (void *)transfer->tx_buf;
1209 zx297510spi->tx_end = zx297510spi->tx + zx297510spi->cur_transfer->len;
1210 }
1211 if((void *)transfer->rx_buf != NULL){
1212 zx297510spi->rx = (void *)transfer->rx_buf;
1213 zx297510spi->rx_end = zx297510spi->rx + zx297510spi->cur_transfer->len;
1214 }
1215 zx297510spi->write =
1216 zx297510spi->tx ? zx297510spi->cur_chip->write : WRITING_NULL;
1217 zx297510spi->read = zx297510spi->rx ? zx297510spi->cur_chip->read : READING_NULL;
1218 return 0;
1219}
1220
1221/**
1222 * pump_transfers - Tasklet function which schedules next transfer
1223 * when running in interrupt or DMA transfer mode.
1224 * @data: SSP driver private data structure
1225 *
1226 */
1227static void pump_transfers(unsigned long data)
1228{
1229 struct zx297510_spi *zx297510spi = (struct zx297510_spi *) data;
1230 struct spi_message *message = NULL;
1231 struct spi_transfer *transfer = NULL;
1232 struct spi_transfer *previous = NULL;
1233
1234 dev_dbg(&zx297510spi->pdev->dev,"in function %s\n", __FUNCTION__);
1235
1236 /* Get current state information */
1237 message = zx297510spi->cur_msg;
1238 transfer = zx297510spi->cur_transfer;
1239
1240 /* Handle for abort */
1241 if (message->state == STATE_ERROR) {
1242 message->status = -EIO;
1243 giveback(zx297510spi);
1244 return;
1245 }
1246
1247 /* Handle end of message */
1248 if (message->state == STATE_DONE) {
1249 message->status = 0;
1250 giveback(zx297510spi);
1251 return;
1252 }
1253
1254 /* Delay if requested at end of transfer before CS change */
1255 if (message->state == STATE_RUNNING) {
1256 previous = list_entry(transfer->transfer_list.prev,
1257 struct spi_transfer,
1258 transfer_list);
1259 if (previous->delay_usecs)
1260 /*
1261 * FIXME: This runs in interrupt context.
1262 * Is this really smart?
1263 */
1264 udelay(previous->delay_usecs);
1265
1266 /* Reselect chip select only if cs_change was requested */
1267// if (previous->cs_change)
1268// zx297510spi->cur_chip->cs_control(SSP_CHIP_SELECT);
1269 } else {
1270 /* STATE_START */
1271 message->state = STATE_RUNNING;
1272 }
1273
1274 if (set_up_next_transfer(zx297510spi, transfer)) {
1275 message->state = STATE_ERROR;
1276 message->status = -EIO;
1277 giveback(zx297510spi);
1278 return;
1279 }
1280 /* Flush the FIFOs and let's go! */
1281 flush(zx297510spi);
1282
1283 if (zx297510spi->cur_chip->enable_dma) {
1284 if (configure_dma(zx297510spi)) {
1285 dev_dbg(&zx297510spi->pdev->dev,
1286 "configuration of DMA failed, fall back to interrupt mode\n");
1287 goto err_config_dma;
1288 }
1289 return;
1290 }
1291
1292err_config_dma:
1293 /* enable all interrupts except RX */
1294 writel( (SPI_INTR_EN_MASK_TX_UNDERRUN_IE | SPI_INTR_EN_MASK_TX_THRES_IE | SPI_INTR_EN_MASK_TX_EMPTY_IE),
1295 SPI_INTR_EN(zx297510spi->virtbase) );
1296 // writew((readl(SSP_CR1(zx297502ssp->virtbase))|SSP_CR1_MASK_TIE|SSP_CR1_MASK_RORIE)&(~SSP_CR1_MASK_RIE),
1297 // SSP_CR1(zx297502ssp->virtbase));
1298}
1299
1300static void do_interrupt_dma_transfer(struct zx297510_spi *zx297510spi)
1301{
1302 /*
1303 * Default is to enable all interrupts except RX -
1304 * this will be enabled once TX is complete
1305 */
1306 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1307
1308 dev_dbg(&zx297510spi->pdev->dev,"in function %s\n", __FUNCTION__);
1309
1310 /* Enable target chip, if not already active */
1311 //if (!zx297502ssp->next_msg_cs_active)
1312 // zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
1313
1314 if (set_up_next_transfer(zx297510spi, zx297510spi->cur_transfer)) {
1315 /* Error path */
1316 zx297510spi->cur_msg->state = STATE_ERROR;
1317 zx297510spi->cur_msg->status = -EIO;
1318 giveback(zx297510spi);
1319 return;
1320 }
1321 /* If we're using DMA, set up DMA here */
1322 if (zx297510spi->cur_chip->enable_dma) {
1323 /* Configure DMA transfer */
1324 if (configure_dma(zx297510spi)) {
1325 dev_dbg(&zx297510spi->pdev->dev,
1326 "configuration of DMA failed, fall back to interrupt mode\n");
1327 goto err_config_dma;
1328 }
1329 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1330 irqflags = DISABLE_ALL_INTERRUPTS;
1331 }
1332
1333 if(zx297510spi ->tx != NULL && zx297510spi ->rx != NULL){
1334 /* enable all interrupts */
1335 irqflags = ENABLE_ALL_INTERRUPTS;
1336 }else if(zx297510spi->tx != NULL){
1337 /*enable tx interrupts*/
1338 irqflags = SPI_INTR_EN_MASK_TX_EMPTY_IE
1339 |SPI_INTR_EN_MASK_TX_THRES_IE
1340 |SPI_INTR_EN_MASK_TX_UNDERRUN_IE;
1341 }
1342err_config_dma:
1343 /* Enable SSP, turn on interrupts */
1344 writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) | SPI_COM_CTRL_MASK_SSPE,
1345 SPI_COM_CTRL(zx297510spi->virtbase));
1346
1347 /* config interrupts */
1348 writel(irqflags, SPI_INTR_EN(zx297510spi->virtbase));
1349
1350 /*writew(irqflags, SSP_IMSC(zx297502ssp->virtbase));*/
1351}
1352
1353static void do_polling_transfer(struct zx297510_spi *zx297510spi)
1354{
1355 struct spi_message *message = NULL;
1356 struct spi_transfer *transfer = NULL;
1357 struct spi_transfer *previous = NULL;
1358 struct chip_data *chip;
1359 unsigned long time, timeout;
1360
1361 chip = zx297510spi->cur_chip;
1362 message = zx297510spi->cur_msg;
1363
1364 while (message->state != STATE_DONE) {
1365 /* Handle for abort */
1366 if (message->state == STATE_ERROR)
1367 break;
1368 transfer = zx297510spi->cur_transfer;
1369
1370 /* Delay if requested at end of transfer */
1371 if (message->state == STATE_RUNNING) {
1372 previous =
1373 list_entry(transfer->transfer_list.prev,
1374 struct spi_transfer, transfer_list);
1375 if (previous->delay_usecs)
1376 udelay(previous->delay_usecs);
1377 //if (previous->cs_change)
1378 // zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
1379 } else {
1380 /* STATE_START */
1381 message->state = STATE_RUNNING;
1382 //if (!zx297502ssp->next_msg_cs_active)
1383 // zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
1384 }
1385
1386 /* Configuration Changing Per Transfer */
1387 if (set_up_next_transfer(zx297510spi, transfer)) {
1388 /* Error path */
1389 message->state = STATE_ERROR;
1390 break;
1391 }
1392 /* Flush FIFOs and enable SSP */
1393 flush(zx297510spi);
1394 //writel((readl(SSP_CR1(zx297502ssp->virtbase)) | SSP_CR1_MASK_SSE),
1395 // SSP_CR1(zx297502ssp->virtbase));
1396 writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) | SPI_COM_CTRL_MASK_SSPE,
1397 SPI_COM_CTRL(zx297510spi->virtbase));
1398
1399 dev_dbg(&zx297510spi->pdev->dev, "polling transfer ongoing ...\n");
1400
1401 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1402
1403 if(zx297510spi->tx != NULL && zx297510spi->rx != NULL )
1404 { /*read and write*/
1405 while (zx297510spi->tx < zx297510spi->tx_end || zx297510spi->rx < zx297510spi->rx_end) {
1406 time = jiffies;
1407 readwriter(zx297510spi);
1408 if (time_after(time, timeout)) {
1409 dev_warn(&zx297510spi->pdev->dev,
1410 "%s: timeout!\n", __func__);
1411 message->state = STATE_ERROR;
1412 goto out;
1413 }
1414 cpu_relax();
1415 }
1416 }
1417 else if (zx297510spi->tx != NULL )
1418 {/* only write */
1419 while (zx297510spi->tx < zx297510spi->tx_end ) {
1420 time = jiffies;
1421 write(zx297510spi);
1422 if (time_after(time, timeout)) {
1423 dev_warn(&zx297510spi->pdev->dev,
1424 "%s: timeout!\n", __func__);
1425 message->state = STATE_ERROR;
1426 goto out;
1427 }
1428 cpu_relax();
1429 }
1430 }
1431 /* Update total byte transferred */
1432 message->actual_length += zx297510spi->cur_transfer->len;
1433// if (zx297510spi->cur_transfer->cs_change)
1434// zx297510spi->cur_chip->cs_control(SSP_CHIP_DESELECT);
1435 /* Move to next transfer */
1436 message->state = next_transfer(zx297510spi);
1437 }
1438out:
1439 /* Handle end of message */
1440 if (message->state == STATE_DONE)
1441 message->status = 0;
1442 else
1443 message->status = -EIO;
1444
1445 giveback(zx297510spi);
1446 return;
1447}
1448
1449static int zx297510_transfer_one_message(struct spi_master *master,
1450 struct spi_message *msg)
1451{
1452 struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
1453
1454 //printk(KERN_INFO "ssp:in function %s \n", __FUNCTION__);
1455
1456 /* Initial message state */
1457 zx297510spi->cur_msg = msg;
1458 msg->state = STATE_START;
1459
1460 zx297510spi->cur_transfer = list_entry(msg->transfers.next,
1461 struct spi_transfer, transfer_list);
1462
1463 /* Setup the SPI using the per chip configuration */
1464 zx297510spi->cur_chip = spi_get_ctldata(msg->spi);
1465
1466 restore_state(zx297510spi);
1467 flush(zx297510spi);
1468
1469 if (zx297510spi->cur_chip->xfer_type == POLLING_TRANSFER)
1470 do_polling_transfer(zx297510spi);
1471 else
1472 do_interrupt_dma_transfer(zx297510spi);
1473
1474 return 0;
1475}
1476
1477static int zx297510_prepare_transfer_hardware(struct spi_master *master)
1478{
1479// struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
1480
1481 //dev_warn(&zx297502ssp->pdev->dev,"in function %s\n", __FUNCTION__);
1482
1483 #if 0
1484 /*
1485 * Just make sure we have all we need to run the transfer by syncing
1486 * with the runtime PM framework.
1487 */
1488 pm_runtime_get_sync(&pl022->adev->dev);
1489 #endif
1490 return 0;
1491}
1492
1493static int zx297510_unprepare_transfer_hardware(struct spi_master *master)
1494{
1495 struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
1496
1497 //dev_warn(&zx297502ssp->pdev->dev,"in function %s\n", __FUNCTION__);
1498
1499 /* nothing more to do - disable spi/ssp and power off */
1500 writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) & ~ SPI_COM_CTRL_MASK_SSPE,
1501 SPI_COM_CTRL(zx297510spi->virtbase));
1502 #if 0
1503 if (pl022->master_info->autosuspend_delay > 0) {
1504 pm_runtime_mark_last_busy(&pl022->adev->dev);
1505 pm_runtime_put_autosuspend(&pl022->adev->dev);
1506 } else {
1507 pm_runtime_put(&pl022->adev->dev);
1508 }
1509 #endif
1510 return 0;
1511}
1512
1513static int verify_controller_parameters(struct zx297510_spi *zx297510spi,
1514 struct spi_config_chip const *chip_info)
1515{
1516 if ((chip_info->iface < SPI_INTERFACE_MOTOROLA_SPI)
1517 || (chip_info->iface > SPI_INTERFACE_TI_SYNC_SERIAL)) {
1518 dev_err(&zx297510spi->pdev->dev,
1519 "interface is configured incorrectly\n");
1520 return -EINVAL;
1521 }
1522
1523 if ((chip_info->hierarchy != SPI_MASTER)
1524 && (chip_info->hierarchy != SPI_SLAVE)) {
1525 dev_err(&zx297510spi->pdev->dev,
1526 "hierarchy is configured incorrectly\n");
1527 return -EINVAL;
1528 }
1529 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1530 && (chip_info->com_mode != DMA_TRANSFER)
1531 && (chip_info->com_mode != POLLING_TRANSFER)) {
1532 dev_err(&zx297510spi->pdev->dev,
1533 "Communication mode is configured incorrectly\n");
1534 return -EINVAL;
1535 }
1536 switch (chip_info->rx_lev_trig) {
1537 case SPI_RX_1_OR_MORE_ELEM:
1538 case SPI_RX_4_OR_MORE_ELEM:
1539 case SPI_RX_8_OR_MORE_ELEM:
1540 /* These are always OK, all variants can handle this */
1541 break;
1542 case SPI_RX_16_OR_MORE_ELEM:
1543 if (zx297510spi->vendor->fifodepth < 16) {
1544 dev_err(&zx297510spi->pdev->dev,
1545 "RX FIFO Trigger Level is configured incorrectly\n");
1546 return -EINVAL;
1547 }
1548 break;
1549 case SPI_RX_32_OR_MORE_ELEM:
1550 if (zx297510spi->vendor->fifodepth < 32) {
1551 dev_err(&zx297510spi->pdev->dev,
1552 "RX FIFO Trigger Level is configured incorrectly\n");
1553 return -EINVAL;
1554 }
1555 break;
1556 default:
1557 dev_err(&zx297510spi->pdev->dev,
1558 "RX FIFO Trigger Level is configured incorrectly\n");
1559 return -EINVAL;
1560 break;
1561 }
1562 switch (chip_info->tx_lev_trig) {
1563 case SPI_TX_1_OR_MORE_EMPTY_LOC:
1564 case SPI_TX_4_OR_MORE_EMPTY_LOC:
1565 case SPI_TX_8_OR_MORE_EMPTY_LOC:
1566 /* These are always OK, all variants can handle this */
1567 break;
1568 case SPI_TX_16_OR_MORE_EMPTY_LOC:
1569 if (zx297510spi->vendor->fifodepth < 16) {
1570 dev_err(&zx297510spi->pdev->dev,
1571 "TX FIFO Trigger Level is configured incorrectly\n");
1572 return -EINVAL;
1573 }
1574 break;
1575 case SPI_TX_32_OR_MORE_EMPTY_LOC:
1576 if (zx297510spi->vendor->fifodepth < 32) {
1577 dev_err(&zx297510spi->pdev->dev,
1578 "TX FIFO Trigger Level is configured incorrectly\n");
1579 return -EINVAL;
1580 }
1581 break;
1582 default:
1583 dev_err(&zx297510spi->pdev->dev,
1584 "TX FIFO Trigger Level is configured incorrectly\n");
1585 return -EINVAL;
1586 break;
1587 }
1588
1589 return 0;
1590}
1591
1592static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1593{
1594 return rate / (cpsdvsr * (1 + scr));
1595}
1596
1597static int calculate_effective_freq(struct zx297510_spi *zx297510spi, u32 freq, u8* div)
1598{
1599 u8 clk_div;
1600 /*div from src clk 104M*/
1601 /* f(ssp_clk) = 2*f(ssp_sclk_out) */
1602 clk_div = zx297510spi->clkfreq /( freq *2);
1603 if( clk_div < DIV_MIN+1 || clk_div > DIV_MAX+1 )
1604 {
1605 dev_err(&zx297510spi->pdev->dev, "error!!! speed is %d Hz out of rang",freq );
1606 return -ENOTSUPP;
1607 }
1608 *div = clk_div;
1609 return 0;
1610}
1611
1612static struct vendor_data vendor_arm = {
1613 .fifodepth = 16,
1614 .max_bpw = 32,
1615 .loopback = true,
1616};
1617static struct resource spi_gpio_resources[] ={
1618 [0]={
1619 .start = GPIO_AP_SPI_TXD,
1620 .end = GPIO_AP_SPI_TXD,
1621 .name = "txd",
1622 .flags = IORESOURCE_IO,
1623 },
1624 [1]={
1625 .start = GPIO_AP_SPI_CLK,
1626 .end = GPIO_AP_SPI_CLK,
1627 .name = "clk",
1628 .flags = IORESOURCE_IO,
1629 },
1630 [2]={
1631 .start = GPIO_AP_SPI_CS,
1632 .end = GPIO_AP_SPI_CS,
1633 .name = "cs",
1634 .flags = IORESOURCE_IO,
1635 },
1636#if 0
1637 [3]={
1638 .start = GPIO_AP_SPI_RXD,
1639 .end = GPIO_AP_SPI_RXD,
1640 .name = "rxd",
1641 .flags = IORESOURCE_IO,
1642 }
1643#endif
1644};
1645/*
1646 * A piece of default chip info unless the platform
1647 * supplies it.
1648 */
1649static const struct spi_config_chip spi_default_chip_info = {
1650 .com_mode = POLLING_TRANSFER,
1651 .iface = SPI_INTERFACE_MOTOROLA_SPI,
1652 .hierarchy = SPI_MASTER,
1653 .slave_tx_disable = DO_NOT_DRIVE_TX,
1654 .rx_lev_trig = SPI_RX_8_OR_MORE_ELEM,
1655 .tx_lev_trig = SPI_TX_8_OR_MORE_EMPTY_LOC,
1656// .ctrl_len = SSP_BITS_8,
1657// .wait_state = SSP_MWIRE_WAIT_ZERO,
1658// .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1659 .cs_control = null_cs_control,
1660};
1661
1662/*
1663* spi ʹÓÃGPIOģʽ¶ÁÈ¡LCD µÄID Begin
1664*/
1665#define SPI_GPIO_FUNCTION 1
1666#define SPI_GPIO_GPIO 0
1667
1668#define SPI_GPIO_HIGH 1
1669#define SPI_GPIO_LOW 0
1670
1671static void spi_set_gpio_function(void)
1672{
1673 //TODO:ÉèÖÃGPIOΪ¹¦ÄܽÅ
1674 zx29_gpio1v8_function_sel(GPIO_AP_SPI_CS, SPI_GPIO_FUNCTION);
1675 zx29_gpio1v8_function_sel(GPIO_AP_SPI_CLK,SPI_GPIO_FUNCTION);
1676// zx29_gpio1v8_function_sel(GPIO_AP_SPI_RXD,SPI_GPIO_FUNCTION);
1677 zx29_gpio1v8_function_sel(GPIO_AP_SPI_TXD,SPI_GPIO_FUNCTION);
1678}
1679static void spi_set_gpio_gpio(void)
1680{
1681 //TODO:ÉèÖÃGPIOΪGPIO½Å
1682 zx29_gpio1v8_function_sel(GPIO_AP_SPI_CS, SPI_GPIO_GPIO);
1683 zx29_gpio1v8_function_sel(GPIO_AP_SPI_CLK,SPI_GPIO_GPIO);
1684// zx29_gpio1v8_function_sel(GPIO_AP_SPI_RXD,SPI_GPIO_GPIO);
1685 zx29_gpio1v8_function_sel(GPIO_AP_SPI_TXD,SPI_GPIO_GPIO);
1686}
1687static void spi_set_gpio_val(int gpio_num, int val)
1688{
1689 gpio_direction_output(gpio_num, val);
1690}
1691
1692static int spi_get_gpio_val(int gpio_num)
1693{
1694 gpio_direction_input(gpio_num);
1695
1696 return gpio_get_value(gpio_num);
1697}
1698
1699static void spi_time_delay(int delay/*us*/)
1700{
1701 udelay(delay);
1702}
1703
1704void spi_gpio_mode_start(void)
1705{
1706 /* set clk tx rx cs to gpio */
1707 spi_set_gpio_gpio();
1708
1709 spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_HIGH);/* CSµÍÓÐЧ */
1710 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);/* clk¿ÕÏÐʱΪµÍ */
1711 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
1712 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
1713}
1714EXPORT_SYMBOL(spi_gpio_mode_start);
1715void spi_gpio_mode_stop(void)
1716{
1717 /* set clk tx rx cs to function */
1718 spi_set_gpio_function();
1719}
1720EXPORT_SYMBOL(spi_gpio_mode_stop);
1721/*******************************************************************************
1722 * Function:
1723 * Description:
1724 * Parameters:
1725 * Input:
1726 *
1727 * Output:
1728 *
1729 * Returns:
1730 *
1731 *
1732 * Others:
1733 ********************************************************************************/
1734void spi_gpio_write_single8(unsigned char data)
1735{
1736 int i;
1737
1738 spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_LOW);/* CSµÍÓÐЧ */
1739
1740 for( i=7; i>=0; i-- )
1741 {
1742 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
1743 if ((data >> i) & 0x1)
1744 {
1745 spi_set_gpio_val(GPIO_AP_SPI_TXD, SPI_GPIO_HIGH);
1746 }
1747 else
1748 {
1749 spi_set_gpio_val(GPIO_AP_SPI_TXD, SPI_GPIO_LOW);
1750 }
1751 spi_time_delay(50);
1752 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_HIGH);
1753 spi_time_delay(50);
1754 }
1755
1756}
1757EXPORT_SYMBOL(spi_gpio_write_single8);
1758/*******************************************************************************
1759 * Function:
1760 * Description:
1761 * Parameters:
1762 * Input:
1763 *
1764 * Output:
1765 *
1766 * Returns:
1767 *
1768 *
1769 * Others:
1770 ********************************************************************************/
1771unsigned char spi_gpio_read_single8(void)
1772{
1773 int i;
1774 unsigned char readData = 0;
1775
1776 spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_LOW);/* CSµÍÓÐЧ */
1777
1778 for( i=7; i>=0; i-- )
1779 {
1780 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
1781 spi_time_delay(50);
1782 spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_HIGH);
1783 if( spi_get_gpio_val(GPIO_AP_SPI_TXD) )/* lcd ¸´ÓÃtx rx */
1784 {
1785 readData |= (1 << i);
1786 }
1787 spi_time_delay(50);
1788 }
1789
1790 return readData;
1791}
1792EXPORT_SYMBOL(spi_gpio_read_single8);
1793
1794/*
1795* spi ʹÓÃGPIOģʽ¶ÁÈ¡LCD µÄID End
1796*/
1797
1798/**
1799 * pl022_setup - setup function registered to SPI master framework
1800 * @spi: spi device which is requesting setup
1801 *
1802 * This function is registered to the SPI framework for this SPI master
1803 * controller. If it is the first time when setup is called by this device,
1804 * this function will initialize the runtime state for this chip and save
1805 * the same in the device structure. Else it will update the runtime info
1806 * with the updated chip info. Nothing is really being written to the
1807 * controller hardware here, that is not done until the actual transfer
1808 * commence.
1809 */
1810static int zx297510_setup(struct spi_device *spi)
1811{
1812 struct spi_config_chip const *chip_info;
1813 struct chip_data *chip;
1814 u8 clk_div = 0;
1815 int status = 0;
1816 struct zx297510_spi *zx297510spi = spi_master_get_devdata(spi->master);
1817 unsigned int bits = spi->bits_per_word;
1818 u32 tmp;
1819
1820
1821 if (!spi->max_speed_hz)
1822 return -EINVAL;
1823
1824 /* Get controller_state if one is supplied */
1825 chip = spi_get_ctldata(spi);
1826
1827 if (chip == NULL) {
1828 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1829 if (!chip) {
1830 dev_err(&spi->dev,
1831 "cannot allocate controller state\n");
1832 return -ENOMEM;
1833 }
1834 dev_dbg(&spi->dev,
1835 "allocated memory for controller's runtime state\n");
1836 }
1837
1838 /* Get controller data if one is supplied */
1839 chip_info = spi->controller_data;
1840
1841 if (chip_info == NULL) {
1842 chip_info = &spi_default_chip_info;
1843 /* spi_board_info.controller_data not is supplied */
1844 dev_dbg(&spi->dev,
1845 "using default controller_data settings\n");
1846 } else
1847 dev_dbg(&spi->dev,
1848 "using user supplied controller_data settings\n");
1849
1850 /*
1851 * We can override with custom divisors, else we use the board
1852 * frequency setting
1853 */
1854
1855 status = calculate_effective_freq(zx297510spi,
1856 spi->max_speed_hz,
1857 &clk_div);
1858 if (status < 0)
1859 goto err_config_params;
1860
1861 chip ->clk_div = clk_div;
1862
1863 dev_dbg(&spi->dev, "clk dividor is %d\n", clk_div);
1864
1865 /* enable ssp clock source */
1866 clk_enable(zx297510spi->spi_clk);
1867
1868 /* set spi clock source at 104MHz/1 */
1869 // zx297510spi->spi_clk->ops->set_division(zx297510spi->spi_clk,chip ->clk_div-1);
1870 //writel(chip ->clk_div-1, M0_SSP_CLKDIV_REG_VA);
1871 clk_set_rate(zx297510spi->spi_clk, spi->max_speed_hz*2); /* f(ssp_clk) = 2*f(ssp_sclk_out) */
1872
1873 status = verify_controller_parameters(zx297510spi, chip_info);
1874 if (status) {
1875 dev_err(&spi->dev, "controller data is incorrect");
1876 goto err_config_params;
1877 }
1878
1879 zx297510spi->rx_lev_trig = chip_info->rx_lev_trig;
1880 zx297510spi->tx_lev_trig = chip_info->tx_lev_trig;
1881
1882 /* Now set controller state based on controller data */
1883 chip->xfer_type = chip_info->com_mode;
1884 /*
1885 if (!chip_info->cs_control) {
1886 chip->cs_control = null_cs_control;
1887 dev_warn(&spi->dev,
1888 "chip select function is NULL for this chip\n");
1889 } else
1890 chip->cs_control = chip_info->cs_control;*/
1891
1892 /* Check bits per word with vendor specific range */
1893 if ((bits <= 3) || (bits > zx297510spi->vendor->max_bpw)) {
1894 status = -ENOTSUPP;
1895 dev_err(&spi->dev, "illegal data size for this controller!\n");
1896 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1897 zx297510spi->vendor->max_bpw);
1898 goto err_config_params;
1899 } else if (bits <= 8) {
1900 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1901 chip->n_bytes = 1;
1902 chip->read = READING_U8;
1903 chip->write = WRITING_U8;
1904 } else if (bits <= 16) {
1905 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1906 chip->n_bytes = 2;
1907 chip->read = READING_U16;
1908 chip->write = WRITING_U16;
1909 } else {
1910 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1911 chip->n_bytes = 4;
1912 chip->read = READING_U32;
1913 chip->write = WRITING_U32;
1914 }
1915
1916 /* Now Initialize all register settings required for this chip */
1917 chip->com_ctrl = 0;
1918 chip->fmt_ctrl = 0;
1919 chip->fifo_ctrl = 0;
1920
1921 if ((chip_info->com_mode == DMA_TRANSFER)
1922 && ((zx297510spi->master_info)->enable_dma)) {
1923 chip->enable_dma = true;
1924 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1925 SPI_WRITE_BITS(chip->fifo_ctrl, SPI_DMA_ENABLED,
1926 SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2);
1927 SPI_WRITE_BITS(chip->fifo_ctrl,
1928 SPI_DMA_ENABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3);
1929 } else {
1930 chip->enable_dma = false;
1931 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1932 SPI_WRITE_BITS(chip->fifo_ctrl,
1933 SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2);
1934 SPI_WRITE_BITS(chip->fifo_ctrl,
1935 SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3);
1936 }
1937
1938
1939 SPI_WRITE_BITS(chip->fifo_ctrl,
1940 SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_RX_FIFO_THRES, 4);
1941 SPI_WRITE_BITS(chip->fifo_ctrl,
1942 SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_TX_FIFO_THRES, 8);
1943
1944 SPI_WRITE_BITS(chip->fmt_ctrl, bits - 1,SPI_FMT_CTRL_MASK_DSS, 4);
1945 SPI_WRITE_BITS(chip->fmt_ctrl, chip_info->iface, SPI_FMT_CTRL_MASK_FRF, 0);
1946
1947 /* Stuff that is common for all versions */
1948 if (spi->mode & SPI_CPOL)
1949 tmp = SPI_CLK_POL_IDLE_HIGH;
1950 else
1951 tmp = SPI_CLK_POL_IDLE_LOW;
1952 SPI_WRITE_BITS(chip->fmt_ctrl, tmp, SPI_FMT_CTRL_MASK_POL,2);
1953
1954 if (spi->mode & SPI_CPHA)
1955 tmp = SPI_CLK_SECOND_EDGE;
1956 else
1957 tmp = SPI_CLK_FIRST_EDGE;
1958
1959 SPI_WRITE_BITS(chip->fmt_ctrl, tmp, SPI_FMT_CTRL_MASK_PHA, 3);
1960
1961 /* Loopback is available on all versions except PL023 */
1962 if (zx297510spi->vendor->loopback) {
1963 if (spi->mode & SPI_LOOP)
1964 tmp = LOOPBACK_ENABLED;
1965 else
1966 tmp = LOOPBACK_DISABLED;
1967 SPI_WRITE_BITS(chip->com_ctrl, tmp, SPI_COM_CTRL_MASK_LBM, 0);
1968 }
1969 SPI_WRITE_BITS(chip->com_ctrl, SPI_ENABLED, SPI_COM_CTRL_MASK_SSPE, 1);
1970 SPI_WRITE_BITS(chip->com_ctrl, chip_info->hierarchy, SPI_COM_CTRL_MASK_MS, 2);
1971 SPI_WRITE_BITS(chip->com_ctrl, chip_info->slave_tx_disable, SPI_COM_CTRL_MASK_SOD, 3);
1972
1973 /* Save controller_state */
1974 spi_set_ctldata(spi, chip);
1975 return status;
1976 err_config_params:
1977 spi_set_ctldata(spi, NULL);
1978 kfree(chip);
1979 return status;
1980}
1981
1982/**
1983 * pl022_cleanup - cleanup function registered to SPI master framework
1984 * @spi: spi device which is requesting cleanup
1985 *
1986 * This function is registered to the SPI framework for this SPI master
1987 * controller. It will free the runtime state of chip.
1988 */
1989static void zx297510_cleanup(struct spi_device *spi)
1990{
1991 struct chip_data *chip = spi_get_ctldata(spi);
1992
1993 spi_set_ctldata(spi, NULL);
1994 kfree(chip);
1995}
1996
1997static int __devinit zx297510_spi_probe(struct platform_device *pdev)
1998{
1999 struct device *dev = &pdev->dev;
2000 struct zx297510_spi_controller *platform_info = pdev->dev.platform_data;
2001 struct spi_master *master;
2002 struct zx297510_spi *zx297510spi = NULL; /*Data for this driver */
2003 struct resource * regs = NULL;
2004 struct resource * gpio = NULL;
2005 struct resource * irq = NULL;
2006 int status = 0, i;
2007
2008 printk(KERN_INFO "spi:zx297510_spi_probe \n");
2009
2010
2011 if (platform_info == NULL) {
2012 dev_err(&pdev->dev, "probe - no platform data supplied\n");
2013 status = -ENODEV;
2014 goto err_no_pdata;
2015 }
2016
2017 /* Allocate master with space for data */
2018 master = spi_alloc_master(dev, sizeof(struct zx297510_spi));
2019 if (master == NULL) {
2020 dev_err(&pdev->dev, "probe - cannot alloc SPI master\n");
2021 status = -ENOMEM;
2022 goto err_no_master;
2023 }
2024
2025 zx297510spi = spi_master_get_devdata(master);
2026 zx297510spi->master = master;
2027 zx297510spi->master_info = platform_info;
2028 zx297510spi->pdev = pdev;
2029 zx297510spi->vendor = &vendor_arm;
2030
2031 dev_set_drvdata(&pdev->dev, zx297510spi);
2032 /*
2033 * Bus Number Which has been Assigned to this SSP controller
2034 * on this board
2035 */
2036 master->bus_num = platform_info->bus_id;
2037 master->num_chipselect = platform_info->num_chipselect;
2038 master->cleanup = zx297510_cleanup;
2039 master->setup = zx297510_setup;
2040 master->prepare_transfer_hardware = zx297510_prepare_transfer_hardware;
2041 master->transfer_one_message = zx297510_transfer_one_message;
2042 master->unprepare_transfer_hardware = zx297510_unprepare_transfer_hardware;
2043 master->rt = platform_info->rt;
2044
2045 /*
2046 * Supports mode 0-3, loopback, and active low CS. Transfers are
2047 * always MS bit first on the original pl022.
2048 */
2049 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_NO_CS;
2050
2051 dev_dbg(&pdev->dev, "BUSNO: %d\n", master->bus_num);
2052
2053 /* registers */
2054 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2055 if ( regs == NULL ){
2056 dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n");
2057 status = -ENOENT;
2058 goto err_no_registers;
2059 }
2060
2061 zx297510spi->phybase = regs->start;
2062 zx297510spi->virtbase = ioremap(regs->start, resource_size(regs));
2063
2064 if (zx297510spi->virtbase == NULL) {
2065 status = -ENOMEM;
2066 goto err_no_ioremap;
2067 }
2068 dev_dbg( &pdev->dev," mapped registers from 0x%08x to 0x%p\n",
2069 regs->start, zx297510spi->virtbase);
2070
2071 /* gpios txd rxd sclk cs */
2072 for(i = 0; i < ARRAY_SIZE(spi_gpio_resources); i++){
2073 //gpio = platform_get_resource(pdev, IORESOURCE_IO, i);
2074 gpio = &spi_gpio_resources[i];
2075 if( gpio == NULL )
2076 {
2077 dev_err(&pdev->dev, "Cannot get IORESOURCE_IO\n");
2078 status = -ENOENT;
2079 goto err_gpios;
2080 }
2081 dev_dbg(&pdev->dev, "used gpio num %d as %s \n", gpio->start, gpio ->name);
2082
2083 status = gpio_request(gpio->start,gpio->name);
2084 if( status < 0 )
2085 goto err_gpios;
2086 //zte_gpio_config(gpio->start, SET_FUNCTION);
2087 zx29_gpio1v8_function_sel(gpio->start,1);
2088 }
2089
2090 /* work clock */
2091 zx297510spi->spi_clk = clk_get(&pdev->dev, "work_clk");
2092 if (IS_ERR(zx297510spi->spi_clk)) {
2093 status = PTR_ERR(zx297510spi->spi_clk);
2094 dev_err(&pdev->dev, "could not retrieve SPI work clock\n");
2095 goto err_no_clk;
2096 }
2097 /* enable spiclk at function zx297510_setup */
2098
2099 zx297510spi->clkfreq = SPI_SPICLK_FREQ_104M;
2100
2101
2102 /* apb clock */
2103 zx297510spi->pclk = clk_get(&pdev->dev, "apb_clk");
2104 if (IS_ERR(zx297510spi->pclk)) {
2105 status = PTR_ERR(zx297510spi->pclk);
2106 dev_err(&pdev->dev, "could not retrieve SPI work clock\n");
2107 goto err_no_clk;
2108 }
2109 /* enable ssp clock source */
2110 clk_enable(zx297510spi->pclk);
2111
2112 /* Initialize transfer pump */
2113 tasklet_init(&zx297510spi->pump_transfers, pump_transfers,
2114 (unsigned long)zx297510spi);
2115
2116 /* Disable SPI */
2117 writel((readl(SPI_COM_CTRL(zx297510spi->virtbase)) & (~SPI_COM_CTRL_MASK_SSPE)),
2118 SPI_COM_CTRL(zx297510spi->virtbase));
2119
2120 load_spi_default_config(zx297510spi);
2121
2122 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2123 if( irq == NULL ){
2124 dev_err(&pdev->dev, "Cannot get IORESOURCE_IRQ\n");
2125 status = -ENOENT;
2126 goto err_no_irq;
2127 }
2128
2129 dev_dbg(&pdev->dev, "used interrupt num is %d\n", irq->start);
2130
2131 status = request_irq(irq->start, zx297510_interrupt_handler, 0, "zx297510_spi",
2132 zx297510spi);
2133 if (status < 0) {
2134 dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
2135 goto err_no_irq;
2136 }
2137
2138 /* Get DMA channels */
2139 if (platform_info->enable_dma) {
2140 status = zx297510_dma_probe(zx297510spi);
2141 if (status != 0)
2142 platform_info->enable_dma = 0;
2143 }
2144
2145 status = spi_register_master(master);
2146 if (status != 0) {
2147 dev_err(&pdev->dev,
2148 "probe - problem registering spi master\n");
2149 goto err_spi_register;
2150 }
2151 dev_dbg(&pdev->dev," probe succeeded\n");
2152
2153 /* let runtime pm put suspend */
2154 if (platform_info->autosuspend_delay > 0) {
2155 dev_info(&pdev->dev,
2156 "will use autosuspend for runtime pm, delay %dms\n",
2157 platform_info->autosuspend_delay);
2158 pm_runtime_set_autosuspend_delay(dev,
2159 platform_info->autosuspend_delay);
2160 pm_runtime_use_autosuspend(dev);
2161 pm_runtime_put_autosuspend(dev);
2162 } else {
2163 pm_runtime_put(dev);
2164 }
2165 return 0;
2166
2167 err_spi_register:
2168 if (platform_info->enable_dma)
2169 zx297510_dma_remove(zx297510spi);
2170
2171 free_irq(irq->start, zx297510spi);
2172 err_no_irq:
2173 clk_disable(zx297510spi->spi_clk);
2174// err_no_clk_en:
2175 //clk_unprepare(pl022->clk);
2176 //err_clk_prep:
2177 clk_put(zx297510spi->spi_clk);
2178 err_no_clk:
2179 iounmap(zx297510spi->virtbase);
2180 err_gpios:
2181 /* add */
2182 err_no_ioremap:
2183 err_no_registers:
2184 spi_master_put(master);
2185 err_no_master:
2186 err_no_pdata:
2187 return status;
2188}
2189
2190static int __exit zx297510_spi_remove(struct platform_device *pdev)
2191{
2192 struct zx297510_spi *zx297510spi = dev_get_drvdata(&pdev->dev);
2193 struct resource * gpio = NULL;
2194 struct resource * irq = NULL;
2195 int i;
2196
2197 if (!zx297510spi)
2198 return 0;
2199
2200 /*
2201 * undo pm_runtime_put() in probe. I assume that we're not
2202 * accessing the primecell here.
2203 */
2204 pm_runtime_get_noresume(&pdev->dev);
2205
2206 load_spi_default_config(zx297510spi);
2207 if (zx297510spi->master_info->enable_dma)
2208 zx297510_dma_remove(zx297510spi);
2209
2210 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2211 if( irq != NULL )
2212 {
2213 free_irq(irq->start, zx297510spi);
2214 }
2215
2216 clk_disable(zx297510spi->spi_clk);
2217 clk_put(zx297510spi->spi_clk);
2218
2219 clk_disable(zx297510spi->pclk);
2220 clk_put(zx297510spi->pclk);
2221
2222 /* gpios txd rxd sclk sfr */
2223 for(i = 0; i < ARRAY_SIZE(spi_gpio_resources); i++){
2224 //gpio = platform_get_resource(pdev, IORESOURCE_IO, i);
2225 gpio = &spi_gpio_resources[i];
2226
2227 if( gpio != NULL )
2228 {
2229 gpio_free(gpio->start);
2230 }
2231 }
2232
2233 iounmap(zx297510spi->virtbase);
2234 //amba_release_regions(adev);
2235 tasklet_disable(&zx297510spi->pump_transfers);
2236 spi_unregister_master(zx297510spi->master);
2237 spi_master_put(zx297510spi->master);
2238 //amba_set_drvdata(adev, NULL);
2239 dev_set_drvdata(&pdev->dev, NULL);
2240 return 0;
2241}
2242
2243static struct platform_driver zx297510_spi_driver = {
2244 .driver = {
2245 .name = "zx297510_ssp",
2246 .owner = THIS_MODULE,
2247 },
2248 .probe = zx297510_spi_probe,
2249 .remove = __exit_p(zx297510_spi_remove),
2250};
2251
2252static int __init zx297510_spi_init(void)
2253{
2254 return platform_driver_register(&zx297510_spi_driver);
2255}
2256
2257static void __exit zx297510_spi_exit(void)
2258{
2259 platform_driver_unregister(&zx297510_spi_driver);
2260}
2261
2262module_init(zx297510_spi_init);
2263module_exit(zx297510_spi_exit);
2264
2265MODULE_DESCRIPTION("zx297510 spi controller driver");
2266MODULE_AUTHOR("ZTER");
2267MODULE_LICENSE("ZTE");
2268