blob: d0154e52c76b6e081688470bb1863330a42a38e7 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fsnotify.h>
36#include "internal.h"
37
38
39LIST_HEAD(super_blocks);
40DEFINE_SPINLOCK(sb_lock);
41
42/*
43 * One thing we have to be careful of with a per-sb shrinker is that we don't
44 * drop the last active reference to the superblock from within the shrinker.
45 * If that happens we could trigger unregistering the shrinker from within the
46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47 * take a passive reference to the superblock to avoid this from occurring.
48 */
49static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50{
51 struct super_block *sb;
52 int fs_objects = 0;
53 int total_objects;
54
55 sb = container_of(shrink, struct super_block, s_shrink);
56
57 /*
58 * Deadlock avoidance. We may hold various FS locks, and we don't want
59 * to recurse into the FS that called us in clear_inode() and friends..
60 */
61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 return -1;
63
64 if (!grab_super_passive(sb))
65 return !sc->nr_to_scan ? 0 : -1;
66
67 if (sb->s_op && sb->s_op->nr_cached_objects)
68 fs_objects = sb->s_op->nr_cached_objects(sb);
69
70 total_objects = sb->s_nr_dentry_unused +
71 sb->s_nr_inodes_unused + fs_objects + 1;
72 if (!total_objects)
73 total_objects = 1;
74
75 if (sc->nr_to_scan) {
76 int dentries;
77 int inodes;
78
79 /* proportion the scan between the caches */
80 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
81 total_objects;
82 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
83 total_objects;
84 if (fs_objects)
85 fs_objects = (sc->nr_to_scan * fs_objects) /
86 total_objects;
87 /*
88 * prune the dcache first as the icache is pinned by it, then
89 * prune the icache, followed by the filesystem specific caches
90 */
91 prune_dcache_sb(sb, dentries);
92 prune_icache_sb(sb, inodes);
93
94 if (fs_objects && sb->s_op->free_cached_objects) {
95 sb->s_op->free_cached_objects(sb, fs_objects);
96 fs_objects = sb->s_op->nr_cached_objects(sb);
97 }
98 total_objects = sb->s_nr_dentry_unused +
99 sb->s_nr_inodes_unused + fs_objects;
100 }
101
102 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
103 drop_super(sb);
104 return total_objects;
105}
106
107/**
108 * alloc_super - create new superblock
109 * @type: filesystem type superblock should belong to
110 *
111 * Allocates and initializes a new &struct super_block. alloc_super()
112 * returns a pointer new superblock or %NULL if allocation had failed.
113 */
114static struct super_block *alloc_super(struct file_system_type *type)
115{
116 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
117 static const struct super_operations default_op;
118
119 if (s) {
120 if (security_sb_alloc(s)) {
121 kfree(s);
122 s = NULL;
123 goto out;
124 }
125#ifdef CONFIG_SMP
126 s->s_files = alloc_percpu(struct list_head);
127 if (!s->s_files) {
128 security_sb_free(s);
129 kfree(s);
130 s = NULL;
131 goto out;
132 } else {
133 int i;
134
135 for_each_possible_cpu(i)
136 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
137 }
138#else
139 INIT_LIST_HEAD(&s->s_files);
140#endif
141 s->s_bdi = &default_backing_dev_info;
142 INIT_HLIST_NODE(&s->s_instances);
143 INIT_HLIST_BL_HEAD(&s->s_anon);
144 INIT_LIST_HEAD(&s->s_inodes);
145 INIT_LIST_HEAD(&s->s_dentry_lru);
146 INIT_LIST_HEAD(&s->s_inode_lru);
147 spin_lock_init(&s->s_inode_lru_lock);
148 INIT_LIST_HEAD(&s->s_mounts);
149 init_rwsem(&s->s_umount);
150 mutex_init(&s->s_lock);
151 lockdep_set_class(&s->s_umount, &type->s_umount_key);
152 /*
153 * The locking rules for s_lock are up to the
154 * filesystem. For example ext3fs has different
155 * lock ordering than usbfs:
156 */
157 lockdep_set_class(&s->s_lock, &type->s_lock_key);
158 /*
159 * sget() can have s_umount recursion.
160 *
161 * When it cannot find a suitable sb, it allocates a new
162 * one (this one), and tries again to find a suitable old
163 * one.
164 *
165 * In case that succeeds, it will acquire the s_umount
166 * lock of the old one. Since these are clearly distrinct
167 * locks, and this object isn't exposed yet, there's no
168 * risk of deadlocks.
169 *
170 * Annotate this by putting this lock in a different
171 * subclass.
172 */
173 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
174 s->s_count = 1;
175 atomic_set(&s->s_active, 1);
176 mutex_init(&s->s_vfs_rename_mutex);
177 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
178 mutex_init(&s->s_dquot.dqio_mutex);
179 mutex_init(&s->s_dquot.dqonoff_mutex);
180 init_rwsem(&s->s_dquot.dqptr_sem);
181 init_waitqueue_head(&s->s_wait_unfrozen);
182 s->s_maxbytes = MAX_NON_LFS;
183 s->s_op = &default_op;
184 s->s_time_gran = 1000000000;
185 s->cleancache_poolid = -1;
186
187 s->s_shrink.seeks = DEFAULT_SEEKS;
188 s->s_shrink.shrink = prune_super;
189 s->s_shrink.batch = 1024;
190 }
191out:
192 return s;
193}
194
195/**
196 * destroy_super - frees a superblock
197 * @s: superblock to free
198 *
199 * Frees a superblock.
200 */
201static inline void destroy_super(struct super_block *s)
202{
203#ifdef CONFIG_SMP
204 free_percpu(s->s_files);
205#endif
206 security_sb_free(s);
207 WARN_ON(!list_empty(&s->s_mounts));
208 kfree(s->s_subtype);
209 kfree(s->s_options);
210 kfree(s);
211}
212
213/* Superblock refcounting */
214
215/*
216 * Drop a superblock's refcount. The caller must hold sb_lock.
217 */
218static void __put_super(struct super_block *sb)
219{
220 if (!--sb->s_count) {
221 list_del_init(&sb->s_list);
222 destroy_super(sb);
223 }
224}
225
226/**
227 * put_super - drop a temporary reference to superblock
228 * @sb: superblock in question
229 *
230 * Drops a temporary reference, frees superblock if there's no
231 * references left.
232 */
233static void put_super(struct super_block *sb)
234{
235 spin_lock(&sb_lock);
236 __put_super(sb);
237 spin_unlock(&sb_lock);
238}
239
240
241/**
242 * deactivate_locked_super - drop an active reference to superblock
243 * @s: superblock to deactivate
244 *
245 * Drops an active reference to superblock, converting it into a temprory
246 * one if there is no other active references left. In that case we
247 * tell fs driver to shut it down and drop the temporary reference we
248 * had just acquired.
249 *
250 * Caller holds exclusive lock on superblock; that lock is released.
251 */
252void deactivate_locked_super(struct super_block *s)
253{
254 struct file_system_type *fs = s->s_type;
255 if (atomic_dec_and_test(&s->s_active)) {
256 cleancache_invalidate_fs(s);
257 fs->kill_sb(s);
258
259 /* caches are now gone, we can safely kill the shrinker now */
260 unregister_shrinker(&s->s_shrink);
261
262 /*
263 * We need to call rcu_barrier so all the delayed rcu free
264 * inodes are flushed before we release the fs module.
265 */
266 rcu_barrier();
267 put_filesystem(fs);
268 put_super(s);
269 } else {
270 up_write(&s->s_umount);
271 }
272}
273
274EXPORT_SYMBOL(deactivate_locked_super);
275
276/**
277 * deactivate_super - drop an active reference to superblock
278 * @s: superblock to deactivate
279 *
280 * Variant of deactivate_locked_super(), except that superblock is *not*
281 * locked by caller. If we are going to drop the final active reference,
282 * lock will be acquired prior to that.
283 */
284void deactivate_super(struct super_block *s)
285{
286 if (!atomic_add_unless(&s->s_active, -1, 1)) {
287 down_write(&s->s_umount);
288 deactivate_locked_super(s);
289 }
290}
291
292EXPORT_SYMBOL(deactivate_super);
293
294/**
295 * grab_super - acquire an active reference
296 * @s: reference we are trying to make active
297 *
298 * Tries to acquire an active reference. grab_super() is used when we
299 * had just found a superblock in super_blocks or fs_type->fs_supers
300 * and want to turn it into a full-blown active reference. grab_super()
301 * is called with sb_lock held and drops it. Returns 1 in case of
302 * success, 0 if we had failed (superblock contents was already dead or
303 * dying when grab_super() had been called). Note that this is only
304 * called for superblocks not in rundown mode (== ones still on ->fs_supers
305 * of their type), so increment of ->s_count is OK here.
306 */
307static int grab_super(struct super_block *s) __releases(sb_lock)
308{
309 s->s_count++;
310 spin_unlock(&sb_lock);
311 down_write(&s->s_umount);
312 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
313 put_super(s);
314 return 1;
315 }
316 up_write(&s->s_umount);
317 put_super(s);
318 return 0;
319}
320
321/*
322 * grab_super_passive - acquire a passive reference
323 * @s: reference we are trying to grab
324 *
325 * Tries to acquire a passive reference. This is used in places where we
326 * cannot take an active reference but we need to ensure that the
327 * superblock does not go away while we are working on it. It returns
328 * false if a reference was not gained, and returns true with the s_umount
329 * lock held in read mode if a reference is gained. On successful return,
330 * the caller must drop the s_umount lock and the passive reference when
331 * done.
332 */
333bool grab_super_passive(struct super_block *sb)
334{
335 spin_lock(&sb_lock);
336 if (hlist_unhashed(&sb->s_instances)) {
337 spin_unlock(&sb_lock);
338 return false;
339 }
340
341 sb->s_count++;
342 spin_unlock(&sb_lock);
343
344 if (down_read_trylock(&sb->s_umount)) {
345 if (sb->s_root && (sb->s_flags & MS_BORN))
346 return true;
347 up_read(&sb->s_umount);
348 }
349
350 put_super(sb);
351 return false;
352}
353
354/*
355 * Superblock locking. We really ought to get rid of these two.
356 */
357void lock_super(struct super_block * sb)
358{
359 mutex_lock(&sb->s_lock);
360}
361
362void unlock_super(struct super_block * sb)
363{
364 mutex_unlock(&sb->s_lock);
365}
366
367EXPORT_SYMBOL(lock_super);
368EXPORT_SYMBOL(unlock_super);
369
370/**
371 * generic_shutdown_super - common helper for ->kill_sb()
372 * @sb: superblock to kill
373 *
374 * generic_shutdown_super() does all fs-independent work on superblock
375 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
376 * that need destruction out of superblock, call generic_shutdown_super()
377 * and release aforementioned objects. Note: dentries and inodes _are_
378 * taken care of and do not need specific handling.
379 *
380 * Upon calling this function, the filesystem may no longer alter or
381 * rearrange the set of dentries belonging to this super_block, nor may it
382 * change the attachments of dentries to inodes.
383 */
384void generic_shutdown_super(struct super_block *sb)
385{
386 const struct super_operations *sop = sb->s_op;
387
388 if (sb->s_root) {
389 shrink_dcache_for_umount(sb);
390 sync_filesystem(sb);
391 sb->s_flags &= ~MS_ACTIVE;
392
393 fsnotify_unmount_inodes(&sb->s_inodes);
394
395 evict_inodes(sb);
396
397 if (sop->put_super)
398 sop->put_super(sb);
399
400 if (!list_empty(&sb->s_inodes)) {
401 printk("VFS: Busy inodes after unmount of %s. "
402 "Self-destruct in 5 seconds. Have a nice day...\n",
403 sb->s_id);
404 }
405 }
406 spin_lock(&sb_lock);
407 /* should be initialized for __put_super_and_need_restart() */
408 hlist_del_init(&sb->s_instances);
409 spin_unlock(&sb_lock);
410 up_write(&sb->s_umount);
411}
412
413EXPORT_SYMBOL(generic_shutdown_super);
414
415/**
416 * sget - find or create a superblock
417 * @type: filesystem type superblock should belong to
418 * @test: comparison callback
419 * @set: setup callback
420 * @data: argument to each of them
421 */
422struct super_block *sget(struct file_system_type *type,
423 int (*test)(struct super_block *,void *),
424 int (*set)(struct super_block *,void *),
425 void *data)
426{
427 struct super_block *s = NULL;
428 struct hlist_node *node;
429 struct super_block *old;
430 int err;
431
432retry:
433 spin_lock(&sb_lock);
434 if (test) {
435 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
436 if (!test(old, data))
437 continue;
438 if (!grab_super(old))
439 goto retry;
440 if (s) {
441 up_write(&s->s_umount);
442 destroy_super(s);
443 s = NULL;
444 }
445 return old;
446 }
447 }
448 if (!s) {
449 spin_unlock(&sb_lock);
450 s = alloc_super(type);
451 if (!s)
452 return ERR_PTR(-ENOMEM);
453 goto retry;
454 }
455
456 err = set(s, data);
457 if (err) {
458 spin_unlock(&sb_lock);
459 up_write(&s->s_umount);
460 destroy_super(s);
461 return ERR_PTR(err);
462 }
463 s->s_type = type;
464 strlcpy(s->s_id, type->name, sizeof(s->s_id));
465 list_add_tail(&s->s_list, &super_blocks);
466 hlist_add_head(&s->s_instances, &type->fs_supers);
467 spin_unlock(&sb_lock);
468 get_filesystem(type);
469 register_shrinker(&s->s_shrink);
470 return s;
471}
472
473EXPORT_SYMBOL(sget);
474
475void drop_super(struct super_block *sb)
476{
477 up_read(&sb->s_umount);
478 put_super(sb);
479}
480
481EXPORT_SYMBOL(drop_super);
482
483/**
484 * sync_supers - helper for periodic superblock writeback
485 *
486 * Call the write_super method if present on all dirty superblocks in
487 * the system. This is for the periodic writeback used by most older
488 * filesystems. For data integrity superblock writeback use
489 * sync_filesystems() instead.
490 *
491 * Note: check the dirty flag before waiting, so we don't
492 * hold up the sync while mounting a device. (The newly
493 * mounted device won't need syncing.)
494 */
495void sync_supers(void)
496{
497 struct super_block *sb, *p = NULL;
498
499 spin_lock(&sb_lock);
500 list_for_each_entry(sb, &super_blocks, s_list) {
501 if (hlist_unhashed(&sb->s_instances))
502 continue;
503 if (sb->s_op->write_super && sb->s_dirt) {
504 sb->s_count++;
505 spin_unlock(&sb_lock);
506
507 down_read(&sb->s_umount);
508 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
509 sb->s_op->write_super(sb);
510 up_read(&sb->s_umount);
511
512 spin_lock(&sb_lock);
513 if (p)
514 __put_super(p);
515 p = sb;
516 }
517 }
518 if (p)
519 __put_super(p);
520 spin_unlock(&sb_lock);
521}
522
523/**
524 * iterate_supers - call function for all active superblocks
525 * @f: function to call
526 * @arg: argument to pass to it
527 *
528 * Scans the superblock list and calls given function, passing it
529 * locked superblock and given argument.
530 */
531void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
532{
533 struct super_block *sb, *p = NULL;
534
535 spin_lock(&sb_lock);
536 list_for_each_entry(sb, &super_blocks, s_list) {
537 if (hlist_unhashed(&sb->s_instances))
538 continue;
539 sb->s_count++;
540 spin_unlock(&sb_lock);
541
542 down_read(&sb->s_umount);
543 if (sb->s_root && (sb->s_flags & MS_BORN))
544 f(sb, arg);
545 up_read(&sb->s_umount);
546
547 spin_lock(&sb_lock);
548 if (p)
549 __put_super(p);
550 p = sb;
551 }
552 if (p)
553 __put_super(p);
554 spin_unlock(&sb_lock);
555}
556
557/**
558 * iterate_supers_type - call function for superblocks of given type
559 * @type: fs type
560 * @f: function to call
561 * @arg: argument to pass to it
562 *
563 * Scans the superblock list and calls given function, passing it
564 * locked superblock and given argument.
565 */
566void iterate_supers_type(struct file_system_type *type,
567 void (*f)(struct super_block *, void *), void *arg)
568{
569 struct super_block *sb, *p = NULL;
570 struct hlist_node *node;
571
572 spin_lock(&sb_lock);
573 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
574 sb->s_count++;
575 spin_unlock(&sb_lock);
576
577 down_read(&sb->s_umount);
578 if (sb->s_root && (sb->s_flags & MS_BORN))
579 f(sb, arg);
580 up_read(&sb->s_umount);
581
582 spin_lock(&sb_lock);
583 if (p)
584 __put_super(p);
585 p = sb;
586 }
587 if (p)
588 __put_super(p);
589 spin_unlock(&sb_lock);
590}
591
592EXPORT_SYMBOL(iterate_supers_type);
593
594/**
595 * get_super - get the superblock of a device
596 * @bdev: device to get the superblock for
597 *
598 * Scans the superblock list and finds the superblock of the file system
599 * mounted on the device given. %NULL is returned if no match is found.
600 */
601
602struct super_block *get_super(struct block_device *bdev)
603{
604 struct super_block *sb;
605
606 if (!bdev)
607 return NULL;
608
609 spin_lock(&sb_lock);
610rescan:
611 list_for_each_entry(sb, &super_blocks, s_list) {
612 if (hlist_unhashed(&sb->s_instances))
613 continue;
614 if (sb->s_bdev == bdev) {
615 sb->s_count++;
616 spin_unlock(&sb_lock);
617 down_read(&sb->s_umount);
618 /* still alive? */
619 if (sb->s_root && (sb->s_flags & MS_BORN))
620 return sb;
621 up_read(&sb->s_umount);
622 /* nope, got unmounted */
623 spin_lock(&sb_lock);
624 __put_super(sb);
625 goto rescan;
626 }
627 }
628 spin_unlock(&sb_lock);
629 return NULL;
630}
631
632EXPORT_SYMBOL(get_super);
633
634/**
635 * get_super_thawed - get thawed superblock of a device
636 * @bdev: device to get the superblock for
637 *
638 * Scans the superblock list and finds the superblock of the file system
639 * mounted on the device. The superblock is returned once it is thawed
640 * (or immediately if it was not frozen). %NULL is returned if no match
641 * is found.
642 */
643struct super_block *get_super_thawed(struct block_device *bdev)
644{
645 while (1) {
646 struct super_block *s = get_super(bdev);
647 if (!s || s->s_frozen == SB_UNFROZEN)
648 return s;
649 up_read(&s->s_umount);
650 vfs_check_frozen(s, SB_FREEZE_WRITE);
651 put_super(s);
652 }
653}
654EXPORT_SYMBOL(get_super_thawed);
655
656/**
657 * get_active_super - get an active reference to the superblock of a device
658 * @bdev: device to get the superblock for
659 *
660 * Scans the superblock list and finds the superblock of the file system
661 * mounted on the device given. Returns the superblock with an active
662 * reference or %NULL if none was found.
663 */
664struct super_block *get_active_super(struct block_device *bdev)
665{
666 struct super_block *sb;
667
668 if (!bdev)
669 return NULL;
670
671restart:
672 spin_lock(&sb_lock);
673 list_for_each_entry(sb, &super_blocks, s_list) {
674 if (hlist_unhashed(&sb->s_instances))
675 continue;
676 if (sb->s_bdev == bdev) {
677 if (!grab_super(sb))
678 goto restart;
679 up_write(&sb->s_umount);
680 return sb;
681 }
682 }
683 spin_unlock(&sb_lock);
684 return NULL;
685}
686
687struct super_block *user_get_super(dev_t dev)
688{
689 struct super_block *sb;
690
691 spin_lock(&sb_lock);
692rescan:
693 list_for_each_entry(sb, &super_blocks, s_list) {
694 if (hlist_unhashed(&sb->s_instances))
695 continue;
696 if (sb->s_dev == dev) {
697 sb->s_count++;
698 spin_unlock(&sb_lock);
699 down_read(&sb->s_umount);
700 /* still alive? */
701 if (sb->s_root && (sb->s_flags & MS_BORN))
702 return sb;
703 up_read(&sb->s_umount);
704 /* nope, got unmounted */
705 spin_lock(&sb_lock);
706 __put_super(sb);
707 goto rescan;
708 }
709 }
710 spin_unlock(&sb_lock);
711 return NULL;
712}
713
714/**
715 * do_remount_sb - asks filesystem to change mount options.
716 * @sb: superblock in question
717 * @flags: numeric part of options
718 * @data: the rest of options
719 * @force: whether or not to force the change
720 *
721 * Alters the mount options of a mounted file system.
722 */
723int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
724{
725 int retval;
726 int remount_ro;
727
728 if (sb->s_frozen != SB_UNFROZEN)
729 return -EBUSY;
730
731#ifdef CONFIG_BLOCK
732 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
733 return -EACCES;
734#endif
735
736 if (flags & MS_RDONLY)
737 acct_auto_close(sb);
738 shrink_dcache_sb(sb);
739 sync_filesystem(sb);
740
741 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
742
743 /* If we are remounting RDONLY and current sb is read/write,
744 make sure there are no rw files opened */
745 if (remount_ro) {
746 if (force) {
747 mark_files_ro(sb);
748 } else {
749 retval = sb_prepare_remount_readonly(sb);
750 if (retval)
751 return retval;
752 }
753 }
754
755 if (sb->s_op->remount_fs) {
756 retval = sb->s_op->remount_fs(sb, &flags, data);
757 if (retval) {
758 if (!force)
759 goto cancel_readonly;
760 /* If forced remount, go ahead despite any errors */
761 WARN(1, "forced remount of a %s fs returned %i\n",
762 sb->s_type->name, retval);
763 }
764 }
765 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
766 /* Needs to be ordered wrt mnt_is_readonly() */
767 smp_wmb();
768 sb->s_readonly_remount = 0;
769
770 /*
771 * Some filesystems modify their metadata via some other path than the
772 * bdev buffer cache (eg. use a private mapping, or directories in
773 * pagecache, etc). Also file data modifications go via their own
774 * mappings. So If we try to mount readonly then copy the filesystem
775 * from bdev, we could get stale data, so invalidate it to give a best
776 * effort at coherency.
777 */
778 if (remount_ro && sb->s_bdev)
779 invalidate_bdev(sb->s_bdev);
780 return 0;
781
782cancel_readonly:
783 sb->s_readonly_remount = 0;
784 return retval;
785}
786
787static void do_emergency_remount(struct work_struct *work)
788{
789 struct super_block *sb, *p = NULL;
790
791 spin_lock(&sb_lock);
792 list_for_each_entry(sb, &super_blocks, s_list) {
793 if (hlist_unhashed(&sb->s_instances))
794 continue;
795 sb->s_count++;
796 spin_unlock(&sb_lock);
797 down_write(&sb->s_umount);
798 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
799 !(sb->s_flags & MS_RDONLY)) {
800 /*
801 * What lock protects sb->s_flags??
802 */
803 do_remount_sb(sb, MS_RDONLY, NULL, 1);
804 }
805 up_write(&sb->s_umount);
806 spin_lock(&sb_lock);
807 if (p)
808 __put_super(p);
809 p = sb;
810 }
811 if (p)
812 __put_super(p);
813 spin_unlock(&sb_lock);
814 kfree(work);
815 printk("Emergency Remount complete\n");
816}
817
818void emergency_remount(void)
819{
820 struct work_struct *work;
821
822 work = kmalloc(sizeof(*work), GFP_ATOMIC);
823 if (work) {
824 INIT_WORK(work, do_emergency_remount);
825 schedule_work(work);
826 }
827}
828
829/*
830 * Unnamed block devices are dummy devices used by virtual
831 * filesystems which don't use real block-devices. -- jrs
832 */
833
834static DEFINE_IDA(unnamed_dev_ida);
835static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
836static int unnamed_dev_start = 0; /* don't bother trying below it */
837
838int get_anon_bdev(dev_t *p)
839{
840 int dev;
841 int error;
842
843 retry:
844 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
845 return -ENOMEM;
846 spin_lock(&unnamed_dev_lock);
847 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
848 if (!error)
849 unnamed_dev_start = dev + 1;
850 spin_unlock(&unnamed_dev_lock);
851 if (error == -EAGAIN)
852 /* We raced and lost with another CPU. */
853 goto retry;
854 else if (error)
855 return -EAGAIN;
856
857 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
858 spin_lock(&unnamed_dev_lock);
859 ida_remove(&unnamed_dev_ida, dev);
860 if (unnamed_dev_start > dev)
861 unnamed_dev_start = dev;
862 spin_unlock(&unnamed_dev_lock);
863 return -EMFILE;
864 }
865 *p = MKDEV(0, dev & MINORMASK);
866 return 0;
867}
868EXPORT_SYMBOL(get_anon_bdev);
869
870void free_anon_bdev(dev_t dev)
871{
872 int slot = MINOR(dev);
873 spin_lock(&unnamed_dev_lock);
874 ida_remove(&unnamed_dev_ida, slot);
875 if (slot < unnamed_dev_start)
876 unnamed_dev_start = slot;
877 spin_unlock(&unnamed_dev_lock);
878}
879EXPORT_SYMBOL(free_anon_bdev);
880
881int set_anon_super(struct super_block *s, void *data)
882{
883 int error = get_anon_bdev(&s->s_dev);
884 if (!error)
885 s->s_bdi = &noop_backing_dev_info;
886 return error;
887}
888
889EXPORT_SYMBOL(set_anon_super);
890
891void kill_anon_super(struct super_block *sb)
892{
893 dev_t dev = sb->s_dev;
894 generic_shutdown_super(sb);
895 free_anon_bdev(dev);
896}
897
898EXPORT_SYMBOL(kill_anon_super);
899
900void kill_litter_super(struct super_block *sb)
901{
902 if (sb->s_root)
903 d_genocide(sb->s_root);
904 kill_anon_super(sb);
905}
906
907EXPORT_SYMBOL(kill_litter_super);
908
909static int ns_test_super(struct super_block *sb, void *data)
910{
911 return sb->s_fs_info == data;
912}
913
914static int ns_set_super(struct super_block *sb, void *data)
915{
916 sb->s_fs_info = data;
917 return set_anon_super(sb, NULL);
918}
919
920struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
921 void *data, int (*fill_super)(struct super_block *, void *, int))
922{
923 struct super_block *sb;
924
925 sb = sget(fs_type, ns_test_super, ns_set_super, data);
926 if (IS_ERR(sb))
927 return ERR_CAST(sb);
928
929 if (!sb->s_root) {
930 int err;
931 sb->s_flags = flags;
932 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
933 if (err) {
934 deactivate_locked_super(sb);
935 return ERR_PTR(err);
936 }
937
938 sb->s_flags |= MS_ACTIVE;
939 }
940
941 return dget(sb->s_root);
942}
943
944EXPORT_SYMBOL(mount_ns);
945
946#ifdef CONFIG_BLOCK
947static int set_bdev_super(struct super_block *s, void *data)
948{
949 s->s_bdev = data;
950 s->s_dev = s->s_bdev->bd_dev;
951
952 /*
953 * We set the bdi here to the queue backing, file systems can
954 * overwrite this in ->fill_super()
955 */
956 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
957 return 0;
958}
959
960static int test_bdev_super(struct super_block *s, void *data)
961{
962 return (void *)s->s_bdev == data;
963}
964
965struct dentry *mount_bdev(struct file_system_type *fs_type,
966 int flags, const char *dev_name, void *data,
967 int (*fill_super)(struct super_block *, void *, int))
968{
969 struct block_device *bdev;
970 struct super_block *s;
971 fmode_t mode = FMODE_READ | FMODE_EXCL;
972 int error = 0;
973
974 if (!(flags & MS_RDONLY))
975 mode |= FMODE_WRITE;
976
977 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
978 if (IS_ERR(bdev))
979 return ERR_CAST(bdev);
980
981 /*
982 * once the super is inserted into the list by sget, s_umount
983 * will protect the lockfs code from trying to start a snapshot
984 * while we are mounting
985 */
986 mutex_lock(&bdev->bd_fsfreeze_mutex);
987 if (bdev->bd_fsfreeze_count > 0) {
988 mutex_unlock(&bdev->bd_fsfreeze_mutex);
989 error = -EBUSY;
990 goto error_bdev;
991 }
992 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
993 mutex_unlock(&bdev->bd_fsfreeze_mutex);
994 if (IS_ERR(s))
995 goto error_s;
996
997 if (s->s_root) {
998 if ((flags ^ s->s_flags) & MS_RDONLY) {
999 deactivate_locked_super(s);
1000 error = -EBUSY;
1001 goto error_bdev;
1002 }
1003
1004 /*
1005 * s_umount nests inside bd_mutex during
1006 * __invalidate_device(). blkdev_put() acquires
1007 * bd_mutex and can't be called under s_umount. Drop
1008 * s_umount temporarily. This is safe as we're
1009 * holding an active reference.
1010 */
1011 up_write(&s->s_umount);
1012 blkdev_put(bdev, mode);
1013 down_write(&s->s_umount);
1014 } else {
1015 char b[BDEVNAME_SIZE];
1016
1017 s->s_flags = flags | MS_NOSEC;
1018 s->s_mode = mode;
1019 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1020 sb_set_blocksize(s, block_size(bdev));
1021 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1022 if (error) {
1023 deactivate_locked_super(s);
1024 goto error;
1025 }
1026
1027 s->s_flags |= MS_ACTIVE;
1028 bdev->bd_super = s;
1029 }
1030
1031 return dget(s->s_root);
1032
1033error_s:
1034 error = PTR_ERR(s);
1035error_bdev:
1036 blkdev_put(bdev, mode);
1037error:
1038 return ERR_PTR(error);
1039}
1040EXPORT_SYMBOL(mount_bdev);
1041
1042void kill_block_super(struct super_block *sb)
1043{
1044 struct block_device *bdev = sb->s_bdev;
1045 fmode_t mode = sb->s_mode;
1046
1047 bdev->bd_super = NULL;
1048 generic_shutdown_super(sb);
1049 sync_blockdev(bdev);
1050 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1051 blkdev_put(bdev, mode | FMODE_EXCL);
1052}
1053
1054EXPORT_SYMBOL(kill_block_super);
1055#endif
1056
1057struct dentry *mount_nodev(struct file_system_type *fs_type,
1058 int flags, void *data,
1059 int (*fill_super)(struct super_block *, void *, int))
1060{
1061 int error;
1062 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1063
1064 if (IS_ERR(s))
1065 return ERR_CAST(s);
1066
1067 s->s_flags = flags;
1068
1069 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1070 if (error) {
1071 deactivate_locked_super(s);
1072 return ERR_PTR(error);
1073 }
1074 s->s_flags |= MS_ACTIVE;
1075 return dget(s->s_root);
1076}
1077EXPORT_SYMBOL(mount_nodev);
1078
1079static int compare_single(struct super_block *s, void *p)
1080{
1081 return 1;
1082}
1083
1084struct dentry *mount_single(struct file_system_type *fs_type,
1085 int flags, void *data,
1086 int (*fill_super)(struct super_block *, void *, int))
1087{
1088 struct super_block *s;
1089 int error;
1090
1091 s = sget(fs_type, compare_single, set_anon_super, NULL);
1092 if (IS_ERR(s))
1093 return ERR_CAST(s);
1094 if (!s->s_root) {
1095 s->s_flags = flags;
1096 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1097 if (error) {
1098 deactivate_locked_super(s);
1099 return ERR_PTR(error);
1100 }
1101 s->s_flags |= MS_ACTIVE;
1102 } else {
1103 do_remount_sb(s, flags, data, 0);
1104 }
1105 return dget(s->s_root);
1106}
1107EXPORT_SYMBOL(mount_single);
1108
1109struct dentry *
1110mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1111{
1112 struct dentry *root;
1113 struct super_block *sb;
1114 char *secdata = NULL;
1115 int error = -ENOMEM;
1116
1117 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1118 secdata = alloc_secdata();
1119 if (!secdata)
1120 goto out;
1121
1122 error = security_sb_copy_data(data, secdata);
1123 if (error)
1124 goto out_free_secdata;
1125 }
1126
1127 root = type->mount(type, flags, name, data);
1128 if (IS_ERR(root)) {
1129 error = PTR_ERR(root);
1130 goto out_free_secdata;
1131 }
1132 sb = root->d_sb;
1133 BUG_ON(!sb);
1134 WARN_ON(!sb->s_bdi);
1135 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1136 sb->s_flags |= MS_BORN;
1137
1138 error = security_sb_kern_mount(sb, flags, secdata);
1139 if (error)
1140 goto out_sb;
1141
1142 /*
1143 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1144 * but s_maxbytes was an unsigned long long for many releases. Throw
1145 * this warning for a little while to try and catch filesystems that
1146 * violate this rule.
1147 */
1148 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1149 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1150
1151 up_write(&sb->s_umount);
1152 free_secdata(secdata);
1153 return root;
1154out_sb:
1155 dput(root);
1156 deactivate_locked_super(sb);
1157out_free_secdata:
1158 free_secdata(secdata);
1159out:
1160 return ERR_PTR(error);
1161}
1162
1163/**
1164 * freeze_super - lock the filesystem and force it into a consistent state
1165 * @sb: the super to lock
1166 *
1167 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1168 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1169 * -EBUSY.
1170 */
1171int freeze_super(struct super_block *sb)
1172{
1173 int ret;
1174
1175 atomic_inc(&sb->s_active);
1176 down_write(&sb->s_umount);
1177 if (sb->s_frozen) {
1178 deactivate_locked_super(sb);
1179 return -EBUSY;
1180 }
1181
1182 if (!(sb->s_flags & MS_BORN)) {
1183 up_write(&sb->s_umount);
1184 return 0; /* sic - it's "nothing to do" */
1185 }
1186
1187 if (sb->s_flags & MS_RDONLY) {
1188 sb->s_frozen = SB_FREEZE_TRANS;
1189 smp_wmb();
1190 up_write(&sb->s_umount);
1191 return 0;
1192 }
1193
1194 sb->s_frozen = SB_FREEZE_WRITE;
1195 smp_wmb();
1196
1197 sync_filesystem(sb);
1198
1199 sb->s_frozen = SB_FREEZE_TRANS;
1200 smp_wmb();
1201
1202 sync_blockdev(sb->s_bdev);
1203 if (sb->s_op->freeze_fs) {
1204 ret = sb->s_op->freeze_fs(sb);
1205 if (ret) {
1206 printk(KERN_ERR
1207 "VFS:Filesystem freeze failed\n");
1208 sb->s_frozen = SB_UNFROZEN;
1209 smp_wmb();
1210 wake_up(&sb->s_wait_unfrozen);
1211 deactivate_locked_super(sb);
1212 return ret;
1213 }
1214 }
1215 up_write(&sb->s_umount);
1216 return 0;
1217}
1218EXPORT_SYMBOL(freeze_super);
1219
1220/**
1221 * thaw_super -- unlock filesystem
1222 * @sb: the super to thaw
1223 *
1224 * Unlocks the filesystem and marks it writeable again after freeze_super().
1225 */
1226int thaw_super(struct super_block *sb)
1227{
1228 int error;
1229
1230 down_write(&sb->s_umount);
1231 if (sb->s_frozen == SB_UNFROZEN) {
1232 up_write(&sb->s_umount);
1233 return -EINVAL;
1234 }
1235
1236 if (sb->s_flags & MS_RDONLY)
1237 goto out;
1238
1239 if (sb->s_op->unfreeze_fs) {
1240 error = sb->s_op->unfreeze_fs(sb);
1241 if (error) {
1242 printk(KERN_ERR
1243 "VFS:Filesystem thaw failed\n");
1244 sb->s_frozen = SB_FREEZE_TRANS;
1245 up_write(&sb->s_umount);
1246 return error;
1247 }
1248 }
1249
1250out:
1251 sb->s_frozen = SB_UNFROZEN;
1252 smp_wmb();
1253 wake_up(&sb->s_wait_unfrozen);
1254 deactivate_locked_super(sb);
1255
1256 return 0;
1257}
1258EXPORT_SYMBOL(thaw_super);