blob: f1836907165aa80a67029d1e33c41a2eba21e9a5 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
37#include <linux/mutex.h>
38
39#include <asm/uaccess.h>
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-clock.h>
45#include <linux/posix-timers.h>
46#include <linux/syscalls.h>
47#include <linux/wait.h>
48#include <linux/workqueue.h>
49#include <linux/export.h>
50
51/*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69/*
70 * Lets keep our timers in a slab cache :-)
71 */
72static struct kmem_cache *posix_timers_cache;
73static struct idr posix_timers_id;
74static DEFINE_SPINLOCK(idr_lock);
75
76/*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83#endif
84
85/*
86 * parisc wants ENOTSUP instead of EOPNOTSUPP
87 */
88#ifndef ENOTSUP
89# define ENANOSLEEP_NOTSUP EOPNOTSUPP
90#else
91# define ENANOSLEEP_NOTSUP ENOTSUP
92#endif
93
94/*
95 * The timer ID is turned into a timer address by idr_find().
96 * Verifying a valid ID consists of:
97 *
98 * a) checking that idr_find() returns other than -1.
99 * b) checking that the timer id matches the one in the timer itself.
100 * c) that the timer owner is in the callers thread group.
101 */
102
103/*
104 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105 * to implement others. This structure defines the various
106 * clocks.
107 *
108 * RESOLUTION: Clock resolution is used to round up timer and interval
109 * times, NOT to report clock times, which are reported with as
110 * much resolution as the system can muster. In some cases this
111 * resolution may depend on the underlying clock hardware and
112 * may not be quantifiable until run time, and only then is the
113 * necessary code is written. The standard says we should say
114 * something about this issue in the documentation...
115 *
116 * FUNCTIONS: The CLOCKs structure defines possible functions to
117 * handle various clock functions.
118 *
119 * The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for
121 * the timer. 2.) The list, it_lock, it_clock, it_id and
122 * it_pid fields are not modified by timer code.
123 *
124 * Permissions: It is assumed that the clock_settime() function defined
125 * for each clock will take care of permission checks. Some
126 * clocks may be set able by any user (i.e. local process
127 * clocks) others not. Currently the only set able clock we
128 * have is CLOCK_REALTIME and its high res counter part, both of
129 * which we beg off on and pass to do_sys_settimeofday().
130 */
131
132static struct k_clock posix_clocks[MAX_CLOCKS];
133
134/*
135 * These ones are defined below.
136 */
137static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 struct timespec __user *rmtp);
139static int common_timer_create(struct k_itimer *new_timer);
140static void common_timer_get(struct k_itimer *, struct itimerspec *);
141static int common_timer_set(struct k_itimer *, int,
142 struct itimerspec *, struct itimerspec *);
143static int common_timer_del(struct k_itimer *timer);
144
145static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
146
147static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148
149#define lock_timer(tid, flags) \
150({ struct k_itimer *__timr; \
151 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
152 __timr; \
153})
154
155static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156{
157 spin_unlock_irqrestore(&timr->it_lock, flags);
158}
159
160/* Get clock_realtime */
161static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162{
163 ktime_get_real_ts(tp);
164 return 0;
165}
166
167/* Set clock_realtime */
168static int posix_clock_realtime_set(const clockid_t which_clock,
169 const struct timespec *tp)
170{
171 return do_sys_settimeofday(tp, NULL);
172}
173
174static int posix_clock_realtime_adj(const clockid_t which_clock,
175 struct timex *t)
176{
177 return do_adjtimex(t);
178}
179
180/*
181 * Get monotonic time for posix timers
182 */
183static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184{
185 ktime_get_ts(tp);
186 return 0;
187}
188
189/*
190 * Get monotonic-raw time for posix timers
191 */
192static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193{
194 getrawmonotonic(tp);
195 return 0;
196}
197
198
199static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200{
201 *tp = current_kernel_time();
202 return 0;
203}
204
205static int posix_get_monotonic_coarse(clockid_t which_clock,
206 struct timespec *tp)
207{
208 *tp = get_monotonic_coarse();
209 return 0;
210}
211
212static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
213{
214 *tp = ktime_to_timespec(KTIME_LOW_RES);
215 return 0;
216}
217
218static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219{
220 get_monotonic_boottime(tp);
221 return 0;
222}
223
224
225/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228static __init int init_posix_timers(void)
229{
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
232 .clock_get = posix_clock_realtime_get,
233 .clock_set = posix_clock_realtime_set,
234 .clock_adj = posix_clock_realtime_adj,
235 .nsleep = common_nsleep,
236 .nsleep_restart = hrtimer_nanosleep_restart,
237 .timer_create = common_timer_create,
238 .timer_set = common_timer_set,
239 .timer_get = common_timer_get,
240 .timer_del = common_timer_del,
241 };
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .nsleep = common_nsleep,
246 .nsleep_restart = hrtimer_nanosleep_restart,
247 .timer_create = common_timer_create,
248 .timer_set = common_timer_set,
249 .timer_get = common_timer_get,
250 .timer_del = common_timer_del,
251 };
252 struct k_clock clock_monotonic_raw = {
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
255 };
256 struct k_clock clock_realtime_coarse = {
257 .clock_getres = posix_get_coarse_res,
258 .clock_get = posix_get_realtime_coarse,
259 };
260 struct k_clock clock_monotonic_coarse = {
261 .clock_getres = posix_get_coarse_res,
262 .clock_get = posix_get_monotonic_coarse,
263 };
264 struct k_clock clock_boottime = {
265 .clock_getres = hrtimer_get_res,
266 .clock_get = posix_get_boottime,
267 .nsleep = common_nsleep,
268 .nsleep_restart = hrtimer_nanosleep_restart,
269 .timer_create = common_timer_create,
270 .timer_set = common_timer_set,
271 .timer_get = common_timer_get,
272 .timer_del = common_timer_del,
273 };
274
275 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
276 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
277 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
278 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
279 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
280 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
281
282 posix_timers_cache = kmem_cache_create("posix_timers_cache",
283 sizeof (struct k_itimer), 0, SLAB_PANIC,
284 NULL);
285 idr_init(&posix_timers_id);
286 return 0;
287}
288
289__initcall(init_posix_timers);
290
291static void schedule_next_timer(struct k_itimer *timr)
292{
293 struct hrtimer *timer = &timr->it.real.timer;
294
295 if (timr->it.real.interval.tv64 == 0)
296 return;
297
298 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 timer->base->get_time(),
300 timr->it.real.interval);
301
302 timr->it_overrun_last = timr->it_overrun;
303 timr->it_overrun = -1;
304 ++timr->it_requeue_pending;
305 hrtimer_restart(timer);
306}
307
308/*
309 * This function is exported for use by the signal deliver code. It is
310 * called just prior to the info block being released and passes that
311 * block to us. It's function is to update the overrun entry AND to
312 * restart the timer. It should only be called if the timer is to be
313 * restarted (i.e. we have flagged this in the sys_private entry of the
314 * info block).
315 *
316 * To protect against the timer going away while the interrupt is queued,
317 * we require that the it_requeue_pending flag be set.
318 */
319void do_schedule_next_timer(struct siginfo *info)
320{
321 struct k_itimer *timr;
322 unsigned long flags;
323
324 timr = lock_timer(info->si_tid, &flags);
325
326 if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 if (timr->it_clock < 0)
328 posix_cpu_timer_schedule(timr);
329 else
330 schedule_next_timer(timr);
331
332 info->si_overrun += timr->it_overrun_last;
333 }
334
335 if (timr)
336 unlock_timer(timr, flags);
337}
338
339int posix_timer_event(struct k_itimer *timr, int si_private)
340{
341 struct task_struct *task;
342 int shared, ret = -1;
343 /*
344 * FIXME: if ->sigq is queued we can race with
345 * dequeue_signal()->do_schedule_next_timer().
346 *
347 * If dequeue_signal() sees the "right" value of
348 * si_sys_private it calls do_schedule_next_timer().
349 * We re-queue ->sigq and drop ->it_lock().
350 * do_schedule_next_timer() locks the timer
351 * and re-schedules it while ->sigq is pending.
352 * Not really bad, but not that we want.
353 */
354 timr->sigq->info.si_sys_private = si_private;
355
356 rcu_read_lock();
357 task = pid_task(timr->it_pid, PIDTYPE_PID);
358 if (task) {
359 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 ret = send_sigqueue(timr->sigq, task, shared);
361 }
362 rcu_read_unlock();
363 /* If we failed to send the signal the timer stops. */
364 return ret > 0;
365}
366EXPORT_SYMBOL_GPL(posix_timer_event);
367
368/*
369 * This function gets called when a POSIX.1b interval timer expires. It
370 * is used as a callback from the kernel internal timer. The
371 * run_timer_list code ALWAYS calls with interrupts on.
372
373 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374 */
375static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376{
377 struct k_itimer *timr;
378 unsigned long flags;
379 int si_private = 0;
380 enum hrtimer_restart ret = HRTIMER_NORESTART;
381
382 timr = container_of(timer, struct k_itimer, it.real.timer);
383 spin_lock_irqsave(&timr->it_lock, flags);
384
385 if (timr->it.real.interval.tv64 != 0)
386 si_private = ++timr->it_requeue_pending;
387
388 if (posix_timer_event(timr, si_private)) {
389 /*
390 * signal was not sent because of sig_ignor
391 * we will not get a call back to restart it AND
392 * it should be restarted.
393 */
394 if (timr->it.real.interval.tv64 != 0) {
395 ktime_t now = hrtimer_cb_get_time(timer);
396
397 /*
398 * FIXME: What we really want, is to stop this
399 * timer completely and restart it in case the
400 * SIG_IGN is removed. This is a non trivial
401 * change which involves sighand locking
402 * (sigh !), which we don't want to do late in
403 * the release cycle.
404 *
405 * For now we just let timers with an interval
406 * less than a jiffie expire every jiffie to
407 * avoid softirq starvation in case of SIG_IGN
408 * and a very small interval, which would put
409 * the timer right back on the softirq pending
410 * list. By moving now ahead of time we trick
411 * hrtimer_forward() to expire the timer
412 * later, while we still maintain the overrun
413 * accuracy, but have some inconsistency in
414 * the timer_gettime() case. This is at least
415 * better than a starved softirq. A more
416 * complex fix which solves also another related
417 * inconsistency is already in the pipeline.
418 */
419#ifdef CONFIG_HIGH_RES_TIMERS
420 {
421 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422
423 if (timr->it.real.interval.tv64 < kj.tv64)
424 now = ktime_add(now, kj);
425 }
426#endif
427 timr->it_overrun += (unsigned int)
428 hrtimer_forward(timer, now,
429 timr->it.real.interval);
430 ret = HRTIMER_RESTART;
431 ++timr->it_requeue_pending;
432 }
433 }
434
435 unlock_timer(timr, flags);
436 return ret;
437}
438
439static struct pid *good_sigevent(sigevent_t * event)
440{
441 struct task_struct *rtn = current->group_leader;
442 int sig = event->sigev_signo;
443
444 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
445 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
446 !same_thread_group(rtn, current) ||
447 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
448 return NULL;
449
450 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
451 (sig <= 0 || sig > SIGRTMAX || sig_kernel_only(sig) ||
452 sig_kernel_coredump(sig)))
453 return NULL;
454
455 return task_pid(rtn);
456}
457
458void posix_timers_register_clock(const clockid_t clock_id,
459 struct k_clock *new_clock)
460{
461 if ((unsigned) clock_id >= MAX_CLOCKS) {
462 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
463 clock_id);
464 return;
465 }
466
467 if (!new_clock->clock_get) {
468 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
469 clock_id);
470 return;
471 }
472 if (!new_clock->clock_getres) {
473 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
474 clock_id);
475 return;
476 }
477
478 posix_clocks[clock_id] = *new_clock;
479}
480EXPORT_SYMBOL_GPL(posix_timers_register_clock);
481
482static struct k_itimer * alloc_posix_timer(void)
483{
484 struct k_itimer *tmr;
485 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
486 if (!tmr)
487 return tmr;
488 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
489 kmem_cache_free(posix_timers_cache, tmr);
490 return NULL;
491 }
492 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
493 return tmr;
494}
495
496static void k_itimer_rcu_free(struct rcu_head *head)
497{
498 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
499
500 kmem_cache_free(posix_timers_cache, tmr);
501}
502
503#define IT_ID_SET 1
504#define IT_ID_NOT_SET 0
505static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
506{
507 if (it_id_set) {
508 unsigned long flags;
509 spin_lock_irqsave(&idr_lock, flags);
510 idr_remove(&posix_timers_id, tmr->it_id);
511 spin_unlock_irqrestore(&idr_lock, flags);
512 }
513 put_pid(tmr->it_pid);
514 sigqueue_free(tmr->sigq);
515 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
516}
517
518static struct k_clock *clockid_to_kclock(const clockid_t id)
519{
520 if (id < 0)
521 return (id & CLOCKFD_MASK) == CLOCKFD ?
522 &clock_posix_dynamic : &clock_posix_cpu;
523
524 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
525 return NULL;
526 return &posix_clocks[id];
527}
528
529static int common_timer_create(struct k_itimer *new_timer)
530{
531 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
532 return 0;
533}
534
535/* Create a POSIX.1b interval timer. */
536
537SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
538 struct sigevent __user *, timer_event_spec,
539 timer_t __user *, created_timer_id)
540{
541 struct k_clock *kc = clockid_to_kclock(which_clock);
542 struct k_itimer *new_timer;
543 int error, new_timer_id;
544 sigevent_t event;
545 int it_id_set = IT_ID_NOT_SET;
546
547 if (!kc)
548 return -EINVAL;
549 if (!kc->timer_create)
550 return -EOPNOTSUPP;
551
552 new_timer = alloc_posix_timer();
553 if (unlikely(!new_timer))
554 return -EAGAIN;
555
556 spin_lock_init(&new_timer->it_lock);
557 retry:
558 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
559 error = -EAGAIN;
560 goto out;
561 }
562 spin_lock_irq(&idr_lock);
563 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
564 spin_unlock_irq(&idr_lock);
565 if (error) {
566 if (error == -EAGAIN)
567 goto retry;
568 /*
569 * Weird looking, but we return EAGAIN if the IDR is
570 * full (proper POSIX return value for this)
571 */
572 error = -EAGAIN;
573 goto out;
574 }
575
576 it_id_set = IT_ID_SET;
577 new_timer->it_id = (timer_t) new_timer_id;
578 new_timer->it_clock = which_clock;
579 new_timer->it_overrun = -1;
580
581 if (timer_event_spec) {
582 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
583 error = -EFAULT;
584 goto out;
585 }
586 rcu_read_lock();
587 new_timer->it_pid = get_pid(good_sigevent(&event));
588 rcu_read_unlock();
589 if (!new_timer->it_pid) {
590 error = -EINVAL;
591 goto out;
592 }
593 } else {
594 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
595 event.sigev_notify = SIGEV_SIGNAL;
596 event.sigev_signo = SIGALRM;
597 event.sigev_value.sival_int = new_timer->it_id;
598 new_timer->it_pid = get_pid(task_tgid(current));
599 }
600
601 new_timer->it_sigev_notify = event.sigev_notify;
602 new_timer->sigq->info.si_signo = event.sigev_signo;
603 new_timer->sigq->info.si_value = event.sigev_value;
604 new_timer->sigq->info.si_tid = new_timer->it_id;
605 new_timer->sigq->info.si_code = SI_TIMER;
606
607 if (copy_to_user(created_timer_id,
608 &new_timer_id, sizeof (new_timer_id))) {
609 error = -EFAULT;
610 goto out;
611 }
612
613 error = kc->timer_create(new_timer);
614 if (error)
615 goto out;
616
617 spin_lock_irq(&current->sighand->siglock);
618 new_timer->it_signal = current->signal;
619 list_add(&new_timer->list, &current->signal->posix_timers);
620 spin_unlock_irq(&current->sighand->siglock);
621
622 return 0;
623 /*
624 * In the case of the timer belonging to another task, after
625 * the task is unlocked, the timer is owned by the other task
626 * and may cease to exist at any time. Don't use or modify
627 * new_timer after the unlock call.
628 */
629out:
630 release_posix_timer(new_timer, it_id_set);
631 return error;
632}
633
634/*
635 * Locking issues: We need to protect the result of the id look up until
636 * we get the timer locked down so it is not deleted under us. The
637 * removal is done under the idr spinlock so we use that here to bridge
638 * the find to the timer lock. To avoid a dead lock, the timer id MUST
639 * be release with out holding the timer lock.
640 */
641static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
642{
643 struct k_itimer *timr;
644
645 /*
646 * timer_t could be any type >= int and we want to make sure any
647 * @timer_id outside positive int range fails lookup.
648 */
649 if ((unsigned long long)timer_id > INT_MAX)
650 return NULL;
651
652 rcu_read_lock();
653 timr = idr_find(&posix_timers_id, (int)timer_id);
654 if (timr) {
655 spin_lock_irqsave(&timr->it_lock, *flags);
656 if (timr->it_signal == current->signal) {
657 rcu_read_unlock();
658 return timr;
659 }
660 spin_unlock_irqrestore(&timr->it_lock, *flags);
661 }
662 rcu_read_unlock();
663
664 return NULL;
665}
666
667/*
668 * Get the time remaining on a POSIX.1b interval timer. This function
669 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
670 * mess with irq.
671 *
672 * We have a couple of messes to clean up here. First there is the case
673 * of a timer that has a requeue pending. These timers should appear to
674 * be in the timer list with an expiry as if we were to requeue them
675 * now.
676 *
677 * The second issue is the SIGEV_NONE timer which may be active but is
678 * not really ever put in the timer list (to save system resources).
679 * This timer may be expired, and if so, we will do it here. Otherwise
680 * it is the same as a requeue pending timer WRT to what we should
681 * report.
682 */
683static void
684common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
685{
686 ktime_t now, remaining, iv;
687 struct hrtimer *timer = &timr->it.real.timer;
688
689 memset(cur_setting, 0, sizeof(struct itimerspec));
690
691 iv = timr->it.real.interval;
692
693 /* interval timer ? */
694 if (iv.tv64)
695 cur_setting->it_interval = ktime_to_timespec(iv);
696 else if (!hrtimer_active(timer) &&
697 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
698 return;
699
700 now = timer->base->get_time();
701
702 /*
703 * When a requeue is pending or this is a SIGEV_NONE
704 * timer move the expiry time forward by intervals, so
705 * expiry is > now.
706 */
707 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
708 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
709 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
710
711 remaining = ktime_sub(hrtimer_get_expires(timer), now);
712 /* Return 0 only, when the timer is expired and not pending */
713 if (remaining.tv64 <= 0) {
714 /*
715 * A single shot SIGEV_NONE timer must return 0, when
716 * it is expired !
717 */
718 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
719 cur_setting->it_value.tv_nsec = 1;
720 } else
721 cur_setting->it_value = ktime_to_timespec(remaining);
722}
723
724/* Get the time remaining on a POSIX.1b interval timer. */
725SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
726 struct itimerspec __user *, setting)
727{
728 struct itimerspec cur_setting;
729 struct k_itimer *timr;
730 struct k_clock *kc;
731 unsigned long flags;
732 int ret = 0;
733
734 timr = lock_timer(timer_id, &flags);
735 if (!timr)
736 return -EINVAL;
737
738 kc = clockid_to_kclock(timr->it_clock);
739 if (WARN_ON_ONCE(!kc || !kc->timer_get))
740 ret = -EINVAL;
741 else
742 kc->timer_get(timr, &cur_setting);
743
744 unlock_timer(timr, flags);
745
746 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
747 return -EFAULT;
748
749 return ret;
750}
751
752/*
753 * Get the number of overruns of a POSIX.1b interval timer. This is to
754 * be the overrun of the timer last delivered. At the same time we are
755 * accumulating overruns on the next timer. The overrun is frozen when
756 * the signal is delivered, either at the notify time (if the info block
757 * is not queued) or at the actual delivery time (as we are informed by
758 * the call back to do_schedule_next_timer(). So all we need to do is
759 * to pick up the frozen overrun.
760 */
761SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
762{
763 struct k_itimer *timr;
764 int overrun;
765 unsigned long flags;
766
767 timr = lock_timer(timer_id, &flags);
768 if (!timr)
769 return -EINVAL;
770
771 overrun = timr->it_overrun_last;
772 unlock_timer(timr, flags);
773
774 return overrun;
775}
776
777/*
778 * Protected by RCU!
779 */
780static void timer_wait_for_callback(struct k_clock *kc, struct k_itimer *timr)
781{
782#ifdef CONFIG_PREEMPT_RT_FULL
783 if (kc->timer_set == common_timer_set)
784 hrtimer_wait_for_timer(&timr->it.real.timer);
785 else
786 /* FIXME: Whacky hack for posix-cpu-timers */
787 schedule_timeout(1);
788#endif
789}
790
791/* Set a POSIX.1b interval timer. */
792/* timr->it_lock is taken. */
793static int
794common_timer_set(struct k_itimer *timr, int flags,
795 struct itimerspec *new_setting, struct itimerspec *old_setting)
796{
797 struct hrtimer *timer = &timr->it.real.timer;
798 enum hrtimer_mode mode;
799
800 if (old_setting)
801 common_timer_get(timr, old_setting);
802
803 /* disable the timer */
804 timr->it.real.interval.tv64 = 0;
805 /*
806 * careful here. If smp we could be in the "fire" routine which will
807 * be spinning as we hold the lock. But this is ONLY an SMP issue.
808 */
809 if (hrtimer_try_to_cancel(timer) < 0)
810 return TIMER_RETRY;
811
812 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
813 ~REQUEUE_PENDING;
814 timr->it_overrun_last = 0;
815
816 /* switch off the timer when it_value is zero */
817 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
818 return 0;
819
820 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
821 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
822 timr->it.real.timer.function = posix_timer_fn;
823
824 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
825
826 /* Convert interval */
827 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
828
829 /* SIGEV_NONE timers are not queued ! See common_timer_get */
830 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
831 /* Setup correct expiry time for relative timers */
832 if (mode == HRTIMER_MODE_REL) {
833 hrtimer_add_expires(timer, timer->base->get_time());
834 }
835 return 0;
836 }
837
838 hrtimer_start_expires(timer, mode);
839 return 0;
840}
841
842/* Set a POSIX.1b interval timer */
843SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
844 const struct itimerspec __user *, new_setting,
845 struct itimerspec __user *, old_setting)
846{
847 struct k_itimer *timr;
848 struct itimerspec new_spec, old_spec;
849 int error = 0;
850 unsigned long flag;
851 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
852 struct k_clock *kc;
853
854 if (!new_setting)
855 return -EINVAL;
856
857 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
858 return -EFAULT;
859
860 if (!timespec_valid(&new_spec.it_interval) ||
861 !timespec_valid(&new_spec.it_value))
862 return -EINVAL;
863retry:
864 timr = lock_timer(timer_id, &flag);
865 if (!timr)
866 return -EINVAL;
867
868 rcu_read_lock();
869 kc = clockid_to_kclock(timr->it_clock);
870 if (WARN_ON_ONCE(!kc || !kc->timer_set))
871 error = -EINVAL;
872 else
873 error = kc->timer_set(timr, flags, &new_spec, rtn);
874
875 unlock_timer(timr, flag);
876 if (error == TIMER_RETRY) {
877 timer_wait_for_callback(kc, timr);
878 rtn = NULL; // We already got the old time...
879 rcu_read_unlock();
880 goto retry;
881 }
882 rcu_read_unlock();
883
884 if (old_setting && !error &&
885 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
886 error = -EFAULT;
887
888 return error;
889}
890
891static int common_timer_del(struct k_itimer *timer)
892{
893 timer->it.real.interval.tv64 = 0;
894
895 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
896 return TIMER_RETRY;
897 return 0;
898}
899
900static inline int timer_delete_hook(struct k_itimer *timer)
901{
902 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
903
904 if (WARN_ON_ONCE(!kc || !kc->timer_del))
905 return -EINVAL;
906 return kc->timer_del(timer);
907}
908
909/* Delete a POSIX.1b interval timer. */
910SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
911{
912 struct k_itimer *timer;
913 unsigned long flags;
914
915retry_delete:
916 timer = lock_timer(timer_id, &flags);
917 if (!timer)
918 return -EINVAL;
919
920 rcu_read_lock();
921 if (timer_delete_hook(timer) == TIMER_RETRY) {
922 unlock_timer(timer, flags);
923 timer_wait_for_callback(clockid_to_kclock(timer->it_clock),
924 timer);
925 rcu_read_unlock();
926 goto retry_delete;
927 }
928 rcu_read_unlock();
929
930 spin_lock(&current->sighand->siglock);
931 list_del(&timer->list);
932 spin_unlock(&current->sighand->siglock);
933 /*
934 * This keeps any tasks waiting on the spin lock from thinking
935 * they got something (see the lock code above).
936 */
937 timer->it_signal = NULL;
938
939 unlock_timer(timer, flags);
940 release_posix_timer(timer, IT_ID_SET);
941 return 0;
942}
943
944/*
945 * return timer owned by the process, used by exit_itimers
946 */
947static void itimer_delete(struct k_itimer *timer)
948{
949 unsigned long flags;
950
951retry_delete:
952 spin_lock_irqsave(&timer->it_lock, flags);
953
954 /* On RT we can race with a deletion */
955 if (!timer->it_signal) {
956 unlock_timer(timer, flags);
957 return;
958 }
959
960 if (timer_delete_hook(timer) == TIMER_RETRY) {
961 rcu_read_lock();
962 unlock_timer(timer, flags);
963 timer_wait_for_callback(clockid_to_kclock(timer->it_clock),
964 timer);
965 rcu_read_unlock();
966 goto retry_delete;
967 }
968 list_del(&timer->list);
969 /*
970 * This keeps any tasks waiting on the spin lock from thinking
971 * they got something (see the lock code above).
972 */
973 timer->it_signal = NULL;
974
975 unlock_timer(timer, flags);
976 release_posix_timer(timer, IT_ID_SET);
977}
978
979/*
980 * This is called by do_exit or de_thread, only when there are no more
981 * references to the shared signal_struct.
982 */
983void exit_itimers(struct signal_struct *sig)
984{
985 struct k_itimer *tmr;
986
987 while (!list_empty(&sig->posix_timers)) {
988 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
989 itimer_delete(tmr);
990 }
991}
992
993SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
994 const struct timespec __user *, tp)
995{
996 struct k_clock *kc = clockid_to_kclock(which_clock);
997 struct timespec new_tp;
998
999 if (!kc || !kc->clock_set)
1000 return -EINVAL;
1001
1002 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1003 return -EFAULT;
1004
1005 return kc->clock_set(which_clock, &new_tp);
1006}
1007
1008SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1009 struct timespec __user *,tp)
1010{
1011 struct k_clock *kc = clockid_to_kclock(which_clock);
1012 struct timespec kernel_tp;
1013 int error;
1014
1015 if (!kc)
1016 return -EINVAL;
1017
1018 error = kc->clock_get(which_clock, &kernel_tp);
1019
1020 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1021 error = -EFAULT;
1022
1023 return error;
1024}
1025
1026SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1027 struct timex __user *, utx)
1028{
1029 struct k_clock *kc = clockid_to_kclock(which_clock);
1030 struct timex ktx;
1031 int err;
1032
1033 if (!kc)
1034 return -EINVAL;
1035 if (!kc->clock_adj)
1036 return -EOPNOTSUPP;
1037
1038 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1039 return -EFAULT;
1040
1041 err = kc->clock_adj(which_clock, &ktx);
1042
1043 if (!err && copy_to_user(utx, &ktx, sizeof(ktx)))
1044 return -EFAULT;
1045
1046 return err;
1047}
1048
1049SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1050 struct timespec __user *, tp)
1051{
1052 struct k_clock *kc = clockid_to_kclock(which_clock);
1053 struct timespec rtn_tp;
1054 int error;
1055
1056 if (!kc)
1057 return -EINVAL;
1058
1059 error = kc->clock_getres(which_clock, &rtn_tp);
1060
1061 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1062 error = -EFAULT;
1063
1064 return error;
1065}
1066
1067/*
1068 * nanosleep for monotonic and realtime clocks
1069 */
1070static int common_nsleep(const clockid_t which_clock, int flags,
1071 struct timespec *tsave, struct timespec __user *rmtp)
1072{
1073 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1074 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1075 which_clock);
1076}
1077
1078SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1079 const struct timespec __user *, rqtp,
1080 struct timespec __user *, rmtp)
1081{
1082 struct k_clock *kc = clockid_to_kclock(which_clock);
1083 struct timespec t;
1084
1085 if (!kc)
1086 return -EINVAL;
1087 if (!kc->nsleep)
1088 return -ENANOSLEEP_NOTSUP;
1089
1090 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1091 return -EFAULT;
1092
1093 if (!timespec_valid(&t))
1094 return -EINVAL;
1095
1096 return kc->nsleep(which_clock, flags, &t, rmtp);
1097}
1098
1099/*
1100 * This will restart clock_nanosleep. This is required only by
1101 * compat_clock_nanosleep_restart for now.
1102 */
1103long clock_nanosleep_restart(struct restart_block *restart_block)
1104{
1105 clockid_t which_clock = restart_block->nanosleep.clockid;
1106 struct k_clock *kc = clockid_to_kclock(which_clock);
1107
1108 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1109 return -EINVAL;
1110
1111 return kc->nsleep_restart(restart_block);
1112}