lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/power/snapshot.c |
| 3 | * |
| 4 | * This file provides system snapshot/restore functionality for swsusp. |
| 5 | * |
| 6 | * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> |
| 7 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> |
| 8 | * |
| 9 | * This file is released under the GPLv2. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include <linux/version.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/suspend.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/bitops.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/pm.h> |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/bootmem.h> |
| 25 | #include <linux/syscalls.h> |
| 26 | #include <linux/console.h> |
| 27 | #include <linux/highmem.h> |
| 28 | #include <linux/list.h> |
| 29 | #include <linux/slab.h> |
| 30 | |
| 31 | #include <asm/uaccess.h> |
| 32 | #include <asm/mmu_context.h> |
| 33 | #include <asm/pgtable.h> |
| 34 | #include <asm/tlbflush.h> |
| 35 | #include <asm/io.h> |
| 36 | |
| 37 | #include "power.h" |
| 38 | |
| 39 | static int swsusp_page_is_free(struct page *); |
| 40 | static void swsusp_set_page_forbidden(struct page *); |
| 41 | static void swsusp_unset_page_forbidden(struct page *); |
| 42 | |
| 43 | /* |
| 44 | * Number of bytes to reserve for memory allocations made by device drivers |
| 45 | * from their ->freeze() and ->freeze_noirq() callbacks so that they don't |
| 46 | * cause image creation to fail (tunable via /sys/power/reserved_size). |
| 47 | */ |
| 48 | unsigned long reserved_size; |
| 49 | |
| 50 | void __init hibernate_reserved_size_init(void) |
| 51 | { |
| 52 | reserved_size = SPARE_PAGES * PAGE_SIZE; |
| 53 | } |
| 54 | |
| 55 | /* |
| 56 | * Preferred image size in bytes (tunable via /sys/power/image_size). |
| 57 | * When it is set to N, swsusp will do its best to ensure the image |
| 58 | * size will not exceed N bytes, but if that is impossible, it will |
| 59 | * try to create the smallest image possible. |
| 60 | */ |
| 61 | unsigned long image_size; |
| 62 | |
| 63 | void __init hibernate_image_size_init(void) |
| 64 | { |
| 65 | image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; |
| 66 | } |
| 67 | |
| 68 | /* List of PBEs needed for restoring the pages that were allocated before |
| 69 | * the suspend and included in the suspend image, but have also been |
| 70 | * allocated by the "resume" kernel, so their contents cannot be written |
| 71 | * directly to their "original" page frames. |
| 72 | */ |
| 73 | struct pbe *restore_pblist; |
| 74 | |
| 75 | /* Pointer to an auxiliary buffer (1 page) */ |
| 76 | static void *buffer; |
| 77 | |
| 78 | /** |
| 79 | * @safe_needed - on resume, for storing the PBE list and the image, |
| 80 | * we can only use memory pages that do not conflict with the pages |
| 81 | * used before suspend. The unsafe pages have PageNosaveFree set |
| 82 | * and we count them using unsafe_pages. |
| 83 | * |
| 84 | * Each allocated image page is marked as PageNosave and PageNosaveFree |
| 85 | * so that swsusp_free() can release it. |
| 86 | */ |
| 87 | |
| 88 | #define PG_ANY 0 |
| 89 | #define PG_SAFE 1 |
| 90 | #define PG_UNSAFE_CLEAR 1 |
| 91 | #define PG_UNSAFE_KEEP 0 |
| 92 | |
| 93 | static unsigned int allocated_unsafe_pages; |
| 94 | |
| 95 | static void *get_image_page(gfp_t gfp_mask, int safe_needed) |
| 96 | { |
| 97 | void *res; |
| 98 | |
| 99 | res = (void *)get_zeroed_page(gfp_mask); |
| 100 | if (safe_needed) |
| 101 | while (res && swsusp_page_is_free(virt_to_page(res))) { |
| 102 | /* The page is unsafe, mark it for swsusp_free() */ |
| 103 | swsusp_set_page_forbidden(virt_to_page(res)); |
| 104 | allocated_unsafe_pages++; |
| 105 | res = (void *)get_zeroed_page(gfp_mask); |
| 106 | } |
| 107 | if (res) { |
| 108 | swsusp_set_page_forbidden(virt_to_page(res)); |
| 109 | swsusp_set_page_free(virt_to_page(res)); |
| 110 | } |
| 111 | return res; |
| 112 | } |
| 113 | |
| 114 | unsigned long get_safe_page(gfp_t gfp_mask) |
| 115 | { |
| 116 | return (unsigned long)get_image_page(gfp_mask, PG_SAFE); |
| 117 | } |
| 118 | |
| 119 | static struct page *alloc_image_page(gfp_t gfp_mask) |
| 120 | { |
| 121 | struct page *page; |
| 122 | |
| 123 | page = alloc_page(gfp_mask); |
| 124 | if (page) { |
| 125 | swsusp_set_page_forbidden(page); |
| 126 | swsusp_set_page_free(page); |
| 127 | } |
| 128 | return page; |
| 129 | } |
| 130 | |
| 131 | /** |
| 132 | * free_image_page - free page represented by @addr, allocated with |
| 133 | * get_image_page (page flags set by it must be cleared) |
| 134 | */ |
| 135 | |
| 136 | static inline void free_image_page(void *addr, int clear_nosave_free) |
| 137 | { |
| 138 | struct page *page; |
| 139 | |
| 140 | BUG_ON(!virt_addr_valid(addr)); |
| 141 | |
| 142 | page = virt_to_page(addr); |
| 143 | |
| 144 | swsusp_unset_page_forbidden(page); |
| 145 | if (clear_nosave_free) |
| 146 | swsusp_unset_page_free(page); |
| 147 | |
| 148 | __free_page(page); |
| 149 | } |
| 150 | |
| 151 | /* struct linked_page is used to build chains of pages */ |
| 152 | |
| 153 | #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) |
| 154 | |
| 155 | struct linked_page { |
| 156 | struct linked_page *next; |
| 157 | char data[LINKED_PAGE_DATA_SIZE]; |
| 158 | } __attribute__((packed)); |
| 159 | |
| 160 | static inline void |
| 161 | free_list_of_pages(struct linked_page *list, int clear_page_nosave) |
| 162 | { |
| 163 | while (list) { |
| 164 | struct linked_page *lp = list->next; |
| 165 | |
| 166 | free_image_page(list, clear_page_nosave); |
| 167 | list = lp; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * struct chain_allocator is used for allocating small objects out of |
| 173 | * a linked list of pages called 'the chain'. |
| 174 | * |
| 175 | * The chain grows each time when there is no room for a new object in |
| 176 | * the current page. The allocated objects cannot be freed individually. |
| 177 | * It is only possible to free them all at once, by freeing the entire |
| 178 | * chain. |
| 179 | * |
| 180 | * NOTE: The chain allocator may be inefficient if the allocated objects |
| 181 | * are not much smaller than PAGE_SIZE. |
| 182 | */ |
| 183 | |
| 184 | struct chain_allocator { |
| 185 | struct linked_page *chain; /* the chain */ |
| 186 | unsigned int used_space; /* total size of objects allocated out |
| 187 | * of the current page |
| 188 | */ |
| 189 | gfp_t gfp_mask; /* mask for allocating pages */ |
| 190 | int safe_needed; /* if set, only "safe" pages are allocated */ |
| 191 | }; |
| 192 | |
| 193 | static void |
| 194 | chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) |
| 195 | { |
| 196 | ca->chain = NULL; |
| 197 | ca->used_space = LINKED_PAGE_DATA_SIZE; |
| 198 | ca->gfp_mask = gfp_mask; |
| 199 | ca->safe_needed = safe_needed; |
| 200 | } |
| 201 | |
| 202 | static void *chain_alloc(struct chain_allocator *ca, unsigned int size) |
| 203 | { |
| 204 | void *ret; |
| 205 | |
| 206 | if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { |
| 207 | struct linked_page *lp; |
| 208 | |
| 209 | lp = get_image_page(ca->gfp_mask, ca->safe_needed); |
| 210 | if (!lp) |
| 211 | return NULL; |
| 212 | |
| 213 | lp->next = ca->chain; |
| 214 | ca->chain = lp; |
| 215 | ca->used_space = 0; |
| 216 | } |
| 217 | ret = ca->chain->data + ca->used_space; |
| 218 | ca->used_space += size; |
| 219 | return ret; |
| 220 | } |
| 221 | |
| 222 | /** |
| 223 | * Data types related to memory bitmaps. |
| 224 | * |
| 225 | * Memory bitmap is a structure consiting of many linked lists of |
| 226 | * objects. The main list's elements are of type struct zone_bitmap |
| 227 | * and each of them corresonds to one zone. For each zone bitmap |
| 228 | * object there is a list of objects of type struct bm_block that |
| 229 | * represent each blocks of bitmap in which information is stored. |
| 230 | * |
| 231 | * struct memory_bitmap contains a pointer to the main list of zone |
| 232 | * bitmap objects, a struct bm_position used for browsing the bitmap, |
| 233 | * and a pointer to the list of pages used for allocating all of the |
| 234 | * zone bitmap objects and bitmap block objects. |
| 235 | * |
| 236 | * NOTE: It has to be possible to lay out the bitmap in memory |
| 237 | * using only allocations of order 0. Additionally, the bitmap is |
| 238 | * designed to work with arbitrary number of zones (this is over the |
| 239 | * top for now, but let's avoid making unnecessary assumptions ;-). |
| 240 | * |
| 241 | * struct zone_bitmap contains a pointer to a list of bitmap block |
| 242 | * objects and a pointer to the bitmap block object that has been |
| 243 | * most recently used for setting bits. Additionally, it contains the |
| 244 | * pfns that correspond to the start and end of the represented zone. |
| 245 | * |
| 246 | * struct bm_block contains a pointer to the memory page in which |
| 247 | * information is stored (in the form of a block of bitmap) |
| 248 | * It also contains the pfns that correspond to the start and end of |
| 249 | * the represented memory area. |
| 250 | */ |
| 251 | |
| 252 | #define BM_END_OF_MAP (~0UL) |
| 253 | |
| 254 | #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) |
| 255 | |
| 256 | struct bm_block { |
| 257 | struct list_head hook; /* hook into a list of bitmap blocks */ |
| 258 | unsigned long start_pfn; /* pfn represented by the first bit */ |
| 259 | unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ |
| 260 | unsigned long *data; /* bitmap representing pages */ |
| 261 | }; |
| 262 | |
| 263 | static inline unsigned long bm_block_bits(struct bm_block *bb) |
| 264 | { |
| 265 | return bb->end_pfn - bb->start_pfn; |
| 266 | } |
| 267 | |
| 268 | /* strcut bm_position is used for browsing memory bitmaps */ |
| 269 | |
| 270 | struct bm_position { |
| 271 | struct bm_block *block; |
| 272 | int bit; |
| 273 | }; |
| 274 | |
| 275 | struct memory_bitmap { |
| 276 | struct list_head blocks; /* list of bitmap blocks */ |
| 277 | struct linked_page *p_list; /* list of pages used to store zone |
| 278 | * bitmap objects and bitmap block |
| 279 | * objects |
| 280 | */ |
| 281 | struct bm_position cur; /* most recently used bit position */ |
| 282 | }; |
| 283 | |
| 284 | /* Functions that operate on memory bitmaps */ |
| 285 | |
| 286 | static void memory_bm_position_reset(struct memory_bitmap *bm) |
| 287 | { |
| 288 | bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); |
| 289 | bm->cur.bit = 0; |
| 290 | } |
| 291 | |
| 292 | static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); |
| 293 | |
| 294 | /** |
| 295 | * create_bm_block_list - create a list of block bitmap objects |
| 296 | * @pages - number of pages to track |
| 297 | * @list - list to put the allocated blocks into |
| 298 | * @ca - chain allocator to be used for allocating memory |
| 299 | */ |
| 300 | static int create_bm_block_list(unsigned long pages, |
| 301 | struct list_head *list, |
| 302 | struct chain_allocator *ca) |
| 303 | { |
| 304 | unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); |
| 305 | |
| 306 | while (nr_blocks-- > 0) { |
| 307 | struct bm_block *bb; |
| 308 | |
| 309 | bb = chain_alloc(ca, sizeof(struct bm_block)); |
| 310 | if (!bb) |
| 311 | return -ENOMEM; |
| 312 | list_add(&bb->hook, list); |
| 313 | } |
| 314 | |
| 315 | return 0; |
| 316 | } |
| 317 | |
| 318 | struct mem_extent { |
| 319 | struct list_head hook; |
| 320 | unsigned long start; |
| 321 | unsigned long end; |
| 322 | }; |
| 323 | |
| 324 | /** |
| 325 | * free_mem_extents - free a list of memory extents |
| 326 | * @list - list of extents to empty |
| 327 | */ |
| 328 | static void free_mem_extents(struct list_head *list) |
| 329 | { |
| 330 | struct mem_extent *ext, *aux; |
| 331 | |
| 332 | list_for_each_entry_safe(ext, aux, list, hook) { |
| 333 | list_del(&ext->hook); |
| 334 | kfree(ext); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * create_mem_extents - create a list of memory extents representing |
| 340 | * contiguous ranges of PFNs |
| 341 | * @list - list to put the extents into |
| 342 | * @gfp_mask - mask to use for memory allocations |
| 343 | */ |
| 344 | static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) |
| 345 | { |
| 346 | struct zone *zone; |
| 347 | |
| 348 | INIT_LIST_HEAD(list); |
| 349 | |
| 350 | for_each_populated_zone(zone) { |
| 351 | unsigned long zone_start, zone_end; |
| 352 | struct mem_extent *ext, *cur, *aux; |
| 353 | |
| 354 | zone_start = zone->zone_start_pfn; |
| 355 | zone_end = zone->zone_start_pfn + zone->spanned_pages; |
| 356 | |
| 357 | list_for_each_entry(ext, list, hook) |
| 358 | if (zone_start <= ext->end) |
| 359 | break; |
| 360 | |
| 361 | if (&ext->hook == list || zone_end < ext->start) { |
| 362 | /* New extent is necessary */ |
| 363 | struct mem_extent *new_ext; |
| 364 | |
| 365 | new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); |
| 366 | if (!new_ext) { |
| 367 | free_mem_extents(list); |
| 368 | return -ENOMEM; |
| 369 | } |
| 370 | new_ext->start = zone_start; |
| 371 | new_ext->end = zone_end; |
| 372 | list_add_tail(&new_ext->hook, &ext->hook); |
| 373 | continue; |
| 374 | } |
| 375 | |
| 376 | /* Merge this zone's range of PFNs with the existing one */ |
| 377 | if (zone_start < ext->start) |
| 378 | ext->start = zone_start; |
| 379 | if (zone_end > ext->end) |
| 380 | ext->end = zone_end; |
| 381 | |
| 382 | /* More merging may be possible */ |
| 383 | cur = ext; |
| 384 | list_for_each_entry_safe_continue(cur, aux, list, hook) { |
| 385 | if (zone_end < cur->start) |
| 386 | break; |
| 387 | if (zone_end < cur->end) |
| 388 | ext->end = cur->end; |
| 389 | list_del(&cur->hook); |
| 390 | kfree(cur); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | return 0; |
| 395 | } |
| 396 | |
| 397 | /** |
| 398 | * memory_bm_create - allocate memory for a memory bitmap |
| 399 | */ |
| 400 | static int |
| 401 | memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) |
| 402 | { |
| 403 | struct chain_allocator ca; |
| 404 | struct list_head mem_extents; |
| 405 | struct mem_extent *ext; |
| 406 | int error; |
| 407 | |
| 408 | chain_init(&ca, gfp_mask, safe_needed); |
| 409 | INIT_LIST_HEAD(&bm->blocks); |
| 410 | |
| 411 | error = create_mem_extents(&mem_extents, gfp_mask); |
| 412 | if (error) |
| 413 | return error; |
| 414 | |
| 415 | list_for_each_entry(ext, &mem_extents, hook) { |
| 416 | struct bm_block *bb; |
| 417 | unsigned long pfn = ext->start; |
| 418 | unsigned long pages = ext->end - ext->start; |
| 419 | |
| 420 | bb = list_entry(bm->blocks.prev, struct bm_block, hook); |
| 421 | |
| 422 | error = create_bm_block_list(pages, bm->blocks.prev, &ca); |
| 423 | if (error) |
| 424 | goto Error; |
| 425 | |
| 426 | list_for_each_entry_continue(bb, &bm->blocks, hook) { |
| 427 | bb->data = get_image_page(gfp_mask, safe_needed); |
| 428 | if (!bb->data) { |
| 429 | error = -ENOMEM; |
| 430 | goto Error; |
| 431 | } |
| 432 | |
| 433 | bb->start_pfn = pfn; |
| 434 | if (pages >= BM_BITS_PER_BLOCK) { |
| 435 | pfn += BM_BITS_PER_BLOCK; |
| 436 | pages -= BM_BITS_PER_BLOCK; |
| 437 | } else { |
| 438 | /* This is executed only once in the loop */ |
| 439 | pfn += pages; |
| 440 | } |
| 441 | bb->end_pfn = pfn; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | bm->p_list = ca.chain; |
| 446 | memory_bm_position_reset(bm); |
| 447 | Exit: |
| 448 | free_mem_extents(&mem_extents); |
| 449 | return error; |
| 450 | |
| 451 | Error: |
| 452 | bm->p_list = ca.chain; |
| 453 | memory_bm_free(bm, PG_UNSAFE_CLEAR); |
| 454 | goto Exit; |
| 455 | } |
| 456 | |
| 457 | /** |
| 458 | * memory_bm_free - free memory occupied by the memory bitmap @bm |
| 459 | */ |
| 460 | static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) |
| 461 | { |
| 462 | struct bm_block *bb; |
| 463 | |
| 464 | list_for_each_entry(bb, &bm->blocks, hook) |
| 465 | if (bb->data) |
| 466 | free_image_page(bb->data, clear_nosave_free); |
| 467 | |
| 468 | free_list_of_pages(bm->p_list, clear_nosave_free); |
| 469 | |
| 470 | INIT_LIST_HEAD(&bm->blocks); |
| 471 | } |
| 472 | |
| 473 | /** |
| 474 | * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds |
| 475 | * to given pfn. The cur_zone_bm member of @bm and the cur_block member |
| 476 | * of @bm->cur_zone_bm are updated. |
| 477 | */ |
| 478 | static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, |
| 479 | void **addr, unsigned int *bit_nr) |
| 480 | { |
| 481 | struct bm_block *bb; |
| 482 | |
| 483 | /* |
| 484 | * Check if the pfn corresponds to the current bitmap block and find |
| 485 | * the block where it fits if this is not the case. |
| 486 | */ |
| 487 | bb = bm->cur.block; |
| 488 | if (pfn < bb->start_pfn) |
| 489 | list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) |
| 490 | if (pfn >= bb->start_pfn) |
| 491 | break; |
| 492 | |
| 493 | if (pfn >= bb->end_pfn) |
| 494 | list_for_each_entry_continue(bb, &bm->blocks, hook) |
| 495 | if (pfn >= bb->start_pfn && pfn < bb->end_pfn) |
| 496 | break; |
| 497 | |
| 498 | if (&bb->hook == &bm->blocks) |
| 499 | return -EFAULT; |
| 500 | |
| 501 | /* The block has been found */ |
| 502 | bm->cur.block = bb; |
| 503 | pfn -= bb->start_pfn; |
| 504 | bm->cur.bit = pfn + 1; |
| 505 | *bit_nr = pfn; |
| 506 | *addr = bb->data; |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) |
| 511 | { |
| 512 | void *addr; |
| 513 | unsigned int bit; |
| 514 | int error; |
| 515 | |
| 516 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
| 517 | BUG_ON(error); |
| 518 | set_bit(bit, addr); |
| 519 | } |
| 520 | |
| 521 | static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) |
| 522 | { |
| 523 | void *addr; |
| 524 | unsigned int bit; |
| 525 | int error; |
| 526 | |
| 527 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
| 528 | if (!error) |
| 529 | set_bit(bit, addr); |
| 530 | return error; |
| 531 | } |
| 532 | |
| 533 | static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) |
| 534 | { |
| 535 | void *addr; |
| 536 | unsigned int bit; |
| 537 | int error; |
| 538 | |
| 539 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
| 540 | BUG_ON(error); |
| 541 | clear_bit(bit, addr); |
| 542 | } |
| 543 | |
| 544 | static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) |
| 545 | { |
| 546 | void *addr; |
| 547 | unsigned int bit; |
| 548 | int error; |
| 549 | |
| 550 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
| 551 | BUG_ON(error); |
| 552 | return test_bit(bit, addr); |
| 553 | } |
| 554 | |
| 555 | static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) |
| 556 | { |
| 557 | void *addr; |
| 558 | unsigned int bit; |
| 559 | |
| 560 | return !memory_bm_find_bit(bm, pfn, &addr, &bit); |
| 561 | } |
| 562 | |
| 563 | /** |
| 564 | * memory_bm_next_pfn - find the pfn that corresponds to the next set bit |
| 565 | * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is |
| 566 | * returned. |
| 567 | * |
| 568 | * It is required to run memory_bm_position_reset() before the first call to |
| 569 | * this function. |
| 570 | */ |
| 571 | |
| 572 | static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) |
| 573 | { |
| 574 | struct bm_block *bb; |
| 575 | int bit; |
| 576 | |
| 577 | bb = bm->cur.block; |
| 578 | do { |
| 579 | bit = bm->cur.bit; |
| 580 | bit = find_next_bit(bb->data, bm_block_bits(bb), bit); |
| 581 | if (bit < bm_block_bits(bb)) |
| 582 | goto Return_pfn; |
| 583 | |
| 584 | bb = list_entry(bb->hook.next, struct bm_block, hook); |
| 585 | bm->cur.block = bb; |
| 586 | bm->cur.bit = 0; |
| 587 | } while (&bb->hook != &bm->blocks); |
| 588 | |
| 589 | memory_bm_position_reset(bm); |
| 590 | return BM_END_OF_MAP; |
| 591 | |
| 592 | Return_pfn: |
| 593 | bm->cur.bit = bit + 1; |
| 594 | return bb->start_pfn + bit; |
| 595 | } |
| 596 | |
| 597 | /** |
| 598 | * This structure represents a range of page frames the contents of which |
| 599 | * should not be saved during the suspend. |
| 600 | */ |
| 601 | |
| 602 | struct nosave_region { |
| 603 | struct list_head list; |
| 604 | unsigned long start_pfn; |
| 605 | unsigned long end_pfn; |
| 606 | }; |
| 607 | |
| 608 | static LIST_HEAD(nosave_regions); |
| 609 | |
| 610 | /** |
| 611 | * register_nosave_region - register a range of page frames the contents |
| 612 | * of which should not be saved during the suspend (to be used in the early |
| 613 | * initialization code) |
| 614 | */ |
| 615 | |
| 616 | void __init |
| 617 | __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, |
| 618 | int use_kmalloc) |
| 619 | { |
| 620 | struct nosave_region *region; |
| 621 | |
| 622 | if (start_pfn >= end_pfn) |
| 623 | return; |
| 624 | |
| 625 | if (!list_empty(&nosave_regions)) { |
| 626 | /* Try to extend the previous region (they should be sorted) */ |
| 627 | region = list_entry(nosave_regions.prev, |
| 628 | struct nosave_region, list); |
| 629 | if (region->end_pfn == start_pfn) { |
| 630 | region->end_pfn = end_pfn; |
| 631 | goto Report; |
| 632 | } |
| 633 | } |
| 634 | if (use_kmalloc) { |
| 635 | /* during init, this shouldn't fail */ |
| 636 | region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); |
| 637 | BUG_ON(!region); |
| 638 | } else |
| 639 | /* This allocation cannot fail */ |
| 640 | region = alloc_bootmem(sizeof(struct nosave_region)); |
| 641 | region->start_pfn = start_pfn; |
| 642 | region->end_pfn = end_pfn; |
| 643 | list_add_tail(®ion->list, &nosave_regions); |
| 644 | Report: |
| 645 | printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", |
| 646 | start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * Set bits in this map correspond to the page frames the contents of which |
| 651 | * should not be saved during the suspend. |
| 652 | */ |
| 653 | static struct memory_bitmap *forbidden_pages_map; |
| 654 | |
| 655 | /* Set bits in this map correspond to free page frames. */ |
| 656 | static struct memory_bitmap *free_pages_map; |
| 657 | |
| 658 | /* |
| 659 | * Each page frame allocated for creating the image is marked by setting the |
| 660 | * corresponding bits in forbidden_pages_map and free_pages_map simultaneously |
| 661 | */ |
| 662 | |
| 663 | void swsusp_set_page_free(struct page *page) |
| 664 | { |
| 665 | if (free_pages_map) |
| 666 | memory_bm_set_bit(free_pages_map, page_to_pfn(page)); |
| 667 | } |
| 668 | |
| 669 | static int swsusp_page_is_free(struct page *page) |
| 670 | { |
| 671 | return free_pages_map ? |
| 672 | memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; |
| 673 | } |
| 674 | |
| 675 | void swsusp_unset_page_free(struct page *page) |
| 676 | { |
| 677 | if (free_pages_map) |
| 678 | memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); |
| 679 | } |
| 680 | |
| 681 | static void swsusp_set_page_forbidden(struct page *page) |
| 682 | { |
| 683 | if (forbidden_pages_map) |
| 684 | memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); |
| 685 | } |
| 686 | |
| 687 | int swsusp_page_is_forbidden(struct page *page) |
| 688 | { |
| 689 | return forbidden_pages_map ? |
| 690 | memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; |
| 691 | } |
| 692 | |
| 693 | static void swsusp_unset_page_forbidden(struct page *page) |
| 694 | { |
| 695 | if (forbidden_pages_map) |
| 696 | memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); |
| 697 | } |
| 698 | |
| 699 | /** |
| 700 | * mark_nosave_pages - set bits corresponding to the page frames the |
| 701 | * contents of which should not be saved in a given bitmap. |
| 702 | */ |
| 703 | |
| 704 | static void mark_nosave_pages(struct memory_bitmap *bm) |
| 705 | { |
| 706 | struct nosave_region *region; |
| 707 | |
| 708 | if (list_empty(&nosave_regions)) |
| 709 | return; |
| 710 | |
| 711 | list_for_each_entry(region, &nosave_regions, list) { |
| 712 | unsigned long pfn; |
| 713 | |
| 714 | pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", |
| 715 | (unsigned long long) region->start_pfn << PAGE_SHIFT, |
| 716 | ((unsigned long long) region->end_pfn << PAGE_SHIFT) |
| 717 | - 1); |
| 718 | |
| 719 | for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) |
| 720 | if (pfn_valid(pfn)) { |
| 721 | /* |
| 722 | * It is safe to ignore the result of |
| 723 | * mem_bm_set_bit_check() here, since we won't |
| 724 | * touch the PFNs for which the error is |
| 725 | * returned anyway. |
| 726 | */ |
| 727 | mem_bm_set_bit_check(bm, pfn); |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | /** |
| 733 | * create_basic_memory_bitmaps - create bitmaps needed for marking page |
| 734 | * frames that should not be saved and free page frames. The pointers |
| 735 | * forbidden_pages_map and free_pages_map are only modified if everything |
| 736 | * goes well, because we don't want the bits to be used before both bitmaps |
| 737 | * are set up. |
| 738 | */ |
| 739 | |
| 740 | int create_basic_memory_bitmaps(void) |
| 741 | { |
| 742 | struct memory_bitmap *bm1, *bm2; |
| 743 | int error = 0; |
| 744 | |
| 745 | BUG_ON(forbidden_pages_map || free_pages_map); |
| 746 | |
| 747 | bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); |
| 748 | if (!bm1) |
| 749 | return -ENOMEM; |
| 750 | |
| 751 | error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); |
| 752 | if (error) |
| 753 | goto Free_first_object; |
| 754 | |
| 755 | bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); |
| 756 | if (!bm2) |
| 757 | goto Free_first_bitmap; |
| 758 | |
| 759 | error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); |
| 760 | if (error) |
| 761 | goto Free_second_object; |
| 762 | |
| 763 | forbidden_pages_map = bm1; |
| 764 | free_pages_map = bm2; |
| 765 | mark_nosave_pages(forbidden_pages_map); |
| 766 | |
| 767 | pr_debug("PM: Basic memory bitmaps created\n"); |
| 768 | |
| 769 | return 0; |
| 770 | |
| 771 | Free_second_object: |
| 772 | kfree(bm2); |
| 773 | Free_first_bitmap: |
| 774 | memory_bm_free(bm1, PG_UNSAFE_CLEAR); |
| 775 | Free_first_object: |
| 776 | kfree(bm1); |
| 777 | return -ENOMEM; |
| 778 | } |
| 779 | |
| 780 | /** |
| 781 | * free_basic_memory_bitmaps - free memory bitmaps allocated by |
| 782 | * create_basic_memory_bitmaps(). The auxiliary pointers are necessary |
| 783 | * so that the bitmaps themselves are not referred to while they are being |
| 784 | * freed. |
| 785 | */ |
| 786 | |
| 787 | void free_basic_memory_bitmaps(void) |
| 788 | { |
| 789 | struct memory_bitmap *bm1, *bm2; |
| 790 | |
| 791 | BUG_ON(!(forbidden_pages_map && free_pages_map)); |
| 792 | |
| 793 | bm1 = forbidden_pages_map; |
| 794 | bm2 = free_pages_map; |
| 795 | forbidden_pages_map = NULL; |
| 796 | free_pages_map = NULL; |
| 797 | memory_bm_free(bm1, PG_UNSAFE_CLEAR); |
| 798 | kfree(bm1); |
| 799 | memory_bm_free(bm2, PG_UNSAFE_CLEAR); |
| 800 | kfree(bm2); |
| 801 | |
| 802 | pr_debug("PM: Basic memory bitmaps freed\n"); |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * snapshot_additional_pages - estimate the number of additional pages |
| 807 | * be needed for setting up the suspend image data structures for given |
| 808 | * zone (usually the returned value is greater than the exact number) |
| 809 | */ |
| 810 | |
| 811 | unsigned int snapshot_additional_pages(struct zone *zone) |
| 812 | { |
| 813 | unsigned int res; |
| 814 | |
| 815 | res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); |
| 816 | res += DIV_ROUND_UP(res * sizeof(struct bm_block), |
| 817 | LINKED_PAGE_DATA_SIZE); |
| 818 | return 2 * res; |
| 819 | } |
| 820 | |
| 821 | #ifdef CONFIG_HIGHMEM |
| 822 | /** |
| 823 | * count_free_highmem_pages - compute the total number of free highmem |
| 824 | * pages, system-wide. |
| 825 | */ |
| 826 | |
| 827 | static unsigned int count_free_highmem_pages(void) |
| 828 | { |
| 829 | struct zone *zone; |
| 830 | unsigned int cnt = 0; |
| 831 | |
| 832 | for_each_populated_zone(zone) |
| 833 | if (is_highmem(zone)) |
| 834 | cnt += zone_page_state(zone, NR_FREE_PAGES); |
| 835 | |
| 836 | return cnt; |
| 837 | } |
| 838 | |
| 839 | /** |
| 840 | * saveable_highmem_page - Determine whether a highmem page should be |
| 841 | * included in the suspend image. |
| 842 | * |
| 843 | * We should save the page if it isn't Nosave or NosaveFree, or Reserved, |
| 844 | * and it isn't a part of a free chunk of pages. |
| 845 | */ |
| 846 | static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) |
| 847 | { |
| 848 | struct page *page; |
| 849 | |
| 850 | if (!pfn_valid(pfn)) |
| 851 | return NULL; |
| 852 | |
| 853 | page = pfn_to_page(pfn); |
| 854 | if (page_zone(page) != zone) |
| 855 | return NULL; |
| 856 | |
| 857 | BUG_ON(!PageHighMem(page)); |
| 858 | |
| 859 | if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || |
| 860 | PageReserved(page)) |
| 861 | return NULL; |
| 862 | |
| 863 | if (page_is_guard(page)) |
| 864 | return NULL; |
| 865 | |
| 866 | return page; |
| 867 | } |
| 868 | |
| 869 | /** |
| 870 | * count_highmem_pages - compute the total number of saveable highmem |
| 871 | * pages. |
| 872 | */ |
| 873 | |
| 874 | static unsigned int count_highmem_pages(void) |
| 875 | { |
| 876 | struct zone *zone; |
| 877 | unsigned int n = 0; |
| 878 | |
| 879 | for_each_populated_zone(zone) { |
| 880 | unsigned long pfn, max_zone_pfn; |
| 881 | |
| 882 | if (!is_highmem(zone)) |
| 883 | continue; |
| 884 | |
| 885 | mark_free_pages(zone); |
| 886 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 887 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 888 | if (saveable_highmem_page(zone, pfn)) |
| 889 | n++; |
| 890 | } |
| 891 | return n; |
| 892 | } |
| 893 | #else |
| 894 | static inline void *saveable_highmem_page(struct zone *z, unsigned long p) |
| 895 | { |
| 896 | return NULL; |
| 897 | } |
| 898 | #endif /* CONFIG_HIGHMEM */ |
| 899 | |
| 900 | /** |
| 901 | * saveable_page - Determine whether a non-highmem page should be included |
| 902 | * in the suspend image. |
| 903 | * |
| 904 | * We should save the page if it isn't Nosave, and is not in the range |
| 905 | * of pages statically defined as 'unsaveable', and it isn't a part of |
| 906 | * a free chunk of pages. |
| 907 | */ |
| 908 | static struct page *saveable_page(struct zone *zone, unsigned long pfn) |
| 909 | { |
| 910 | struct page *page; |
| 911 | |
| 912 | if (!pfn_valid(pfn)) |
| 913 | return NULL; |
| 914 | |
| 915 | page = pfn_to_page(pfn); |
| 916 | if (page_zone(page) != zone) |
| 917 | return NULL; |
| 918 | |
| 919 | BUG_ON(PageHighMem(page)); |
| 920 | |
| 921 | if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) |
| 922 | return NULL; |
| 923 | |
| 924 | if (PageReserved(page) |
| 925 | && (!kernel_page_present(page) || pfn_is_nosave(pfn))) |
| 926 | return NULL; |
| 927 | |
| 928 | if (page_is_guard(page)) |
| 929 | return NULL; |
| 930 | |
| 931 | return page; |
| 932 | } |
| 933 | |
| 934 | /** |
| 935 | * count_data_pages - compute the total number of saveable non-highmem |
| 936 | * pages. |
| 937 | */ |
| 938 | |
| 939 | static unsigned int count_data_pages(void) |
| 940 | { |
| 941 | struct zone *zone; |
| 942 | unsigned long pfn, max_zone_pfn; |
| 943 | unsigned int n = 0; |
| 944 | |
| 945 | for_each_populated_zone(zone) { |
| 946 | if (is_highmem(zone)) |
| 947 | continue; |
| 948 | |
| 949 | mark_free_pages(zone); |
| 950 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 951 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 952 | if (saveable_page(zone, pfn)) |
| 953 | n++; |
| 954 | } |
| 955 | return n; |
| 956 | } |
| 957 | |
| 958 | /* This is needed, because copy_page and memcpy are not usable for copying |
| 959 | * task structs. |
| 960 | */ |
| 961 | static inline void do_copy_page(long *dst, long *src) |
| 962 | { |
| 963 | int n; |
| 964 | |
| 965 | for (n = PAGE_SIZE / sizeof(long); n; n--) |
| 966 | *dst++ = *src++; |
| 967 | } |
| 968 | |
| 969 | |
| 970 | /** |
| 971 | * safe_copy_page - check if the page we are going to copy is marked as |
| 972 | * present in the kernel page tables (this always is the case if |
| 973 | * CONFIG_DEBUG_PAGEALLOC is not set and in that case |
| 974 | * kernel_page_present() always returns 'true'). |
| 975 | */ |
| 976 | static void safe_copy_page(void *dst, struct page *s_page) |
| 977 | { |
| 978 | if (kernel_page_present(s_page)) { |
| 979 | do_copy_page(dst, page_address(s_page)); |
| 980 | } else { |
| 981 | kernel_map_pages(s_page, 1, 1); |
| 982 | do_copy_page(dst, page_address(s_page)); |
| 983 | kernel_map_pages(s_page, 1, 0); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | |
| 988 | #ifdef CONFIG_HIGHMEM |
| 989 | static inline struct page * |
| 990 | page_is_saveable(struct zone *zone, unsigned long pfn) |
| 991 | { |
| 992 | return is_highmem(zone) ? |
| 993 | saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); |
| 994 | } |
| 995 | |
| 996 | static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) |
| 997 | { |
| 998 | struct page *s_page, *d_page; |
| 999 | void *src, *dst; |
| 1000 | |
| 1001 | s_page = pfn_to_page(src_pfn); |
| 1002 | d_page = pfn_to_page(dst_pfn); |
| 1003 | if (PageHighMem(s_page)) { |
| 1004 | src = kmap_atomic(s_page); |
| 1005 | dst = kmap_atomic(d_page); |
| 1006 | do_copy_page(dst, src); |
| 1007 | kunmap_atomic(dst); |
| 1008 | kunmap_atomic(src); |
| 1009 | } else { |
| 1010 | if (PageHighMem(d_page)) { |
| 1011 | /* Page pointed to by src may contain some kernel |
| 1012 | * data modified by kmap_atomic() |
| 1013 | */ |
| 1014 | safe_copy_page(buffer, s_page); |
| 1015 | dst = kmap_atomic(d_page); |
| 1016 | copy_page(dst, buffer); |
| 1017 | kunmap_atomic(dst); |
| 1018 | } else { |
| 1019 | safe_copy_page(page_address(d_page), s_page); |
| 1020 | } |
| 1021 | } |
| 1022 | } |
| 1023 | #else |
| 1024 | #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) |
| 1025 | |
| 1026 | static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) |
| 1027 | { |
| 1028 | safe_copy_page(page_address(pfn_to_page(dst_pfn)), |
| 1029 | pfn_to_page(src_pfn)); |
| 1030 | } |
| 1031 | #endif /* CONFIG_HIGHMEM */ |
| 1032 | |
| 1033 | static void |
| 1034 | copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) |
| 1035 | { |
| 1036 | struct zone *zone; |
| 1037 | unsigned long pfn; |
| 1038 | |
| 1039 | for_each_populated_zone(zone) { |
| 1040 | unsigned long max_zone_pfn; |
| 1041 | |
| 1042 | mark_free_pages(zone); |
| 1043 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1044 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1045 | if (page_is_saveable(zone, pfn)) |
| 1046 | memory_bm_set_bit(orig_bm, pfn); |
| 1047 | } |
| 1048 | memory_bm_position_reset(orig_bm); |
| 1049 | memory_bm_position_reset(copy_bm); |
| 1050 | for(;;) { |
| 1051 | pfn = memory_bm_next_pfn(orig_bm); |
| 1052 | if (unlikely(pfn == BM_END_OF_MAP)) |
| 1053 | break; |
| 1054 | copy_data_page(memory_bm_next_pfn(copy_bm), pfn); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | /* Total number of image pages */ |
| 1059 | static unsigned int nr_copy_pages; |
| 1060 | /* Number of pages needed for saving the original pfns of the image pages */ |
| 1061 | static unsigned int nr_meta_pages; |
| 1062 | /* |
| 1063 | * Numbers of normal and highmem page frames allocated for hibernation image |
| 1064 | * before suspending devices. |
| 1065 | */ |
| 1066 | unsigned int alloc_normal, alloc_highmem; |
| 1067 | /* |
| 1068 | * Memory bitmap used for marking saveable pages (during hibernation) or |
| 1069 | * hibernation image pages (during restore) |
| 1070 | */ |
| 1071 | static struct memory_bitmap orig_bm; |
| 1072 | /* |
| 1073 | * Memory bitmap used during hibernation for marking allocated page frames that |
| 1074 | * will contain copies of saveable pages. During restore it is initially used |
| 1075 | * for marking hibernation image pages, but then the set bits from it are |
| 1076 | * duplicated in @orig_bm and it is released. On highmem systems it is next |
| 1077 | * used for marking "safe" highmem pages, but it has to be reinitialized for |
| 1078 | * this purpose. |
| 1079 | */ |
| 1080 | static struct memory_bitmap copy_bm; |
| 1081 | |
| 1082 | /** |
| 1083 | * swsusp_free - free pages allocated for the suspend. |
| 1084 | * |
| 1085 | * Suspend pages are alocated before the atomic copy is made, so we |
| 1086 | * need to release them after the resume. |
| 1087 | */ |
| 1088 | |
| 1089 | void swsusp_free(void) |
| 1090 | { |
| 1091 | struct zone *zone; |
| 1092 | unsigned long pfn, max_zone_pfn; |
| 1093 | |
| 1094 | for_each_populated_zone(zone) { |
| 1095 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1096 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1097 | if (pfn_valid(pfn)) { |
| 1098 | struct page *page = pfn_to_page(pfn); |
| 1099 | |
| 1100 | if (swsusp_page_is_forbidden(page) && |
| 1101 | swsusp_page_is_free(page)) { |
| 1102 | swsusp_unset_page_forbidden(page); |
| 1103 | swsusp_unset_page_free(page); |
| 1104 | __free_page(page); |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | nr_copy_pages = 0; |
| 1109 | nr_meta_pages = 0; |
| 1110 | restore_pblist = NULL; |
| 1111 | buffer = NULL; |
| 1112 | alloc_normal = 0; |
| 1113 | alloc_highmem = 0; |
| 1114 | } |
| 1115 | |
| 1116 | /* Helper functions used for the shrinking of memory. */ |
| 1117 | |
| 1118 | #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) |
| 1119 | |
| 1120 | /** |
| 1121 | * preallocate_image_pages - Allocate a number of pages for hibernation image |
| 1122 | * @nr_pages: Number of page frames to allocate. |
| 1123 | * @mask: GFP flags to use for the allocation. |
| 1124 | * |
| 1125 | * Return value: Number of page frames actually allocated |
| 1126 | */ |
| 1127 | static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) |
| 1128 | { |
| 1129 | unsigned long nr_alloc = 0; |
| 1130 | |
| 1131 | while (nr_pages > 0) { |
| 1132 | struct page *page; |
| 1133 | |
| 1134 | page = alloc_image_page(mask); |
| 1135 | if (!page) |
| 1136 | break; |
| 1137 | memory_bm_set_bit(©_bm, page_to_pfn(page)); |
| 1138 | if (PageHighMem(page)) |
| 1139 | alloc_highmem++; |
| 1140 | else |
| 1141 | alloc_normal++; |
| 1142 | nr_pages--; |
| 1143 | nr_alloc++; |
| 1144 | } |
| 1145 | |
| 1146 | return nr_alloc; |
| 1147 | } |
| 1148 | |
| 1149 | static unsigned long preallocate_image_memory(unsigned long nr_pages, |
| 1150 | unsigned long avail_normal) |
| 1151 | { |
| 1152 | unsigned long alloc; |
| 1153 | |
| 1154 | if (avail_normal <= alloc_normal) |
| 1155 | return 0; |
| 1156 | |
| 1157 | alloc = avail_normal - alloc_normal; |
| 1158 | if (nr_pages < alloc) |
| 1159 | alloc = nr_pages; |
| 1160 | |
| 1161 | return preallocate_image_pages(alloc, GFP_IMAGE); |
| 1162 | } |
| 1163 | |
| 1164 | #ifdef CONFIG_HIGHMEM |
| 1165 | static unsigned long preallocate_image_highmem(unsigned long nr_pages) |
| 1166 | { |
| 1167 | return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); |
| 1168 | } |
| 1169 | |
| 1170 | /** |
| 1171 | * __fraction - Compute (an approximation of) x * (multiplier / base) |
| 1172 | */ |
| 1173 | static unsigned long __fraction(u64 x, u64 multiplier, u64 base) |
| 1174 | { |
| 1175 | x *= multiplier; |
| 1176 | do_div(x, base); |
| 1177 | return (unsigned long)x; |
| 1178 | } |
| 1179 | |
| 1180 | static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
| 1181 | unsigned long highmem, |
| 1182 | unsigned long total) |
| 1183 | { |
| 1184 | unsigned long alloc = __fraction(nr_pages, highmem, total); |
| 1185 | |
| 1186 | return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); |
| 1187 | } |
| 1188 | #else /* CONFIG_HIGHMEM */ |
| 1189 | static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) |
| 1190 | { |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
| 1195 | unsigned long highmem, |
| 1196 | unsigned long total) |
| 1197 | { |
| 1198 | return 0; |
| 1199 | } |
| 1200 | #endif /* CONFIG_HIGHMEM */ |
| 1201 | |
| 1202 | /** |
| 1203 | * free_unnecessary_pages - Release preallocated pages not needed for the image |
| 1204 | */ |
| 1205 | static void free_unnecessary_pages(void) |
| 1206 | { |
| 1207 | unsigned long save, to_free_normal, to_free_highmem; |
| 1208 | |
| 1209 | save = count_data_pages(); |
| 1210 | if (alloc_normal >= save) { |
| 1211 | to_free_normal = alloc_normal - save; |
| 1212 | save = 0; |
| 1213 | } else { |
| 1214 | to_free_normal = 0; |
| 1215 | save -= alloc_normal; |
| 1216 | } |
| 1217 | save += count_highmem_pages(); |
| 1218 | if (alloc_highmem >= save) { |
| 1219 | to_free_highmem = alloc_highmem - save; |
| 1220 | } else { |
| 1221 | to_free_highmem = 0; |
| 1222 | save -= alloc_highmem; |
| 1223 | if (to_free_normal > save) |
| 1224 | to_free_normal -= save; |
| 1225 | else |
| 1226 | to_free_normal = 0; |
| 1227 | } |
| 1228 | |
| 1229 | memory_bm_position_reset(©_bm); |
| 1230 | |
| 1231 | while (to_free_normal > 0 || to_free_highmem > 0) { |
| 1232 | unsigned long pfn = memory_bm_next_pfn(©_bm); |
| 1233 | struct page *page = pfn_to_page(pfn); |
| 1234 | |
| 1235 | if (PageHighMem(page)) { |
| 1236 | if (!to_free_highmem) |
| 1237 | continue; |
| 1238 | to_free_highmem--; |
| 1239 | alloc_highmem--; |
| 1240 | } else { |
| 1241 | if (!to_free_normal) |
| 1242 | continue; |
| 1243 | to_free_normal--; |
| 1244 | alloc_normal--; |
| 1245 | } |
| 1246 | memory_bm_clear_bit(©_bm, pfn); |
| 1247 | swsusp_unset_page_forbidden(page); |
| 1248 | swsusp_unset_page_free(page); |
| 1249 | __free_page(page); |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | /** |
| 1254 | * minimum_image_size - Estimate the minimum acceptable size of an image |
| 1255 | * @saveable: Number of saveable pages in the system. |
| 1256 | * |
| 1257 | * We want to avoid attempting to free too much memory too hard, so estimate the |
| 1258 | * minimum acceptable size of a hibernation image to use as the lower limit for |
| 1259 | * preallocating memory. |
| 1260 | * |
| 1261 | * We assume that the minimum image size should be proportional to |
| 1262 | * |
| 1263 | * [number of saveable pages] - [number of pages that can be freed in theory] |
| 1264 | * |
| 1265 | * where the second term is the sum of (1) reclaimable slab pages, (2) active |
| 1266 | * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, |
| 1267 | * minus mapped file pages. |
| 1268 | */ |
| 1269 | static unsigned long minimum_image_size(unsigned long saveable) |
| 1270 | { |
| 1271 | unsigned long size; |
| 1272 | |
| 1273 | size = global_page_state(NR_SLAB_RECLAIMABLE) |
| 1274 | + global_page_state(NR_ACTIVE_ANON) |
| 1275 | + global_page_state(NR_INACTIVE_ANON) |
| 1276 | + global_page_state(NR_ACTIVE_FILE) |
| 1277 | + global_page_state(NR_INACTIVE_FILE) |
| 1278 | - global_page_state(NR_FILE_MAPPED); |
| 1279 | |
| 1280 | return saveable <= size ? 0 : saveable - size; |
| 1281 | } |
| 1282 | |
| 1283 | /** |
| 1284 | * hibernate_preallocate_memory - Preallocate memory for hibernation image |
| 1285 | * |
| 1286 | * To create a hibernation image it is necessary to make a copy of every page |
| 1287 | * frame in use. We also need a number of page frames to be free during |
| 1288 | * hibernation for allocations made while saving the image and for device |
| 1289 | * drivers, in case they need to allocate memory from their hibernation |
| 1290 | * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough |
| 1291 | * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through |
| 1292 | * /sys/power/reserved_size, respectively). To make this happen, we compute the |
| 1293 | * total number of available page frames and allocate at least |
| 1294 | * |
| 1295 | * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 |
| 1296 | * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) |
| 1297 | * |
| 1298 | * of them, which corresponds to the maximum size of a hibernation image. |
| 1299 | * |
| 1300 | * If image_size is set below the number following from the above formula, |
| 1301 | * the preallocation of memory is continued until the total number of saveable |
| 1302 | * pages in the system is below the requested image size or the minimum |
| 1303 | * acceptable image size returned by minimum_image_size(), whichever is greater. |
| 1304 | */ |
| 1305 | int hibernate_preallocate_memory(void) |
| 1306 | { |
| 1307 | struct zone *zone; |
| 1308 | unsigned long saveable, size, max_size, count, highmem, pages = 0; |
| 1309 | unsigned long alloc, save_highmem, pages_highmem, avail_normal; |
| 1310 | struct timeval start, stop; |
| 1311 | int error; |
| 1312 | |
| 1313 | printk(KERN_INFO "PM: Preallocating image memory... "); |
| 1314 | do_gettimeofday(&start); |
| 1315 | |
| 1316 | error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); |
| 1317 | if (error) |
| 1318 | goto err_out; |
| 1319 | |
| 1320 | error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); |
| 1321 | if (error) |
| 1322 | goto err_out; |
| 1323 | |
| 1324 | alloc_normal = 0; |
| 1325 | alloc_highmem = 0; |
| 1326 | |
| 1327 | /* Count the number of saveable data pages. */ |
| 1328 | save_highmem = count_highmem_pages(); |
| 1329 | saveable = count_data_pages(); |
| 1330 | |
| 1331 | /* |
| 1332 | * Compute the total number of page frames we can use (count) and the |
| 1333 | * number of pages needed for image metadata (size). |
| 1334 | */ |
| 1335 | count = saveable; |
| 1336 | saveable += save_highmem; |
| 1337 | highmem = save_highmem; |
| 1338 | size = 0; |
| 1339 | for_each_populated_zone(zone) { |
| 1340 | size += snapshot_additional_pages(zone); |
| 1341 | if (is_highmem(zone)) |
| 1342 | highmem += zone_page_state(zone, NR_FREE_PAGES); |
| 1343 | else |
| 1344 | count += zone_page_state(zone, NR_FREE_PAGES); |
| 1345 | } |
| 1346 | avail_normal = count; |
| 1347 | count += highmem; |
| 1348 | count -= totalreserve_pages; |
| 1349 | |
| 1350 | /* Add number of pages required for page keys (s390 only). */ |
| 1351 | size += page_key_additional_pages(saveable); |
| 1352 | |
| 1353 | /* Compute the maximum number of saveable pages to leave in memory. */ |
| 1354 | max_size = (count - (size + PAGES_FOR_IO)) / 2 |
| 1355 | - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); |
| 1356 | /* Compute the desired number of image pages specified by image_size. */ |
| 1357 | size = DIV_ROUND_UP(image_size, PAGE_SIZE); |
| 1358 | if (size > max_size) |
| 1359 | size = max_size; |
| 1360 | /* |
| 1361 | * If the desired number of image pages is at least as large as the |
| 1362 | * current number of saveable pages in memory, allocate page frames for |
| 1363 | * the image and we're done. |
| 1364 | */ |
| 1365 | if (size >= saveable) { |
| 1366 | pages = preallocate_image_highmem(save_highmem); |
| 1367 | pages += preallocate_image_memory(saveable - pages, avail_normal); |
| 1368 | goto out; |
| 1369 | } |
| 1370 | |
| 1371 | /* Estimate the minimum size of the image. */ |
| 1372 | pages = minimum_image_size(saveable); |
| 1373 | /* |
| 1374 | * To avoid excessive pressure on the normal zone, leave room in it to |
| 1375 | * accommodate an image of the minimum size (unless it's already too |
| 1376 | * small, in which case don't preallocate pages from it at all). |
| 1377 | */ |
| 1378 | if (avail_normal > pages) |
| 1379 | avail_normal -= pages; |
| 1380 | else |
| 1381 | avail_normal = 0; |
| 1382 | if (size < pages) |
| 1383 | size = min_t(unsigned long, pages, max_size); |
| 1384 | |
| 1385 | /* |
| 1386 | * Let the memory management subsystem know that we're going to need a |
| 1387 | * large number of page frames to allocate and make it free some memory. |
| 1388 | * NOTE: If this is not done, performance will be hurt badly in some |
| 1389 | * test cases. |
| 1390 | */ |
| 1391 | shrink_all_memory(saveable - size); |
| 1392 | |
| 1393 | /* |
| 1394 | * The number of saveable pages in memory was too high, so apply some |
| 1395 | * pressure to decrease it. First, make room for the largest possible |
| 1396 | * image and fail if that doesn't work. Next, try to decrease the size |
| 1397 | * of the image as much as indicated by 'size' using allocations from |
| 1398 | * highmem and non-highmem zones separately. |
| 1399 | */ |
| 1400 | pages_highmem = preallocate_image_highmem(highmem / 2); |
| 1401 | alloc = count - max_size; |
| 1402 | if (alloc > pages_highmem) |
| 1403 | alloc -= pages_highmem; |
| 1404 | else |
| 1405 | alloc = 0; |
| 1406 | pages = preallocate_image_memory(alloc, avail_normal); |
| 1407 | if (pages < alloc) { |
| 1408 | /* We have exhausted non-highmem pages, try highmem. */ |
| 1409 | alloc -= pages; |
| 1410 | pages += pages_highmem; |
| 1411 | pages_highmem = preallocate_image_highmem(alloc); |
| 1412 | if (pages_highmem < alloc) |
| 1413 | goto err_out; |
| 1414 | pages += pages_highmem; |
| 1415 | /* |
| 1416 | * size is the desired number of saveable pages to leave in |
| 1417 | * memory, so try to preallocate (all memory - size) pages. |
| 1418 | */ |
| 1419 | alloc = (count - pages) - size; |
| 1420 | pages += preallocate_image_highmem(alloc); |
| 1421 | } else { |
| 1422 | /* |
| 1423 | * There are approximately max_size saveable pages at this point |
| 1424 | * and we want to reduce this number down to size. |
| 1425 | */ |
| 1426 | alloc = max_size - size; |
| 1427 | size = preallocate_highmem_fraction(alloc, highmem, count); |
| 1428 | pages_highmem += size; |
| 1429 | alloc -= size; |
| 1430 | size = preallocate_image_memory(alloc, avail_normal); |
| 1431 | pages_highmem += preallocate_image_highmem(alloc - size); |
| 1432 | pages += pages_highmem + size; |
| 1433 | } |
| 1434 | |
| 1435 | /* |
| 1436 | * We only need as many page frames for the image as there are saveable |
| 1437 | * pages in memory, but we have allocated more. Release the excessive |
| 1438 | * ones now. |
| 1439 | */ |
| 1440 | free_unnecessary_pages(); |
| 1441 | |
| 1442 | out: |
| 1443 | do_gettimeofday(&stop); |
| 1444 | printk(KERN_CONT "done (allocated %lu pages)\n", pages); |
| 1445 | swsusp_show_speed(&start, &stop, pages, "Allocated"); |
| 1446 | |
| 1447 | return 0; |
| 1448 | |
| 1449 | err_out: |
| 1450 | printk(KERN_CONT "\n"); |
| 1451 | swsusp_free(); |
| 1452 | return -ENOMEM; |
| 1453 | } |
| 1454 | |
| 1455 | #ifdef CONFIG_HIGHMEM |
| 1456 | /** |
| 1457 | * count_pages_for_highmem - compute the number of non-highmem pages |
| 1458 | * that will be necessary for creating copies of highmem pages. |
| 1459 | */ |
| 1460 | |
| 1461 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) |
| 1462 | { |
| 1463 | unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; |
| 1464 | |
| 1465 | if (free_highmem >= nr_highmem) |
| 1466 | nr_highmem = 0; |
| 1467 | else |
| 1468 | nr_highmem -= free_highmem; |
| 1469 | |
| 1470 | return nr_highmem; |
| 1471 | } |
| 1472 | #else |
| 1473 | static unsigned int |
| 1474 | count_pages_for_highmem(unsigned int nr_highmem) { return 0; } |
| 1475 | #endif /* CONFIG_HIGHMEM */ |
| 1476 | |
| 1477 | /** |
| 1478 | * enough_free_mem - Make sure we have enough free memory for the |
| 1479 | * snapshot image. |
| 1480 | */ |
| 1481 | |
| 1482 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) |
| 1483 | { |
| 1484 | struct zone *zone; |
| 1485 | unsigned int free = alloc_normal; |
| 1486 | |
| 1487 | for_each_populated_zone(zone) |
| 1488 | if (!is_highmem(zone)) |
| 1489 | free += zone_page_state(zone, NR_FREE_PAGES); |
| 1490 | |
| 1491 | nr_pages += count_pages_for_highmem(nr_highmem); |
| 1492 | pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", |
| 1493 | nr_pages, PAGES_FOR_IO, free); |
| 1494 | |
| 1495 | return free > nr_pages + PAGES_FOR_IO; |
| 1496 | } |
| 1497 | |
| 1498 | #ifdef CONFIG_HIGHMEM |
| 1499 | /** |
| 1500 | * get_highmem_buffer - if there are some highmem pages in the suspend |
| 1501 | * image, we may need the buffer to copy them and/or load their data. |
| 1502 | */ |
| 1503 | |
| 1504 | static inline int get_highmem_buffer(int safe_needed) |
| 1505 | { |
| 1506 | buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); |
| 1507 | return buffer ? 0 : -ENOMEM; |
| 1508 | } |
| 1509 | |
| 1510 | /** |
| 1511 | * alloc_highmem_image_pages - allocate some highmem pages for the image. |
| 1512 | * Try to allocate as many pages as needed, but if the number of free |
| 1513 | * highmem pages is lesser than that, allocate them all. |
| 1514 | */ |
| 1515 | |
| 1516 | static inline unsigned int |
| 1517 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) |
| 1518 | { |
| 1519 | unsigned int to_alloc = count_free_highmem_pages(); |
| 1520 | |
| 1521 | if (to_alloc > nr_highmem) |
| 1522 | to_alloc = nr_highmem; |
| 1523 | |
| 1524 | nr_highmem -= to_alloc; |
| 1525 | while (to_alloc-- > 0) { |
| 1526 | struct page *page; |
| 1527 | |
| 1528 | page = alloc_image_page(__GFP_HIGHMEM); |
| 1529 | memory_bm_set_bit(bm, page_to_pfn(page)); |
| 1530 | } |
| 1531 | return nr_highmem; |
| 1532 | } |
| 1533 | #else |
| 1534 | static inline int get_highmem_buffer(int safe_needed) { return 0; } |
| 1535 | |
| 1536 | static inline unsigned int |
| 1537 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } |
| 1538 | #endif /* CONFIG_HIGHMEM */ |
| 1539 | |
| 1540 | /** |
| 1541 | * swsusp_alloc - allocate memory for the suspend image |
| 1542 | * |
| 1543 | * We first try to allocate as many highmem pages as there are |
| 1544 | * saveable highmem pages in the system. If that fails, we allocate |
| 1545 | * non-highmem pages for the copies of the remaining highmem ones. |
| 1546 | * |
| 1547 | * In this approach it is likely that the copies of highmem pages will |
| 1548 | * also be located in the high memory, because of the way in which |
| 1549 | * copy_data_pages() works. |
| 1550 | */ |
| 1551 | |
| 1552 | static int |
| 1553 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, |
| 1554 | unsigned int nr_pages, unsigned int nr_highmem) |
| 1555 | { |
| 1556 | if (nr_highmem > 0) { |
| 1557 | if (get_highmem_buffer(PG_ANY)) |
| 1558 | goto err_out; |
| 1559 | if (nr_highmem > alloc_highmem) { |
| 1560 | nr_highmem -= alloc_highmem; |
| 1561 | nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); |
| 1562 | } |
| 1563 | } |
| 1564 | if (nr_pages > alloc_normal) { |
| 1565 | nr_pages -= alloc_normal; |
| 1566 | while (nr_pages-- > 0) { |
| 1567 | struct page *page; |
| 1568 | |
| 1569 | page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); |
| 1570 | if (!page) |
| 1571 | goto err_out; |
| 1572 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); |
| 1573 | } |
| 1574 | } |
| 1575 | |
| 1576 | return 0; |
| 1577 | |
| 1578 | err_out: |
| 1579 | swsusp_free(); |
| 1580 | return -ENOMEM; |
| 1581 | } |
| 1582 | |
| 1583 | asmlinkage int swsusp_save(void) |
| 1584 | { |
| 1585 | unsigned int nr_pages, nr_highmem; |
| 1586 | |
| 1587 | printk(KERN_INFO "PM: Creating hibernation image:\n"); |
| 1588 | |
| 1589 | drain_local_pages(NULL); |
| 1590 | nr_pages = count_data_pages(); |
| 1591 | nr_highmem = count_highmem_pages(); |
| 1592 | printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); |
| 1593 | |
| 1594 | if (!enough_free_mem(nr_pages, nr_highmem)) { |
| 1595 | printk(KERN_ERR "PM: Not enough free memory\n"); |
| 1596 | return -ENOMEM; |
| 1597 | } |
| 1598 | |
| 1599 | if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { |
| 1600 | printk(KERN_ERR "PM: Memory allocation failed\n"); |
| 1601 | return -ENOMEM; |
| 1602 | } |
| 1603 | |
| 1604 | /* During allocating of suspend pagedir, new cold pages may appear. |
| 1605 | * Kill them. |
| 1606 | */ |
| 1607 | drain_local_pages(NULL); |
| 1608 | copy_data_pages(©_bm, &orig_bm); |
| 1609 | |
| 1610 | /* |
| 1611 | * End of critical section. From now on, we can write to memory, |
| 1612 | * but we should not touch disk. This specially means we must _not_ |
| 1613 | * touch swap space! Except we must write out our image of course. |
| 1614 | */ |
| 1615 | |
| 1616 | nr_pages += nr_highmem; |
| 1617 | nr_copy_pages = nr_pages; |
| 1618 | nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); |
| 1619 | |
| 1620 | printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", |
| 1621 | nr_pages); |
| 1622 | |
| 1623 | return 0; |
| 1624 | } |
| 1625 | |
| 1626 | #ifndef CONFIG_ARCH_HIBERNATION_HEADER |
| 1627 | static int init_header_complete(struct swsusp_info *info) |
| 1628 | { |
| 1629 | memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); |
| 1630 | info->version_code = LINUX_VERSION_CODE; |
| 1631 | return 0; |
| 1632 | } |
| 1633 | |
| 1634 | static char *check_image_kernel(struct swsusp_info *info) |
| 1635 | { |
| 1636 | if (info->version_code != LINUX_VERSION_CODE) |
| 1637 | return "kernel version"; |
| 1638 | if (strcmp(info->uts.sysname,init_utsname()->sysname)) |
| 1639 | return "system type"; |
| 1640 | if (strcmp(info->uts.release,init_utsname()->release)) |
| 1641 | return "kernel release"; |
| 1642 | if (strcmp(info->uts.version,init_utsname()->version)) |
| 1643 | return "version"; |
| 1644 | if (strcmp(info->uts.machine,init_utsname()->machine)) |
| 1645 | return "machine"; |
| 1646 | return NULL; |
| 1647 | } |
| 1648 | #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ |
| 1649 | |
| 1650 | unsigned long snapshot_get_image_size(void) |
| 1651 | { |
| 1652 | return nr_copy_pages + nr_meta_pages + 1; |
| 1653 | } |
| 1654 | |
| 1655 | static int init_header(struct swsusp_info *info) |
| 1656 | { |
| 1657 | memset(info, 0, sizeof(struct swsusp_info)); |
| 1658 | info->num_physpages = num_physpages; |
| 1659 | info->image_pages = nr_copy_pages; |
| 1660 | info->pages = snapshot_get_image_size(); |
| 1661 | info->size = info->pages; |
| 1662 | info->size <<= PAGE_SHIFT; |
| 1663 | return init_header_complete(info); |
| 1664 | } |
| 1665 | |
| 1666 | /** |
| 1667 | * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm |
| 1668 | * are stored in the array @buf[] (1 page at a time) |
| 1669 | */ |
| 1670 | |
| 1671 | static inline void |
| 1672 | pack_pfns(unsigned long *buf, struct memory_bitmap *bm) |
| 1673 | { |
| 1674 | int j; |
| 1675 | |
| 1676 | for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { |
| 1677 | buf[j] = memory_bm_next_pfn(bm); |
| 1678 | if (unlikely(buf[j] == BM_END_OF_MAP)) |
| 1679 | break; |
| 1680 | /* Save page key for data page (s390 only). */ |
| 1681 | page_key_read(buf + j); |
| 1682 | } |
| 1683 | } |
| 1684 | |
| 1685 | /** |
| 1686 | * snapshot_read_next - used for reading the system memory snapshot. |
| 1687 | * |
| 1688 | * On the first call to it @handle should point to a zeroed |
| 1689 | * snapshot_handle structure. The structure gets updated and a pointer |
| 1690 | * to it should be passed to this function every next time. |
| 1691 | * |
| 1692 | * On success the function returns a positive number. Then, the caller |
| 1693 | * is allowed to read up to the returned number of bytes from the memory |
| 1694 | * location computed by the data_of() macro. |
| 1695 | * |
| 1696 | * The function returns 0 to indicate the end of data stream condition, |
| 1697 | * and a negative number is returned on error. In such cases the |
| 1698 | * structure pointed to by @handle is not updated and should not be used |
| 1699 | * any more. |
| 1700 | */ |
| 1701 | |
| 1702 | int snapshot_read_next(struct snapshot_handle *handle) |
| 1703 | { |
| 1704 | if (handle->cur > nr_meta_pages + nr_copy_pages) |
| 1705 | return 0; |
| 1706 | |
| 1707 | if (!buffer) { |
| 1708 | /* This makes the buffer be freed by swsusp_free() */ |
| 1709 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
| 1710 | if (!buffer) |
| 1711 | return -ENOMEM; |
| 1712 | } |
| 1713 | if (!handle->cur) { |
| 1714 | int error; |
| 1715 | |
| 1716 | error = init_header((struct swsusp_info *)buffer); |
| 1717 | if (error) |
| 1718 | return error; |
| 1719 | handle->buffer = buffer; |
| 1720 | memory_bm_position_reset(&orig_bm); |
| 1721 | memory_bm_position_reset(©_bm); |
| 1722 | } else if (handle->cur <= nr_meta_pages) { |
| 1723 | clear_page(buffer); |
| 1724 | pack_pfns(buffer, &orig_bm); |
| 1725 | } else { |
| 1726 | struct page *page; |
| 1727 | |
| 1728 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); |
| 1729 | if (PageHighMem(page)) { |
| 1730 | /* Highmem pages are copied to the buffer, |
| 1731 | * because we can't return with a kmapped |
| 1732 | * highmem page (we may not be called again). |
| 1733 | */ |
| 1734 | void *kaddr; |
| 1735 | |
| 1736 | kaddr = kmap_atomic(page); |
| 1737 | copy_page(buffer, kaddr); |
| 1738 | kunmap_atomic(kaddr); |
| 1739 | handle->buffer = buffer; |
| 1740 | } else { |
| 1741 | handle->buffer = page_address(page); |
| 1742 | } |
| 1743 | } |
| 1744 | handle->cur++; |
| 1745 | return PAGE_SIZE; |
| 1746 | } |
| 1747 | |
| 1748 | /** |
| 1749 | * mark_unsafe_pages - mark the pages that cannot be used for storing |
| 1750 | * the image during resume, because they conflict with the pages that |
| 1751 | * had been used before suspend |
| 1752 | */ |
| 1753 | |
| 1754 | static int mark_unsafe_pages(struct memory_bitmap *bm) |
| 1755 | { |
| 1756 | struct zone *zone; |
| 1757 | unsigned long pfn, max_zone_pfn; |
| 1758 | |
| 1759 | /* Clear page flags */ |
| 1760 | for_each_populated_zone(zone) { |
| 1761 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1762 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1763 | if (pfn_valid(pfn)) |
| 1764 | swsusp_unset_page_free(pfn_to_page(pfn)); |
| 1765 | } |
| 1766 | |
| 1767 | /* Mark pages that correspond to the "original" pfns as "unsafe" */ |
| 1768 | memory_bm_position_reset(bm); |
| 1769 | do { |
| 1770 | pfn = memory_bm_next_pfn(bm); |
| 1771 | if (likely(pfn != BM_END_OF_MAP)) { |
| 1772 | if (likely(pfn_valid(pfn))) |
| 1773 | swsusp_set_page_free(pfn_to_page(pfn)); |
| 1774 | else |
| 1775 | return -EFAULT; |
| 1776 | } |
| 1777 | } while (pfn != BM_END_OF_MAP); |
| 1778 | |
| 1779 | allocated_unsafe_pages = 0; |
| 1780 | |
| 1781 | return 0; |
| 1782 | } |
| 1783 | |
| 1784 | static void |
| 1785 | duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) |
| 1786 | { |
| 1787 | unsigned long pfn; |
| 1788 | |
| 1789 | memory_bm_position_reset(src); |
| 1790 | pfn = memory_bm_next_pfn(src); |
| 1791 | while (pfn != BM_END_OF_MAP) { |
| 1792 | memory_bm_set_bit(dst, pfn); |
| 1793 | pfn = memory_bm_next_pfn(src); |
| 1794 | } |
| 1795 | } |
| 1796 | |
| 1797 | static int check_header(struct swsusp_info *info) |
| 1798 | { |
| 1799 | char *reason; |
| 1800 | |
| 1801 | reason = check_image_kernel(info); |
| 1802 | if (!reason && info->num_physpages != num_physpages) |
| 1803 | reason = "memory size"; |
| 1804 | if (reason) { |
| 1805 | printk(KERN_ERR "PM: Image mismatch: %s\n", reason); |
| 1806 | return -EPERM; |
| 1807 | } |
| 1808 | return 0; |
| 1809 | } |
| 1810 | |
| 1811 | /** |
| 1812 | * load header - check the image header and copy data from it |
| 1813 | */ |
| 1814 | |
| 1815 | static int |
| 1816 | load_header(struct swsusp_info *info) |
| 1817 | { |
| 1818 | int error; |
| 1819 | |
| 1820 | restore_pblist = NULL; |
| 1821 | error = check_header(info); |
| 1822 | if (!error) { |
| 1823 | nr_copy_pages = info->image_pages; |
| 1824 | nr_meta_pages = info->pages - info->image_pages - 1; |
| 1825 | } |
| 1826 | return error; |
| 1827 | } |
| 1828 | |
| 1829 | /** |
| 1830 | * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set |
| 1831 | * the corresponding bit in the memory bitmap @bm |
| 1832 | */ |
| 1833 | static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) |
| 1834 | { |
| 1835 | int j; |
| 1836 | |
| 1837 | for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { |
| 1838 | if (unlikely(buf[j] == BM_END_OF_MAP)) |
| 1839 | break; |
| 1840 | |
| 1841 | /* Extract and buffer page key for data page (s390 only). */ |
| 1842 | page_key_memorize(buf + j); |
| 1843 | |
| 1844 | if (memory_bm_pfn_present(bm, buf[j])) |
| 1845 | memory_bm_set_bit(bm, buf[j]); |
| 1846 | else |
| 1847 | return -EFAULT; |
| 1848 | } |
| 1849 | |
| 1850 | return 0; |
| 1851 | } |
| 1852 | |
| 1853 | /* List of "safe" pages that may be used to store data loaded from the suspend |
| 1854 | * image |
| 1855 | */ |
| 1856 | static struct linked_page *safe_pages_list; |
| 1857 | |
| 1858 | #ifdef CONFIG_HIGHMEM |
| 1859 | /* struct highmem_pbe is used for creating the list of highmem pages that |
| 1860 | * should be restored atomically during the resume from disk, because the page |
| 1861 | * frames they have occupied before the suspend are in use. |
| 1862 | */ |
| 1863 | struct highmem_pbe { |
| 1864 | struct page *copy_page; /* data is here now */ |
| 1865 | struct page *orig_page; /* data was here before the suspend */ |
| 1866 | struct highmem_pbe *next; |
| 1867 | }; |
| 1868 | |
| 1869 | /* List of highmem PBEs needed for restoring the highmem pages that were |
| 1870 | * allocated before the suspend and included in the suspend image, but have |
| 1871 | * also been allocated by the "resume" kernel, so their contents cannot be |
| 1872 | * written directly to their "original" page frames. |
| 1873 | */ |
| 1874 | static struct highmem_pbe *highmem_pblist; |
| 1875 | |
| 1876 | /** |
| 1877 | * count_highmem_image_pages - compute the number of highmem pages in the |
| 1878 | * suspend image. The bits in the memory bitmap @bm that correspond to the |
| 1879 | * image pages are assumed to be set. |
| 1880 | */ |
| 1881 | |
| 1882 | static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) |
| 1883 | { |
| 1884 | unsigned long pfn; |
| 1885 | unsigned int cnt = 0; |
| 1886 | |
| 1887 | memory_bm_position_reset(bm); |
| 1888 | pfn = memory_bm_next_pfn(bm); |
| 1889 | while (pfn != BM_END_OF_MAP) { |
| 1890 | if (PageHighMem(pfn_to_page(pfn))) |
| 1891 | cnt++; |
| 1892 | |
| 1893 | pfn = memory_bm_next_pfn(bm); |
| 1894 | } |
| 1895 | return cnt; |
| 1896 | } |
| 1897 | |
| 1898 | /** |
| 1899 | * prepare_highmem_image - try to allocate as many highmem pages as |
| 1900 | * there are highmem image pages (@nr_highmem_p points to the variable |
| 1901 | * containing the number of highmem image pages). The pages that are |
| 1902 | * "safe" (ie. will not be overwritten when the suspend image is |
| 1903 | * restored) have the corresponding bits set in @bm (it must be |
| 1904 | * unitialized). |
| 1905 | * |
| 1906 | * NOTE: This function should not be called if there are no highmem |
| 1907 | * image pages. |
| 1908 | */ |
| 1909 | |
| 1910 | static unsigned int safe_highmem_pages; |
| 1911 | |
| 1912 | static struct memory_bitmap *safe_highmem_bm; |
| 1913 | |
| 1914 | static int |
| 1915 | prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) |
| 1916 | { |
| 1917 | unsigned int to_alloc; |
| 1918 | |
| 1919 | if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) |
| 1920 | return -ENOMEM; |
| 1921 | |
| 1922 | if (get_highmem_buffer(PG_SAFE)) |
| 1923 | return -ENOMEM; |
| 1924 | |
| 1925 | to_alloc = count_free_highmem_pages(); |
| 1926 | if (to_alloc > *nr_highmem_p) |
| 1927 | to_alloc = *nr_highmem_p; |
| 1928 | else |
| 1929 | *nr_highmem_p = to_alloc; |
| 1930 | |
| 1931 | safe_highmem_pages = 0; |
| 1932 | while (to_alloc-- > 0) { |
| 1933 | struct page *page; |
| 1934 | |
| 1935 | page = alloc_page(__GFP_HIGHMEM); |
| 1936 | if (!swsusp_page_is_free(page)) { |
| 1937 | /* The page is "safe", set its bit the bitmap */ |
| 1938 | memory_bm_set_bit(bm, page_to_pfn(page)); |
| 1939 | safe_highmem_pages++; |
| 1940 | } |
| 1941 | /* Mark the page as allocated */ |
| 1942 | swsusp_set_page_forbidden(page); |
| 1943 | swsusp_set_page_free(page); |
| 1944 | } |
| 1945 | memory_bm_position_reset(bm); |
| 1946 | safe_highmem_bm = bm; |
| 1947 | return 0; |
| 1948 | } |
| 1949 | |
| 1950 | /** |
| 1951 | * get_highmem_page_buffer - for given highmem image page find the buffer |
| 1952 | * that suspend_write_next() should set for its caller to write to. |
| 1953 | * |
| 1954 | * If the page is to be saved to its "original" page frame or a copy of |
| 1955 | * the page is to be made in the highmem, @buffer is returned. Otherwise, |
| 1956 | * the copy of the page is to be made in normal memory, so the address of |
| 1957 | * the copy is returned. |
| 1958 | * |
| 1959 | * If @buffer is returned, the caller of suspend_write_next() will write |
| 1960 | * the page's contents to @buffer, so they will have to be copied to the |
| 1961 | * right location on the next call to suspend_write_next() and it is done |
| 1962 | * with the help of copy_last_highmem_page(). For this purpose, if |
| 1963 | * @buffer is returned, @last_highmem page is set to the page to which |
| 1964 | * the data will have to be copied from @buffer. |
| 1965 | */ |
| 1966 | |
| 1967 | static struct page *last_highmem_page; |
| 1968 | |
| 1969 | static void * |
| 1970 | get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) |
| 1971 | { |
| 1972 | struct highmem_pbe *pbe; |
| 1973 | void *kaddr; |
| 1974 | |
| 1975 | if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { |
| 1976 | /* We have allocated the "original" page frame and we can |
| 1977 | * use it directly to store the loaded page. |
| 1978 | */ |
| 1979 | last_highmem_page = page; |
| 1980 | return buffer; |
| 1981 | } |
| 1982 | /* The "original" page frame has not been allocated and we have to |
| 1983 | * use a "safe" page frame to store the loaded page. |
| 1984 | */ |
| 1985 | pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); |
| 1986 | if (!pbe) { |
| 1987 | swsusp_free(); |
| 1988 | return ERR_PTR(-ENOMEM); |
| 1989 | } |
| 1990 | pbe->orig_page = page; |
| 1991 | if (safe_highmem_pages > 0) { |
| 1992 | struct page *tmp; |
| 1993 | |
| 1994 | /* Copy of the page will be stored in high memory */ |
| 1995 | kaddr = buffer; |
| 1996 | tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); |
| 1997 | safe_highmem_pages--; |
| 1998 | last_highmem_page = tmp; |
| 1999 | pbe->copy_page = tmp; |
| 2000 | } else { |
| 2001 | /* Copy of the page will be stored in normal memory */ |
| 2002 | kaddr = safe_pages_list; |
| 2003 | safe_pages_list = safe_pages_list->next; |
| 2004 | pbe->copy_page = virt_to_page(kaddr); |
| 2005 | } |
| 2006 | pbe->next = highmem_pblist; |
| 2007 | highmem_pblist = pbe; |
| 2008 | return kaddr; |
| 2009 | } |
| 2010 | |
| 2011 | /** |
| 2012 | * copy_last_highmem_page - copy the contents of a highmem image from |
| 2013 | * @buffer, where the caller of snapshot_write_next() has place them, |
| 2014 | * to the right location represented by @last_highmem_page . |
| 2015 | */ |
| 2016 | |
| 2017 | static void copy_last_highmem_page(void) |
| 2018 | { |
| 2019 | if (last_highmem_page) { |
| 2020 | void *dst; |
| 2021 | |
| 2022 | dst = kmap_atomic(last_highmem_page); |
| 2023 | copy_page(dst, buffer); |
| 2024 | kunmap_atomic(dst); |
| 2025 | last_highmem_page = NULL; |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | static inline int last_highmem_page_copied(void) |
| 2030 | { |
| 2031 | return !last_highmem_page; |
| 2032 | } |
| 2033 | |
| 2034 | static inline void free_highmem_data(void) |
| 2035 | { |
| 2036 | if (safe_highmem_bm) |
| 2037 | memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); |
| 2038 | |
| 2039 | if (buffer) |
| 2040 | free_image_page(buffer, PG_UNSAFE_CLEAR); |
| 2041 | } |
| 2042 | #else |
| 2043 | static inline int get_safe_write_buffer(void) { return 0; } |
| 2044 | |
| 2045 | static unsigned int |
| 2046 | count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } |
| 2047 | |
| 2048 | static inline int |
| 2049 | prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) |
| 2050 | { |
| 2051 | return 0; |
| 2052 | } |
| 2053 | |
| 2054 | static inline void * |
| 2055 | get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) |
| 2056 | { |
| 2057 | return ERR_PTR(-EINVAL); |
| 2058 | } |
| 2059 | |
| 2060 | static inline void copy_last_highmem_page(void) {} |
| 2061 | static inline int last_highmem_page_copied(void) { return 1; } |
| 2062 | static inline void free_highmem_data(void) {} |
| 2063 | #endif /* CONFIG_HIGHMEM */ |
| 2064 | |
| 2065 | /** |
| 2066 | * prepare_image - use the memory bitmap @bm to mark the pages that will |
| 2067 | * be overwritten in the process of restoring the system memory state |
| 2068 | * from the suspend image ("unsafe" pages) and allocate memory for the |
| 2069 | * image. |
| 2070 | * |
| 2071 | * The idea is to allocate a new memory bitmap first and then allocate |
| 2072 | * as many pages as needed for the image data, but not to assign these |
| 2073 | * pages to specific tasks initially. Instead, we just mark them as |
| 2074 | * allocated and create a lists of "safe" pages that will be used |
| 2075 | * later. On systems with high memory a list of "safe" highmem pages is |
| 2076 | * also created. |
| 2077 | */ |
| 2078 | |
| 2079 | #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) |
| 2080 | |
| 2081 | static int |
| 2082 | prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) |
| 2083 | { |
| 2084 | unsigned int nr_pages, nr_highmem; |
| 2085 | struct linked_page *sp_list, *lp; |
| 2086 | int error; |
| 2087 | |
| 2088 | /* If there is no highmem, the buffer will not be necessary */ |
| 2089 | free_image_page(buffer, PG_UNSAFE_CLEAR); |
| 2090 | buffer = NULL; |
| 2091 | |
| 2092 | nr_highmem = count_highmem_image_pages(bm); |
| 2093 | error = mark_unsafe_pages(bm); |
| 2094 | if (error) |
| 2095 | goto Free; |
| 2096 | |
| 2097 | error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); |
| 2098 | if (error) |
| 2099 | goto Free; |
| 2100 | |
| 2101 | duplicate_memory_bitmap(new_bm, bm); |
| 2102 | memory_bm_free(bm, PG_UNSAFE_KEEP); |
| 2103 | if (nr_highmem > 0) { |
| 2104 | error = prepare_highmem_image(bm, &nr_highmem); |
| 2105 | if (error) |
| 2106 | goto Free; |
| 2107 | } |
| 2108 | /* Reserve some safe pages for potential later use. |
| 2109 | * |
| 2110 | * NOTE: This way we make sure there will be enough safe pages for the |
| 2111 | * chain_alloc() in get_buffer(). It is a bit wasteful, but |
| 2112 | * nr_copy_pages cannot be greater than 50% of the memory anyway. |
| 2113 | */ |
| 2114 | sp_list = NULL; |
| 2115 | /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ |
| 2116 | nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; |
| 2117 | nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); |
| 2118 | while (nr_pages > 0) { |
| 2119 | lp = get_image_page(GFP_ATOMIC, PG_SAFE); |
| 2120 | if (!lp) { |
| 2121 | error = -ENOMEM; |
| 2122 | goto Free; |
| 2123 | } |
| 2124 | lp->next = sp_list; |
| 2125 | sp_list = lp; |
| 2126 | nr_pages--; |
| 2127 | } |
| 2128 | /* Preallocate memory for the image */ |
| 2129 | safe_pages_list = NULL; |
| 2130 | nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; |
| 2131 | while (nr_pages > 0) { |
| 2132 | lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); |
| 2133 | if (!lp) { |
| 2134 | error = -ENOMEM; |
| 2135 | goto Free; |
| 2136 | } |
| 2137 | if (!swsusp_page_is_free(virt_to_page(lp))) { |
| 2138 | /* The page is "safe", add it to the list */ |
| 2139 | lp->next = safe_pages_list; |
| 2140 | safe_pages_list = lp; |
| 2141 | } |
| 2142 | /* Mark the page as allocated */ |
| 2143 | swsusp_set_page_forbidden(virt_to_page(lp)); |
| 2144 | swsusp_set_page_free(virt_to_page(lp)); |
| 2145 | nr_pages--; |
| 2146 | } |
| 2147 | /* Free the reserved safe pages so that chain_alloc() can use them */ |
| 2148 | while (sp_list) { |
| 2149 | lp = sp_list->next; |
| 2150 | free_image_page(sp_list, PG_UNSAFE_CLEAR); |
| 2151 | sp_list = lp; |
| 2152 | } |
| 2153 | return 0; |
| 2154 | |
| 2155 | Free: |
| 2156 | swsusp_free(); |
| 2157 | return error; |
| 2158 | } |
| 2159 | |
| 2160 | /** |
| 2161 | * get_buffer - compute the address that snapshot_write_next() should |
| 2162 | * set for its caller to write to. |
| 2163 | */ |
| 2164 | |
| 2165 | static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) |
| 2166 | { |
| 2167 | struct pbe *pbe; |
| 2168 | struct page *page; |
| 2169 | unsigned long pfn = memory_bm_next_pfn(bm); |
| 2170 | |
| 2171 | if (pfn == BM_END_OF_MAP) |
| 2172 | return ERR_PTR(-EFAULT); |
| 2173 | |
| 2174 | page = pfn_to_page(pfn); |
| 2175 | if (PageHighMem(page)) |
| 2176 | return get_highmem_page_buffer(page, ca); |
| 2177 | |
| 2178 | if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) |
| 2179 | /* We have allocated the "original" page frame and we can |
| 2180 | * use it directly to store the loaded page. |
| 2181 | */ |
| 2182 | return page_address(page); |
| 2183 | |
| 2184 | /* The "original" page frame has not been allocated and we have to |
| 2185 | * use a "safe" page frame to store the loaded page. |
| 2186 | */ |
| 2187 | pbe = chain_alloc(ca, sizeof(struct pbe)); |
| 2188 | if (!pbe) { |
| 2189 | swsusp_free(); |
| 2190 | return ERR_PTR(-ENOMEM); |
| 2191 | } |
| 2192 | pbe->orig_address = page_address(page); |
| 2193 | pbe->address = safe_pages_list; |
| 2194 | safe_pages_list = safe_pages_list->next; |
| 2195 | pbe->next = restore_pblist; |
| 2196 | restore_pblist = pbe; |
| 2197 | return pbe->address; |
| 2198 | } |
| 2199 | |
| 2200 | /** |
| 2201 | * snapshot_write_next - used for writing the system memory snapshot. |
| 2202 | * |
| 2203 | * On the first call to it @handle should point to a zeroed |
| 2204 | * snapshot_handle structure. The structure gets updated and a pointer |
| 2205 | * to it should be passed to this function every next time. |
| 2206 | * |
| 2207 | * On success the function returns a positive number. Then, the caller |
| 2208 | * is allowed to write up to the returned number of bytes to the memory |
| 2209 | * location computed by the data_of() macro. |
| 2210 | * |
| 2211 | * The function returns 0 to indicate the "end of file" condition, |
| 2212 | * and a negative number is returned on error. In such cases the |
| 2213 | * structure pointed to by @handle is not updated and should not be used |
| 2214 | * any more. |
| 2215 | */ |
| 2216 | |
| 2217 | int snapshot_write_next(struct snapshot_handle *handle) |
| 2218 | { |
| 2219 | static struct chain_allocator ca; |
| 2220 | int error = 0; |
| 2221 | |
| 2222 | /* Check if we have already loaded the entire image */ |
| 2223 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) |
| 2224 | return 0; |
| 2225 | |
| 2226 | handle->sync_read = 1; |
| 2227 | |
| 2228 | if (!handle->cur) { |
| 2229 | if (!buffer) |
| 2230 | /* This makes the buffer be freed by swsusp_free() */ |
| 2231 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
| 2232 | |
| 2233 | if (!buffer) |
| 2234 | return -ENOMEM; |
| 2235 | |
| 2236 | handle->buffer = buffer; |
| 2237 | } else if (handle->cur == 1) { |
| 2238 | error = load_header(buffer); |
| 2239 | if (error) |
| 2240 | return error; |
| 2241 | |
| 2242 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); |
| 2243 | if (error) |
| 2244 | return error; |
| 2245 | |
| 2246 | /* Allocate buffer for page keys. */ |
| 2247 | error = page_key_alloc(nr_copy_pages); |
| 2248 | if (error) |
| 2249 | return error; |
| 2250 | |
| 2251 | } else if (handle->cur <= nr_meta_pages + 1) { |
| 2252 | error = unpack_orig_pfns(buffer, ©_bm); |
| 2253 | if (error) |
| 2254 | return error; |
| 2255 | |
| 2256 | if (handle->cur == nr_meta_pages + 1) { |
| 2257 | error = prepare_image(&orig_bm, ©_bm); |
| 2258 | if (error) |
| 2259 | return error; |
| 2260 | |
| 2261 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); |
| 2262 | memory_bm_position_reset(&orig_bm); |
| 2263 | restore_pblist = NULL; |
| 2264 | handle->buffer = get_buffer(&orig_bm, &ca); |
| 2265 | handle->sync_read = 0; |
| 2266 | if (IS_ERR(handle->buffer)) |
| 2267 | return PTR_ERR(handle->buffer); |
| 2268 | } |
| 2269 | } else { |
| 2270 | copy_last_highmem_page(); |
| 2271 | /* Restore page key for data page (s390 only). */ |
| 2272 | page_key_write(handle->buffer); |
| 2273 | handle->buffer = get_buffer(&orig_bm, &ca); |
| 2274 | if (IS_ERR(handle->buffer)) |
| 2275 | return PTR_ERR(handle->buffer); |
| 2276 | if (handle->buffer != buffer) |
| 2277 | handle->sync_read = 0; |
| 2278 | } |
| 2279 | handle->cur++; |
| 2280 | return PAGE_SIZE; |
| 2281 | } |
| 2282 | |
| 2283 | /** |
| 2284 | * snapshot_write_finalize - must be called after the last call to |
| 2285 | * snapshot_write_next() in case the last page in the image happens |
| 2286 | * to be a highmem page and its contents should be stored in the |
| 2287 | * highmem. Additionally, it releases the memory that will not be |
| 2288 | * used any more. |
| 2289 | */ |
| 2290 | |
| 2291 | void snapshot_write_finalize(struct snapshot_handle *handle) |
| 2292 | { |
| 2293 | copy_last_highmem_page(); |
| 2294 | /* Restore page key for data page (s390 only). */ |
| 2295 | page_key_write(handle->buffer); |
| 2296 | page_key_free(); |
| 2297 | /* Free only if we have loaded the image entirely */ |
| 2298 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { |
| 2299 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); |
| 2300 | free_highmem_data(); |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | int snapshot_image_loaded(struct snapshot_handle *handle) |
| 2305 | { |
| 2306 | return !(!nr_copy_pages || !last_highmem_page_copied() || |
| 2307 | handle->cur <= nr_meta_pages + nr_copy_pages); |
| 2308 | } |
| 2309 | |
| 2310 | #ifdef CONFIG_HIGHMEM |
| 2311 | /* Assumes that @buf is ready and points to a "safe" page */ |
| 2312 | static inline void |
| 2313 | swap_two_pages_data(struct page *p1, struct page *p2, void *buf) |
| 2314 | { |
| 2315 | void *kaddr1, *kaddr2; |
| 2316 | |
| 2317 | kaddr1 = kmap_atomic(p1); |
| 2318 | kaddr2 = kmap_atomic(p2); |
| 2319 | copy_page(buf, kaddr1); |
| 2320 | copy_page(kaddr1, kaddr2); |
| 2321 | copy_page(kaddr2, buf); |
| 2322 | kunmap_atomic(kaddr2); |
| 2323 | kunmap_atomic(kaddr1); |
| 2324 | } |
| 2325 | |
| 2326 | /** |
| 2327 | * restore_highmem - for each highmem page that was allocated before |
| 2328 | * the suspend and included in the suspend image, and also has been |
| 2329 | * allocated by the "resume" kernel swap its current (ie. "before |
| 2330 | * resume") contents with the previous (ie. "before suspend") one. |
| 2331 | * |
| 2332 | * If the resume eventually fails, we can call this function once |
| 2333 | * again and restore the "before resume" highmem state. |
| 2334 | */ |
| 2335 | |
| 2336 | int restore_highmem(void) |
| 2337 | { |
| 2338 | struct highmem_pbe *pbe = highmem_pblist; |
| 2339 | void *buf; |
| 2340 | |
| 2341 | if (!pbe) |
| 2342 | return 0; |
| 2343 | |
| 2344 | buf = get_image_page(GFP_ATOMIC, PG_SAFE); |
| 2345 | if (!buf) |
| 2346 | return -ENOMEM; |
| 2347 | |
| 2348 | while (pbe) { |
| 2349 | swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); |
| 2350 | pbe = pbe->next; |
| 2351 | } |
| 2352 | free_image_page(buf, PG_UNSAFE_CLEAR); |
| 2353 | return 0; |
| 2354 | } |
| 2355 | #endif /* CONFIG_HIGHMEM */ |