blob: 0864d70da80d4b31ef3d5331c9b0fccd2e2b65d8 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/export.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/clocksource.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/math64.h>
39#include <linux/ptrace.h>
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
44#include "timeconst.h"
45
46/*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62SYSCALL_DEFINE1(time, time_t __user *, tloc)
63{
64 time_t i = get_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
103{
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115}
116
117/*
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
120 *
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
126 *
127 * - TYT, 1992-01-01
128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
133static inline void warp_clock(void)
134{
135 struct timespec adjust;
136
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 do_settimeofday(&adjust);
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
154{
155 static int firsttime = 1;
156 int error = 0;
157
158 if (tv && !timespec_valid(tv))
159 return -EINVAL;
160
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 sys_tz = *tz;
167 update_vsyscall_tz();
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
175 return do_settimeofday(tv);
176 return 0;
177}
178
179SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
180 struct timezone __user *, tz)
181{
182 struct timeval user_tv;
183 struct timespec new_ts;
184 struct timezone new_tz;
185
186 if (tv) {
187 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188 return -EFAULT;
189
190 if (!timeval_valid(&user_tv))
191 return -EINVAL;
192
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202}
203
204SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
205{
206 struct timex txc; /* Local copy of parameter */
207 int ret;
208
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
211 * may change
212 */
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
214 return -EFAULT;
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217}
218
219/**
220 * current_fs_time - Return FS time
221 * @sb: Superblock.
222 *
223 * Return the current time truncated to the time granularity supported by
224 * the fs.
225 */
226struct timespec current_fs_time(struct super_block *sb)
227{
228 struct timespec now = current_kernel_time();
229 return timespec_trunc(now, sb->s_time_gran);
230}
231EXPORT_SYMBOL(current_fs_time);
232
233/*
234 * Convert jiffies to milliseconds and back.
235 *
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
238 */
239inline unsigned int jiffies_to_msecs(const unsigned long j)
240{
241#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245#else
246# if BITS_PER_LONG == 32
247 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248# else
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250# endif
251#endif
252}
253EXPORT_SYMBOL(jiffies_to_msecs);
254
255inline unsigned int jiffies_to_usecs(const unsigned long j)
256{
257#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
258 return (USEC_PER_SEC / HZ) * j;
259#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
260 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
261#else
262# if BITS_PER_LONG == 32
263 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
264# else
265 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
266# endif
267#endif
268}
269EXPORT_SYMBOL(jiffies_to_usecs);
270
271/**
272 * timespec_trunc - Truncate timespec to a granularity
273 * @t: Timespec
274 * @gran: Granularity in ns.
275 *
276 * Truncate a timespec to a granularity. gran must be smaller than a second.
277 * Always rounds down.
278 *
279 * This function should be only used for timestamps returned by
280 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
281 * it doesn't handle the better resolution of the latter.
282 */
283struct timespec timespec_trunc(struct timespec t, unsigned gran)
284{
285 /*
286 * Division is pretty slow so avoid it for common cases.
287 * Currently current_kernel_time() never returns better than
288 * jiffies resolution. Exploit that.
289 */
290 if (gran <= jiffies_to_usecs(1) * 1000) {
291 /* nothing */
292 } else if (gran == 1000000000) {
293 t.tv_nsec = 0;
294 } else {
295 t.tv_nsec -= t.tv_nsec % gran;
296 }
297 return t;
298}
299EXPORT_SYMBOL(timespec_trunc);
300
301/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
302 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
303 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
304 *
305 * [For the Julian calendar (which was used in Russia before 1917,
306 * Britain & colonies before 1752, anywhere else before 1582,
307 * and is still in use by some communities) leave out the
308 * -year/100+year/400 terms, and add 10.]
309 *
310 * This algorithm was first published by Gauss (I think).
311 *
312 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
313 * machines where long is 32-bit! (However, as time_t is signed, we
314 * will already get problems at other places on 2038-01-19 03:14:08)
315 */
316unsigned long
317mktime(const unsigned int year0, const unsigned int mon0,
318 const unsigned int day, const unsigned int hour,
319 const unsigned int min, const unsigned int sec)
320{
321 unsigned int mon = mon0, year = year0;
322
323 /* 1..12 -> 11,12,1..10 */
324 if (0 >= (int) (mon -= 2)) {
325 mon += 12; /* Puts Feb last since it has leap day */
326 year -= 1;
327 }
328
329 return ((((unsigned long)
330 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
331 year*365 - 719499
332 )*24 + hour /* now have hours */
333 )*60 + min /* now have minutes */
334 )*60 + sec; /* finally seconds */
335}
336
337EXPORT_SYMBOL(mktime);
338
339/**
340 * set_normalized_timespec - set timespec sec and nsec parts and normalize
341 *
342 * @ts: pointer to timespec variable to be set
343 * @sec: seconds to set
344 * @nsec: nanoseconds to set
345 *
346 * Set seconds and nanoseconds field of a timespec variable and
347 * normalize to the timespec storage format
348 *
349 * Note: The tv_nsec part is always in the range of
350 * 0 <= tv_nsec < NSEC_PER_SEC
351 * For negative values only the tv_sec field is negative !
352 */
353void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
354{
355 while (nsec >= NSEC_PER_SEC) {
356 /*
357 * The following asm() prevents the compiler from
358 * optimising this loop into a modulo operation. See
359 * also __iter_div_u64_rem() in include/linux/time.h
360 */
361 asm("" : "+rm"(nsec));
362 nsec -= NSEC_PER_SEC;
363 ++sec;
364 }
365 while (nsec < 0) {
366 asm("" : "+rm"(nsec));
367 nsec += NSEC_PER_SEC;
368 --sec;
369 }
370 ts->tv_sec = sec;
371 ts->tv_nsec = nsec;
372}
373EXPORT_SYMBOL(set_normalized_timespec);
374
375/**
376 * ns_to_timespec - Convert nanoseconds to timespec
377 * @nsec: the nanoseconds value to be converted
378 *
379 * Returns the timespec representation of the nsec parameter.
380 */
381struct timespec ns_to_timespec(const s64 nsec)
382{
383 struct timespec ts;
384 s32 rem;
385
386 if (!nsec)
387 return (struct timespec) {0, 0};
388
389 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
390 if (unlikely(rem < 0)) {
391 ts.tv_sec--;
392 rem += NSEC_PER_SEC;
393 }
394 ts.tv_nsec = rem;
395
396 return ts;
397}
398EXPORT_SYMBOL(ns_to_timespec);
399
400/**
401 * ns_to_timeval - Convert nanoseconds to timeval
402 * @nsec: the nanoseconds value to be converted
403 *
404 * Returns the timeval representation of the nsec parameter.
405 */
406struct timeval ns_to_timeval(const s64 nsec)
407{
408 struct timespec ts = ns_to_timespec(nsec);
409 struct timeval tv;
410
411 tv.tv_sec = ts.tv_sec;
412 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
413
414 return tv;
415}
416EXPORT_SYMBOL(ns_to_timeval);
417
418/*
419 * When we convert to jiffies then we interpret incoming values
420 * the following way:
421 *
422 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
423 *
424 * - 'too large' values [that would result in larger than
425 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
426 *
427 * - all other values are converted to jiffies by either multiplying
428 * the input value by a factor or dividing it with a factor
429 *
430 * We must also be careful about 32-bit overflows.
431 */
432unsigned long msecs_to_jiffies(const unsigned int m)
433{
434 /*
435 * Negative value, means infinite timeout:
436 */
437 if ((int)m < 0)
438 return MAX_JIFFY_OFFSET;
439
440#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
441 /*
442 * HZ is equal to or smaller than 1000, and 1000 is a nice
443 * round multiple of HZ, divide with the factor between them,
444 * but round upwards:
445 */
446 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
447#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
448 /*
449 * HZ is larger than 1000, and HZ is a nice round multiple of
450 * 1000 - simply multiply with the factor between them.
451 *
452 * But first make sure the multiplication result cannot
453 * overflow:
454 */
455 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
456 return MAX_JIFFY_OFFSET;
457
458 return m * (HZ / MSEC_PER_SEC);
459#else
460 /*
461 * Generic case - multiply, round and divide. But first
462 * check that if we are doing a net multiplication, that
463 * we wouldn't overflow:
464 */
465 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
466 return MAX_JIFFY_OFFSET;
467
468 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
469 >> MSEC_TO_HZ_SHR32;
470#endif
471}
472EXPORT_SYMBOL(msecs_to_jiffies);
473
474unsigned long usecs_to_jiffies(const unsigned int u)
475{
476 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
477 return MAX_JIFFY_OFFSET;
478#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
479 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
480#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
481 return u * (HZ / USEC_PER_SEC);
482#else
483 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
484 >> USEC_TO_HZ_SHR32;
485#endif
486}
487EXPORT_SYMBOL(usecs_to_jiffies);
488
489/*
490 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
491 * that a remainder subtract here would not do the right thing as the
492 * resolution values don't fall on second boundries. I.e. the line:
493 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
494 * Note that due to the small error in the multiplier here, this
495 * rounding is incorrect for sufficiently large values of tv_nsec, but
496 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
497 * OK.
498 *
499 * Rather, we just shift the bits off the right.
500 *
501 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
502 * value to a scaled second value.
503 */
504static unsigned long
505__timespec_to_jiffies(unsigned long sec, long nsec)
506{
507 nsec = nsec + TICK_NSEC - 1;
508
509 if (sec >= MAX_SEC_IN_JIFFIES){
510 sec = MAX_SEC_IN_JIFFIES;
511 nsec = 0;
512 }
513 return (((u64)sec * SEC_CONVERSION) +
514 (((u64)nsec * NSEC_CONVERSION) >>
515 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
516
517}
518
519unsigned long
520timespec_to_jiffies(const struct timespec *value)
521{
522 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
523}
524
525EXPORT_SYMBOL(timespec_to_jiffies);
526
527void
528jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
529{
530 /*
531 * Convert jiffies to nanoseconds and separate with
532 * one divide.
533 */
534 u32 rem;
535 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
536 NSEC_PER_SEC, &rem);
537 value->tv_nsec = rem;
538}
539EXPORT_SYMBOL(jiffies_to_timespec);
540
541/*
542 * We could use a similar algorithm to timespec_to_jiffies (with a
543 * different multiplier for usec instead of nsec). But this has a
544 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
545 * usec value, since it's not necessarily integral.
546 *
547 * We could instead round in the intermediate scaled representation
548 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
549 * perilous: the scaling introduces a small positive error, which
550 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
551 * units to the intermediate before shifting) leads to accidental
552 * overflow and overestimates.
553 *
554 * At the cost of one additional multiplication by a constant, just
555 * use the timespec implementation.
556 */
557unsigned long
558timeval_to_jiffies(const struct timeval *value)
559{
560 return __timespec_to_jiffies(value->tv_sec,
561 value->tv_usec * NSEC_PER_USEC);
562}
563EXPORT_SYMBOL(timeval_to_jiffies);
564
565void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
566{
567 /*
568 * Convert jiffies to nanoseconds and separate with
569 * one divide.
570 */
571 u32 rem;
572
573 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
574 NSEC_PER_SEC, &rem);
575 value->tv_usec = rem / NSEC_PER_USEC;
576}
577EXPORT_SYMBOL(jiffies_to_timeval);
578
579/*
580 * Convert jiffies/jiffies_64 to clock_t and back.
581 */
582clock_t jiffies_to_clock_t(unsigned long x)
583{
584#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
585# if HZ < USER_HZ
586 return x * (USER_HZ / HZ);
587# else
588 return x / (HZ / USER_HZ);
589# endif
590#else
591 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
592#endif
593}
594EXPORT_SYMBOL(jiffies_to_clock_t);
595
596unsigned long clock_t_to_jiffies(unsigned long x)
597{
598#if (HZ % USER_HZ)==0
599 if (x >= ~0UL / (HZ / USER_HZ))
600 return ~0UL;
601 return x * (HZ / USER_HZ);
602#else
603 /* Don't worry about loss of precision here .. */
604 if (x >= ~0UL / HZ * USER_HZ)
605 return ~0UL;
606
607 /* .. but do try to contain it here */
608 return div_u64((u64)x * HZ, USER_HZ);
609#endif
610}
611EXPORT_SYMBOL(clock_t_to_jiffies);
612
613u64 jiffies_64_to_clock_t(u64 x)
614{
615#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
616# if HZ < USER_HZ
617 x = div_u64(x * USER_HZ, HZ);
618# elif HZ > USER_HZ
619 x = div_u64(x, HZ / USER_HZ);
620# else
621 /* Nothing to do */
622# endif
623#else
624 /*
625 * There are better ways that don't overflow early,
626 * but even this doesn't overflow in hundreds of years
627 * in 64 bits, so..
628 */
629 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
630#endif
631 return x;
632}
633EXPORT_SYMBOL(jiffies_64_to_clock_t);
634
635u64 nsec_to_clock_t(u64 x)
636{
637#if (NSEC_PER_SEC % USER_HZ) == 0
638 return div_u64(x, NSEC_PER_SEC / USER_HZ);
639#elif (USER_HZ % 512) == 0
640 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
641#else
642 /*
643 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
644 * overflow after 64.99 years.
645 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
646 */
647 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
648#endif
649}
650
651/**
652 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
653 *
654 * @n: nsecs in u64
655 *
656 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
657 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
658 * for scheduler, not for use in device drivers to calculate timeout value.
659 *
660 * note:
661 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
662 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
663 */
664u64 nsecs_to_jiffies64(u64 n)
665{
666#if (NSEC_PER_SEC % HZ) == 0
667 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
668 return div_u64(n, NSEC_PER_SEC / HZ);
669#elif (HZ % 512) == 0
670 /* overflow after 292 years if HZ = 1024 */
671 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
672#else
673 /*
674 * Generic case - optimized for cases where HZ is a multiple of 3.
675 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
676 */
677 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
678#endif
679}
680
681/**
682 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
683 *
684 * @n: nsecs in u64
685 *
686 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
687 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
688 * for scheduler, not for use in device drivers to calculate timeout value.
689 *
690 * note:
691 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
692 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
693 */
694unsigned long nsecs_to_jiffies(u64 n)
695{
696 return (unsigned long)nsecs_to_jiffies64(n);
697}
698
699/*
700 * Add two timespec values and do a safety check for overflow.
701 * It's assumed that both values are valid (>= 0)
702 */
703struct timespec timespec_add_safe(const struct timespec lhs,
704 const struct timespec rhs)
705{
706 struct timespec res;
707
708 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
709 lhs.tv_nsec + rhs.tv_nsec);
710
711 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
712 res.tv_sec = TIME_T_MAX;
713
714 return res;
715}