blob: fa3062d2d2d724f51bd4141ec474a022259ea5cd [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
108 return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128void sync_mm_rss(struct mm_struct *mm)
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161}
162#else /* SPLIT_RSS_COUNTING */
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
186 return 0;
187
188 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
189 if (!batch)
190 return 0;
191
192 tlb->batch_count++;
193 batch->next = NULL;
194 batch->nr = 0;
195 batch->max = MAX_GATHER_BATCH;
196
197 tlb->active->next = batch;
198 tlb->active = batch;
199
200 return 1;
201}
202
203/* tlb_gather_mmu
204 * Called to initialize an (on-stack) mmu_gather structure for page-table
205 * tear-down from @mm. The @fullmm argument is used when @mm is without
206 * users and we're going to destroy the full address space (exit/execve).
207 */
208void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
209{
210 tlb->mm = mm;
211
212 tlb->fullmm = fullmm;
213 tlb->need_flush = 0;
214 tlb->fast_mode = (num_possible_cpus() == 1);
215 tlb->local.next = NULL;
216 tlb->local.nr = 0;
217 tlb->local.max = ARRAY_SIZE(tlb->__pages);
218 tlb->active = &tlb->local;
219 tlb->batch_count = 0;
220
221#ifdef CONFIG_HAVE_RCU_TABLE_FREE
222 tlb->batch = NULL;
223#endif
224}
225
226void tlb_flush_mmu(struct mmu_gather *tlb)
227{
228 struct mmu_gather_batch *batch;
229
230 if (!tlb->need_flush)
231 return;
232 tlb->need_flush = 0;
233 tlb_flush(tlb);
234#ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb_table_flush(tlb);
236#endif
237
238 if (tlb_fast_mode(tlb))
239 return;
240
241 for (batch = &tlb->local; batch; batch = batch->next) {
242 free_pages_and_swap_cache(batch->pages, batch->nr);
243 batch->nr = 0;
244 }
245 tlb->active = &tlb->local;
246}
247
248/* tlb_finish_mmu
249 * Called at the end of the shootdown operation to free up any resources
250 * that were required.
251 */
252void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
253{
254 struct mmu_gather_batch *batch, *next;
255
256 tlb_flush_mmu(tlb);
257
258 /* keep the page table cache within bounds */
259 check_pgt_cache();
260
261 for (batch = tlb->local.next; batch; batch = next) {
262 next = batch->next;
263 free_pages((unsigned long)batch, 0);
264 }
265 tlb->local.next = NULL;
266}
267
268/* __tlb_remove_page
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
273 */
274int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275{
276 struct mmu_gather_batch *batch;
277
278 VM_BUG_ON(!tlb->need_flush);
279
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
283 }
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
291 }
292 VM_BUG_ON(batch->nr > batch->max);
293
294 return batch->max - batch->nr;
295}
296
297#endif /* HAVE_GENERIC_MMU_GATHER */
298
299#ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301/*
302 * See the comment near struct mmu_table_batch.
303 */
304
305static void tlb_remove_table_smp_sync(void *arg)
306{
307 /* Simply deliver the interrupt */
308}
309
310static void tlb_remove_table_one(void *table)
311{
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321}
322
323static void tlb_remove_table_rcu(struct rcu_head *head)
324{
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334}
335
336void tlb_table_flush(struct mmu_gather *tlb)
337{
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344}
345
346void tlb_remove_table(struct mmu_gather *tlb, void *table)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372}
373
374#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376/*
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
380 */
381
382void pgd_clear_bad(pgd_t *pgd)
383{
384 pgd_ERROR(*pgd);
385 pgd_clear(pgd);
386}
387
388void pud_clear_bad(pud_t *pud)
389{
390 pud_ERROR(*pud);
391 pud_clear(pud);
392}
393
394void pmd_clear_bad(pmd_t *pmd)
395{
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398}
399
400/*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
404static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
406{
407 pgtable_t token = pmd_pgtable(*pmd);
408 pmd_clear(pmd);
409 pte_free_tlb(tlb, token, addr);
410 tlb->mm->nr_ptes--;
411}
412
413static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
416{
417 pmd_t *pmd;
418 unsigned long next;
419 unsigned long start;
420
421 start = addr;
422 pmd = pmd_offset(pud, addr);
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
427 free_pte_range(tlb, pmd, addr);
428 } while (pmd++, addr = next, addr != end);
429
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
437 }
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
443 pmd_free_tlb(tlb, pmd, start);
444}
445
446static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
449{
450 pud_t *pud;
451 unsigned long next;
452 unsigned long start;
453
454 start = addr;
455 pud = pud_offset(pgd, addr);
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
462
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
470 }
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
476 pud_free_tlb(tlb, pud, start);
477}
478
479/*
480 * This function frees user-level page tables of a process.
481 *
482 * Must be called with pagetable lock held.
483 */
484void free_pgd_range(struct mmu_gather *tlb,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487{
488 pgd_t *pgd;
489 unsigned long next;
490
491 /*
492 * The next few lines have given us lots of grief...
493 *
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
497 *
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
505 *
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
510 *
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
515 */
516
517 addr &= PMD_MASK;
518 if (addr < floor) {
519 addr += PMD_SIZE;
520 if (!addr)
521 return;
522 }
523 if (ceiling) {
524 ceiling &= PMD_MASK;
525 if (!ceiling)
526 return;
527 }
528 if (end - 1 > ceiling - 1)
529 end -= PMD_SIZE;
530 if (addr > end - 1)
531 return;
532
533 pgd = pgd_offset(tlb->mm, addr);
534 do {
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
537 continue;
538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 } while (pgd++, addr = next, addr != end);
540}
541
542void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 unsigned long floor, unsigned long ceiling)
544{
545 while (vma) {
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
548
549 /*
550 * Hide vma from rmap and truncate_pagecache before freeing
551 * pgtables
552 */
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555
556 if (is_vm_hugetlb_page(vma)) {
557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 } else {
560 /*
561 * Optimization: gather nearby vmas into one call down
562 */
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 && !is_vm_hugetlb_page(next)) {
565 vma = next;
566 next = vma->vm_next;
567 unlink_anon_vmas(vma);
568 unlink_file_vma(vma);
569 }
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
572 }
573 vma = next;
574 }
575}
576
577int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
579{
580 pgtable_t new = pte_alloc_one(mm, address);
581 int wait_split_huge_page;
582 if (!new)
583 return -ENOMEM;
584
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600 spin_lock(&mm->page_table_lock);
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 mm->nr_ptes++;
604 pmd_populate(mm, pmd, new);
605 new = NULL;
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
608 spin_unlock(&mm->page_table_lock);
609 if (new)
610 pte_free(mm, new);
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
613 return 0;
614}
615
616int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617{
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 if (!new)
620 return -ENOMEM;
621
622 smp_wmb(); /* See comment in __pte_alloc */
623
624 spin_lock(&init_mm.page_table_lock);
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 pmd_populate_kernel(&init_mm, pmd, new);
627 new = NULL;
628 } else
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
630 spin_unlock(&init_mm.page_table_lock);
631 if (new)
632 pte_free_kernel(&init_mm, new);
633 return 0;
634}
635
636static inline void init_rss_vec(int *rss)
637{
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639}
640
641static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642{
643 int i;
644
645 if (current->mm == mm)
646 sync_mm_rss(mm);
647 for (i = 0; i < NR_MM_COUNTERS; i++)
648 if (rss[i])
649 add_mm_counter(mm, i, rss[i]);
650}
651
652/*
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
656 *
657 * The calling function must still handle the error.
658 */
659static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
661{
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
666 pgoff_t index;
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
670
671 /*
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
674 */
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
677 nr_unshown++;
678 return;
679 }
680 if (nr_unshown) {
681 printk(KERN_ALERT
682 "BUG: Bad page map: %lu messages suppressed\n",
683 nr_unshown);
684 nr_unshown = 0;
685 }
686 nr_shown = 0;
687 }
688 if (nr_shown++ == 0)
689 resume = jiffies + 60 * HZ;
690
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
693
694 printk(KERN_ALERT
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 current->comm,
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
698 if (page)
699 dump_page(page);
700 printk(KERN_ALERT
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 /*
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 */
706 if (vma->vm_ops)
707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 (unsigned long)vma->vm_file->f_op->mmap);
712 dump_stack();
713 add_taint(TAINT_BAD_PAGE);
714}
715
716static inline int is_cow_mapping(vm_flags_t flags)
717{
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719}
720
721#ifndef is_zero_pfn
722static inline int is_zero_pfn(unsigned long pfn)
723{
724 return pfn == zero_pfn;
725}
726#endif
727
728#ifndef my_zero_pfn
729static inline unsigned long my_zero_pfn(unsigned long addr)
730{
731 return zero_pfn;
732}
733#endif
734
735/*
736 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 *
738 * "Special" mappings do not wish to be associated with a "struct page" (either
739 * it doesn't exist, or it exists but they don't want to touch it). In this
740 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 *
742 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743 * pte bit, in which case this function is trivial. Secondly, an architecture
744 * may not have a spare pte bit, which requires a more complicated scheme,
745 * described below.
746 *
747 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748 * special mapping (even if there are underlying and valid "struct pages").
749 * COWed pages of a VM_PFNMAP are always normal.
750 *
751 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
753 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754 * mapping will always honor the rule
755 *
756 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 *
758 * And for normal mappings this is false.
759 *
760 * This restricts such mappings to be a linear translation from virtual address
761 * to pfn. To get around this restriction, we allow arbitrary mappings so long
762 * as the vma is not a COW mapping; in that case, we know that all ptes are
763 * special (because none can have been COWed).
764 *
765 *
766 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 *
768 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769 * page" backing, however the difference is that _all_ pages with a struct
770 * page (that is, those where pfn_valid is true) are refcounted and considered
771 * normal pages by the VM. The disadvantage is that pages are refcounted
772 * (which can be slower and simply not an option for some PFNMAP users). The
773 * advantage is that we don't have to follow the strict linearity rule of
774 * PFNMAP mappings in order to support COWable mappings.
775 *
776 */
777#ifdef __HAVE_ARCH_PTE_SPECIAL
778# define HAVE_PTE_SPECIAL 1
779#else
780# define HAVE_PTE_SPECIAL 0
781#endif
782struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
783 pte_t pte)
784{
785 unsigned long pfn = pte_pfn(pte);
786
787 if (HAVE_PTE_SPECIAL) {
788 if (likely(!pte_special(pte)))
789 goto check_pfn;
790 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 return NULL;
792 if (!is_zero_pfn(pfn))
793 print_bad_pte(vma, addr, pte, NULL);
794 return NULL;
795 }
796
797 /* !HAVE_PTE_SPECIAL case follows: */
798
799 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 if (vma->vm_flags & VM_MIXEDMAP) {
801 if (!pfn_valid(pfn))
802 return NULL;
803 goto out;
804 } else {
805 unsigned long off;
806 off = (addr - vma->vm_start) >> PAGE_SHIFT;
807 if (pfn == vma->vm_pgoff + off)
808 return NULL;
809 if (!is_cow_mapping(vma->vm_flags))
810 return NULL;
811 }
812 }
813
814 if (is_zero_pfn(pfn))
815 return NULL;
816check_pfn:
817 if (unlikely(pfn > highest_memmap_pfn)) {
818 print_bad_pte(vma, addr, pte, NULL);
819 return NULL;
820 }
821
822 /*
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
825 */
826out:
827 return pfn_to_page(pfn);
828}
829
830/*
831 * copy one vm_area from one task to the other. Assumes the page tables
832 * already present in the new task to be cleared in the whole range
833 * covered by this vma.
834 */
835
836static inline unsigned long
837copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
839 unsigned long addr, int *rss)
840{
841 unsigned long vm_flags = vma->vm_flags;
842 pte_t pte = *src_pte;
843 struct page *page;
844
845 /* pte contains position in swap or file, so copy. */
846 if (unlikely(!pte_present(pte))) {
847 if (!pte_file(pte)) {
848 swp_entry_t entry = pte_to_swp_entry(pte);
849
850 if (likely(!non_swap_entry(entry))) {
851 if (swap_duplicate(entry) < 0)
852 return entry.val;
853
854 /* make sure dst_mm is on swapoff's mmlist. */
855 if (unlikely(list_empty(&dst_mm->mmlist))) {
856 spin_lock(&mmlist_lock);
857 if (list_empty(&dst_mm->mmlist))
858 list_add(&dst_mm->mmlist,
859 &src_mm->mmlist);
860 spin_unlock(&mmlist_lock);
861 }
862 rss[MM_SWAPENTS]++;
863 } else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
865
866 if (PageAnon(page))
867 rss[MM_ANONPAGES]++;
868 else
869 rss[MM_FILEPAGES]++;
870
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 /*
874 * COW mappings require pages in both
875 * parent and child to be set to read.
876 */
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
881 }
882 }
883 goto out_set_pte;
884 }
885
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
906 page_dup_rmap(page);
907 if (PageAnon(page))
908 rss[MM_ANONPAGES]++;
909 else
910 rss[MM_FILEPAGES]++;
911 }
912
913out_set_pte:
914 set_pte_at(dst_mm, addr, dst_pte, pte);
915 return 0;
916}
917
918int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 unsigned long addr, unsigned long end)
921{
922 pte_t *orig_src_pte, *orig_dst_pte;
923 pte_t *src_pte, *dst_pte;
924 spinlock_t *src_ptl, *dst_ptl;
925 int progress = 0;
926 int rss[NR_MM_COUNTERS];
927 swp_entry_t entry = (swp_entry_t){0};
928
929again:
930 init_rss_vec(rss);
931
932 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
933 if (!dst_pte)
934 return -ENOMEM;
935 src_pte = pte_offset_map(src_pmd, addr);
936 src_ptl = pte_lockptr(src_mm, src_pmd);
937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 orig_src_pte = src_pte;
939 orig_dst_pte = dst_pte;
940 arch_enter_lazy_mmu_mode();
941
942 do {
943 /*
944 * We are holding two locks at this point - either of them
945 * could generate latencies in another task on another CPU.
946 */
947 if (progress >= 32) {
948 progress = 0;
949 if (need_resched() ||
950 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
951 break;
952 }
953 if (pte_none(*src_pte)) {
954 progress++;
955 continue;
956 }
957 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
958 vma, addr, rss);
959 if (entry.val)
960 break;
961 progress += 8;
962 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963
964 arch_leave_lazy_mmu_mode();
965 spin_unlock(src_ptl);
966 pte_unmap(orig_src_pte);
967 add_mm_rss_vec(dst_mm, rss);
968 pte_unmap_unlock(orig_dst_pte, dst_ptl);
969 cond_resched();
970
971 if (entry.val) {
972 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
973 return -ENOMEM;
974 progress = 0;
975 }
976 if (addr != end)
977 goto again;
978 return 0;
979}
980
981static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 unsigned long addr, unsigned long end)
984{
985 pmd_t *src_pmd, *dst_pmd;
986 unsigned long next;
987
988 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
989 if (!dst_pmd)
990 return -ENOMEM;
991 src_pmd = pmd_offset(src_pud, addr);
992 do {
993 next = pmd_addr_end(addr, end);
994 if (pmd_trans_huge(*src_pmd)) {
995 int err;
996 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
997 err = copy_huge_pmd(dst_mm, src_mm,
998 dst_pmd, src_pmd, addr, vma);
999 if (err == -ENOMEM)
1000 return -ENOMEM;
1001 if (!err)
1002 continue;
1003 /* fall through */
1004 }
1005 if (pmd_none_or_clear_bad(src_pmd))
1006 continue;
1007 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1008 vma, addr, next))
1009 return -ENOMEM;
1010 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1011 return 0;
1012}
1013
1014static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 unsigned long addr, unsigned long end)
1017{
1018 pud_t *src_pud, *dst_pud;
1019 unsigned long next;
1020
1021 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1022 if (!dst_pud)
1023 return -ENOMEM;
1024 src_pud = pud_offset(src_pgd, addr);
1025 do {
1026 next = pud_addr_end(addr, end);
1027 if (pud_none_or_clear_bad(src_pud))
1028 continue;
1029 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1030 vma, addr, next))
1031 return -ENOMEM;
1032 } while (dst_pud++, src_pud++, addr = next, addr != end);
1033 return 0;
1034}
1035
1036int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 struct vm_area_struct *vma)
1038{
1039 pgd_t *src_pgd, *dst_pgd;
1040 unsigned long next;
1041 unsigned long addr = vma->vm_start;
1042 unsigned long end = vma->vm_end;
1043 int ret;
1044
1045 /*
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1050 */
1051 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1052 if (!vma->anon_vma)
1053 return 0;
1054 }
1055
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
1059 if (unlikely(is_pfn_mapping(vma))) {
1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
1064 ret = track_pfn_vma_copy(vma);
1065 if (ret)
1066 return ret;
1067 }
1068
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
1075 if (is_cow_mapping(vma->vm_flags))
1076 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092 if (is_cow_mapping(vma->vm_flags))
1093 mmu_notifier_invalidate_range_end(src_mm,
1094 vma->vm_start, end);
1095 return ret;
1096}
1097
1098static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 struct zap_details *details)
1102{
1103 struct mm_struct *mm = tlb->mm;
1104 int force_flush = 0;
1105 int rss[NR_MM_COUNTERS];
1106 spinlock_t *ptl;
1107 pte_t *start_pte;
1108 pte_t *pte;
1109
1110again:
1111 init_rss_vec(rss);
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 pte = start_pte;
1114 arch_enter_lazy_mmu_mode();
1115 do {
1116 pte_t ptent = *pte;
1117 if (pte_none(ptent)) {
1118 continue;
1119 }
1120
1121 if (pte_present(ptent)) {
1122 struct page *page;
1123
1124 page = vm_normal_page(vma, addr, ptent);
1125 if (unlikely(details) && page) {
1126 /*
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1130 */
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1133 continue;
1134 /*
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1137 */
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1141 continue;
1142 }
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 tlb->fullmm);
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
1151 set_pte_at(mm, addr, pte,
1152 pgoff_to_pte(page->index));
1153 if (PageAnon(page))
1154 rss[MM_ANONPAGES]--;
1155 else {
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
1160 mark_page_accessed(page);
1161 rss[MM_FILEPAGES]--;
1162 }
1163 page_remove_rmap(page);
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
1166 force_flush = !__tlb_remove_page(tlb, page);
1167 if (force_flush) {
1168 addr += PAGE_SIZE;
1169 break;
1170 }
1171 continue;
1172 }
1173 /*
1174 * If details->check_mapping, we leave swap entries;
1175 * if details->nonlinear_vma, we leave file entries.
1176 */
1177 if (unlikely(details))
1178 continue;
1179 if (pte_file(ptent)) {
1180 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1181 print_bad_pte(vma, addr, ptent, NULL);
1182 } else {
1183 swp_entry_t entry = pte_to_swp_entry(ptent);
1184
1185 if (!non_swap_entry(entry))
1186 rss[MM_SWAPENTS]--;
1187 else if (is_migration_entry(entry)) {
1188 struct page *page;
1189
1190 page = migration_entry_to_page(entry);
1191
1192 if (PageAnon(page))
1193 rss[MM_ANONPAGES]--;
1194 else
1195 rss[MM_FILEPAGES]--;
1196 }
1197 if (unlikely(!free_swap_and_cache(entry)))
1198 print_bad_pte(vma, addr, ptent, NULL);
1199 }
1200 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1201 } while (pte++, addr += PAGE_SIZE, addr != end);
1202
1203 add_mm_rss_vec(mm, rss);
1204 arch_leave_lazy_mmu_mode();
1205 pte_unmap_unlock(start_pte, ptl);
1206
1207 /*
1208 * mmu_gather ran out of room to batch pages, we break out of
1209 * the PTE lock to avoid doing the potential expensive TLB invalidate
1210 * and page-free while holding it.
1211 */
1212 if (force_flush) {
1213 force_flush = 0;
1214 tlb_flush_mmu(tlb);
1215 if (addr != end)
1216 goto again;
1217 }
1218
1219 return addr;
1220}
1221
1222static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1223 struct vm_area_struct *vma, pud_t *pud,
1224 unsigned long addr, unsigned long end,
1225 struct zap_details *details)
1226{
1227 pmd_t *pmd;
1228 unsigned long next;
1229
1230 pmd = pmd_offset(pud, addr);
1231 do {
1232 next = pmd_addr_end(addr, end);
1233 if (pmd_trans_huge(*pmd)) {
1234 if (next - addr != HPAGE_PMD_SIZE) {
1235 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1236 split_huge_page_pmd(vma->vm_mm, pmd);
1237 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1238 goto next;
1239 /* fall through */
1240 }
1241 /*
1242 * Here there can be other concurrent MADV_DONTNEED or
1243 * trans huge page faults running, and if the pmd is
1244 * none or trans huge it can change under us. This is
1245 * because MADV_DONTNEED holds the mmap_sem in read
1246 * mode.
1247 */
1248 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1249 goto next;
1250 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1251next:
1252 cond_resched();
1253 } while (pmd++, addr = next, addr != end);
1254
1255 return addr;
1256}
1257
1258static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1259 struct vm_area_struct *vma, pgd_t *pgd,
1260 unsigned long addr, unsigned long end,
1261 struct zap_details *details)
1262{
1263 pud_t *pud;
1264 unsigned long next;
1265
1266 pud = pud_offset(pgd, addr);
1267 do {
1268 next = pud_addr_end(addr, end);
1269 if (pud_none_or_clear_bad(pud))
1270 continue;
1271 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1272 } while (pud++, addr = next, addr != end);
1273
1274 return addr;
1275}
1276
1277static void unmap_page_range(struct mmu_gather *tlb,
1278 struct vm_area_struct *vma,
1279 unsigned long addr, unsigned long end,
1280 struct zap_details *details)
1281{
1282 pgd_t *pgd;
1283 unsigned long next;
1284
1285 if (details && !details->check_mapping && !details->nonlinear_vma)
1286 details = NULL;
1287
1288 BUG_ON(addr >= end);
1289 mem_cgroup_uncharge_start();
1290 tlb_start_vma(tlb, vma);
1291 pgd = pgd_offset(vma->vm_mm, addr);
1292 do {
1293 next = pgd_addr_end(addr, end);
1294 if (pgd_none_or_clear_bad(pgd))
1295 continue;
1296 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1297 } while (pgd++, addr = next, addr != end);
1298 tlb_end_vma(tlb, vma);
1299 mem_cgroup_uncharge_end();
1300}
1301
1302
1303static void unmap_single_vma(struct mmu_gather *tlb,
1304 struct vm_area_struct *vma, unsigned long start_addr,
1305 unsigned long end_addr, unsigned long *nr_accounted,
1306 struct zap_details *details)
1307{
1308 unsigned long start = max(vma->vm_start, start_addr);
1309 unsigned long end;
1310
1311 if (start >= vma->vm_end)
1312 return;
1313 end = min(vma->vm_end, end_addr);
1314 if (end <= vma->vm_start)
1315 return;
1316
1317 if (vma->vm_flags & VM_ACCOUNT)
1318 *nr_accounted += (end - start) >> PAGE_SHIFT;
1319
1320 if (unlikely(is_pfn_mapping(vma)))
1321 untrack_pfn_vma(vma, 0, 0);
1322
1323 if (start != end) {
1324 if (unlikely(is_vm_hugetlb_page(vma))) {
1325 /*
1326 * It is undesirable to test vma->vm_file as it
1327 * should be non-null for valid hugetlb area.
1328 * However, vm_file will be NULL in the error
1329 * cleanup path of do_mmap_pgoff. When
1330 * hugetlbfs ->mmap method fails,
1331 * do_mmap_pgoff() nullifies vma->vm_file
1332 * before calling this function to clean up.
1333 * Since no pte has actually been setup, it is
1334 * safe to do nothing in this case.
1335 */
1336 if (vma->vm_file)
1337 unmap_hugepage_range(vma, start, end, NULL);
1338 } else
1339 unmap_page_range(tlb, vma, start, end, details);
1340 }
1341}
1342
1343/**
1344 * unmap_vmas - unmap a range of memory covered by a list of vma's
1345 * @tlb: address of the caller's struct mmu_gather
1346 * @vma: the starting vma
1347 * @start_addr: virtual address at which to start unmapping
1348 * @end_addr: virtual address at which to end unmapping
1349 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1350 * @details: details of nonlinear truncation or shared cache invalidation
1351 *
1352 * Unmap all pages in the vma list.
1353 *
1354 * Only addresses between `start' and `end' will be unmapped.
1355 *
1356 * The VMA list must be sorted in ascending virtual address order.
1357 *
1358 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1359 * range after unmap_vmas() returns. So the only responsibility here is to
1360 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1361 * drops the lock and schedules.
1362 */
1363void unmap_vmas(struct mmu_gather *tlb,
1364 struct vm_area_struct *vma, unsigned long start_addr,
1365 unsigned long end_addr, unsigned long *nr_accounted,
1366 struct zap_details *details)
1367{
1368 struct mm_struct *mm = vma->vm_mm;
1369
1370 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1371 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1372 unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1373 details);
1374 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1375}
1376
1377/**
1378 * zap_page_range - remove user pages in a given range
1379 * @vma: vm_area_struct holding the applicable pages
1380 * @address: starting address of pages to zap
1381 * @size: number of bytes to zap
1382 * @details: details of nonlinear truncation or shared cache invalidation
1383 *
1384 * Caller must protect the VMA list
1385 */
1386void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1387 unsigned long size, struct zap_details *details)
1388{
1389 struct mm_struct *mm = vma->vm_mm;
1390 struct mmu_gather tlb;
1391 unsigned long end = address + size;
1392 unsigned long nr_accounted = 0;
1393
1394 lru_add_drain();
1395 tlb_gather_mmu(&tlb, mm, 0);
1396 update_hiwater_rss(mm);
1397 unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1398 tlb_finish_mmu(&tlb, address, end);
1399}
1400
1401/**
1402 * zap_page_range_single - remove user pages in a given range
1403 * @vma: vm_area_struct holding the applicable pages
1404 * @address: starting address of pages to zap
1405 * @size: number of bytes to zap
1406 * @details: details of nonlinear truncation or shared cache invalidation
1407 *
1408 * The range must fit into one VMA.
1409 */
1410static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size, struct zap_details *details)
1412{
1413 struct mm_struct *mm = vma->vm_mm;
1414 struct mmu_gather tlb;
1415 unsigned long end = address + size;
1416 unsigned long nr_accounted = 0;
1417
1418 lru_add_drain();
1419 tlb_gather_mmu(&tlb, mm, 0);
1420 update_hiwater_rss(mm);
1421 mmu_notifier_invalidate_range_start(mm, address, end);
1422 unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1423 mmu_notifier_invalidate_range_end(mm, address, end);
1424 tlb_finish_mmu(&tlb, address, end);
1425}
1426
1427/**
1428 * zap_vma_ptes - remove ptes mapping the vma
1429 * @vma: vm_area_struct holding ptes to be zapped
1430 * @address: starting address of pages to zap
1431 * @size: number of bytes to zap
1432 *
1433 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1434 *
1435 * The entire address range must be fully contained within the vma.
1436 *
1437 * Returns 0 if successful.
1438 */
1439int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1440 unsigned long size)
1441{
1442 if (address < vma->vm_start || address + size > vma->vm_end ||
1443 !(vma->vm_flags & VM_PFNMAP))
1444 return -1;
1445 zap_page_range_single(vma, address, size, NULL);
1446 return 0;
1447}
1448EXPORT_SYMBOL_GPL(zap_vma_ptes);
1449
1450/**
1451 * follow_page - look up a page descriptor from a user-virtual address
1452 * @vma: vm_area_struct mapping @address
1453 * @address: virtual address to look up
1454 * @flags: flags modifying lookup behaviour
1455 *
1456 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1457 *
1458 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1459 * an error pointer if there is a mapping to something not represented
1460 * by a page descriptor (see also vm_normal_page()).
1461 */
1462struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1463 unsigned int flags)
1464{
1465 pgd_t *pgd;
1466 pud_t *pud;
1467 pmd_t *pmd;
1468 pte_t *ptep, pte;
1469 spinlock_t *ptl;
1470 struct page *page;
1471 struct mm_struct *mm = vma->vm_mm;
1472
1473 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1474 if (!IS_ERR(page)) {
1475 BUG_ON(flags & FOLL_GET);
1476 goto out;
1477 }
1478
1479 page = NULL;
1480 pgd = pgd_offset(mm, address);
1481 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1482 goto no_page_table;
1483
1484 pud = pud_offset(pgd, address);
1485 if (pud_none(*pud))
1486 goto no_page_table;
1487 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1488 BUG_ON(flags & FOLL_GET);
1489 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1490 goto out;
1491 }
1492 if (unlikely(pud_bad(*pud)))
1493 goto no_page_table;
1494
1495 pmd = pmd_offset(pud, address);
1496 if (pmd_none(*pmd))
1497 goto no_page_table;
1498 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1499 BUG_ON(flags & FOLL_GET);
1500 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1501 goto out;
1502 }
1503 if (pmd_trans_huge(*pmd)) {
1504 if (flags & FOLL_SPLIT) {
1505 split_huge_page_pmd(mm, pmd);
1506 goto split_fallthrough;
1507 }
1508 spin_lock(&mm->page_table_lock);
1509 if (likely(pmd_trans_huge(*pmd))) {
1510 if (unlikely(pmd_trans_splitting(*pmd))) {
1511 spin_unlock(&mm->page_table_lock);
1512 wait_split_huge_page(vma->anon_vma, pmd);
1513 } else {
1514 page = follow_trans_huge_pmd(mm, address,
1515 pmd, flags);
1516 spin_unlock(&mm->page_table_lock);
1517 goto out;
1518 }
1519 } else
1520 spin_unlock(&mm->page_table_lock);
1521 /* fall through */
1522 }
1523split_fallthrough:
1524 if (unlikely(pmd_bad(*pmd)))
1525 goto no_page_table;
1526
1527 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1528
1529 pte = *ptep;
1530 if (!pte_present(pte))
1531 goto no_page;
1532 if ((flags & FOLL_WRITE) && !pte_write(pte))
1533 goto unlock;
1534
1535 page = vm_normal_page(vma, address, pte);
1536 if (unlikely(!page)) {
1537 if ((flags & FOLL_DUMP) ||
1538 !is_zero_pfn(pte_pfn(pte)))
1539 goto bad_page;
1540 page = pte_page(pte);
1541 }
1542
1543 if (flags & FOLL_GET)
1544 get_page_foll(page);
1545 if (flags & FOLL_TOUCH) {
1546 if ((flags & FOLL_WRITE) &&
1547 !pte_dirty(pte) && !PageDirty(page))
1548 set_page_dirty(page);
1549 /*
1550 * pte_mkyoung() would be more correct here, but atomic care
1551 * is needed to avoid losing the dirty bit: it is easier to use
1552 * mark_page_accessed().
1553 */
1554 mark_page_accessed(page);
1555 }
1556 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1557 /*
1558 * The preliminary mapping check is mainly to avoid the
1559 * pointless overhead of lock_page on the ZERO_PAGE
1560 * which might bounce very badly if there is contention.
1561 *
1562 * If the page is already locked, we don't need to
1563 * handle it now - vmscan will handle it later if and
1564 * when it attempts to reclaim the page.
1565 */
1566 if (page->mapping && trylock_page(page)) {
1567 lru_add_drain(); /* push cached pages to LRU */
1568 /*
1569 * Because we lock page here and migration is
1570 * blocked by the pte's page reference, we need
1571 * only check for file-cache page truncation.
1572 */
1573 if (page->mapping)
1574 mlock_vma_page(page);
1575 unlock_page(page);
1576 }
1577 }
1578unlock:
1579 pte_unmap_unlock(ptep, ptl);
1580out:
1581 return page;
1582
1583bad_page:
1584 pte_unmap_unlock(ptep, ptl);
1585 return ERR_PTR(-EFAULT);
1586
1587no_page:
1588 pte_unmap_unlock(ptep, ptl);
1589 if (!pte_none(pte))
1590 return page;
1591
1592no_page_table:
1593 /*
1594 * When core dumping an enormous anonymous area that nobody
1595 * has touched so far, we don't want to allocate unnecessary pages or
1596 * page tables. Return error instead of NULL to skip handle_mm_fault,
1597 * then get_dump_page() will return NULL to leave a hole in the dump.
1598 * But we can only make this optimization where a hole would surely
1599 * be zero-filled if handle_mm_fault() actually did handle it.
1600 */
1601 if ((flags & FOLL_DUMP) &&
1602 (!vma->vm_ops || !vma->vm_ops->fault))
1603 return ERR_PTR(-EFAULT);
1604 return page;
1605}
1606
1607static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1608{
1609 return stack_guard_page_start(vma, addr) ||
1610 stack_guard_page_end(vma, addr+PAGE_SIZE);
1611}
1612
1613/**
1614 * __get_user_pages() - pin user pages in memory
1615 * @tsk: task_struct of target task
1616 * @mm: mm_struct of target mm
1617 * @start: starting user address
1618 * @nr_pages: number of pages from start to pin
1619 * @gup_flags: flags modifying pin behaviour
1620 * @pages: array that receives pointers to the pages pinned.
1621 * Should be at least nr_pages long. Or NULL, if caller
1622 * only intends to ensure the pages are faulted in.
1623 * @vmas: array of pointers to vmas corresponding to each page.
1624 * Or NULL if the caller does not require them.
1625 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1626 *
1627 * Returns number of pages pinned. This may be fewer than the number
1628 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1629 * were pinned, returns -errno. Each page returned must be released
1630 * with a put_page() call when it is finished with. vmas will only
1631 * remain valid while mmap_sem is held.
1632 *
1633 * Must be called with mmap_sem held for read or write.
1634 *
1635 * __get_user_pages walks a process's page tables and takes a reference to
1636 * each struct page that each user address corresponds to at a given
1637 * instant. That is, it takes the page that would be accessed if a user
1638 * thread accesses the given user virtual address at that instant.
1639 *
1640 * This does not guarantee that the page exists in the user mappings when
1641 * __get_user_pages returns, and there may even be a completely different
1642 * page there in some cases (eg. if mmapped pagecache has been invalidated
1643 * and subsequently re faulted). However it does guarantee that the page
1644 * won't be freed completely. And mostly callers simply care that the page
1645 * contains data that was valid *at some point in time*. Typically, an IO
1646 * or similar operation cannot guarantee anything stronger anyway because
1647 * locks can't be held over the syscall boundary.
1648 *
1649 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1650 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1651 * appropriate) must be called after the page is finished with, and
1652 * before put_page is called.
1653 *
1654 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1655 * or mmap_sem contention, and if waiting is needed to pin all pages,
1656 * *@nonblocking will be set to 0.
1657 *
1658 * In most cases, get_user_pages or get_user_pages_fast should be used
1659 * instead of __get_user_pages. __get_user_pages should be used only if
1660 * you need some special @gup_flags.
1661 */
1662int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1663 unsigned long start, int nr_pages, unsigned int gup_flags,
1664 struct page **pages, struct vm_area_struct **vmas,
1665 int *nonblocking)
1666{
1667 int i;
1668 unsigned long vm_flags;
1669
1670 if (nr_pages <= 0)
1671 return 0;
1672
1673 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1674
1675 /*
1676 * Require read or write permissions.
1677 * If FOLL_FORCE is set, we only require the "MAY" flags.
1678 */
1679 vm_flags = (gup_flags & FOLL_WRITE) ?
1680 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1681 vm_flags &= (gup_flags & FOLL_FORCE) ?
1682 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1683 i = 0;
1684
1685 do {
1686 struct vm_area_struct *vma;
1687
1688 vma = find_extend_vma(mm, start);
1689 if (!vma && in_gate_area(mm, start)) {
1690 unsigned long pg = start & PAGE_MASK;
1691 pgd_t *pgd;
1692 pud_t *pud;
1693 pmd_t *pmd;
1694 pte_t *pte;
1695
1696 /* user gate pages are read-only */
1697 if (gup_flags & FOLL_WRITE)
1698 return i ? : -EFAULT;
1699 if (pg > TASK_SIZE)
1700 pgd = pgd_offset_k(pg);
1701 else
1702 pgd = pgd_offset_gate(mm, pg);
1703 BUG_ON(pgd_none(*pgd));
1704 pud = pud_offset(pgd, pg);
1705 BUG_ON(pud_none(*pud));
1706 pmd = pmd_offset(pud, pg);
1707 if (pmd_none(*pmd))
1708 return i ? : -EFAULT;
1709 VM_BUG_ON(pmd_trans_huge(*pmd));
1710 pte = pte_offset_map(pmd, pg);
1711 if (pte_none(*pte)) {
1712 pte_unmap(pte);
1713 return i ? : -EFAULT;
1714 }
1715 vma = get_gate_vma(mm);
1716 if (pages) {
1717 struct page *page;
1718
1719 page = vm_normal_page(vma, start, *pte);
1720 if (!page) {
1721 if (!(gup_flags & FOLL_DUMP) &&
1722 is_zero_pfn(pte_pfn(*pte)))
1723 page = pte_page(*pte);
1724 else {
1725 pte_unmap(pte);
1726 return i ? : -EFAULT;
1727 }
1728 }
1729 pages[i] = page;
1730 get_page(page);
1731 }
1732 pte_unmap(pte);
1733 goto next_page;
1734 }
1735
1736 if (!vma ||
1737 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1738 !(vm_flags & vma->vm_flags))
1739 return i ? : -EFAULT;
1740
1741 if (is_vm_hugetlb_page(vma)) {
1742 i = follow_hugetlb_page(mm, vma, pages, vmas,
1743 &start, &nr_pages, i, gup_flags);
1744 continue;
1745 }
1746
1747 do {
1748 struct page *page;
1749 unsigned int foll_flags = gup_flags;
1750
1751 /*
1752 * If we have a pending SIGKILL, don't keep faulting
1753 * pages and potentially allocating memory.
1754 */
1755 if (unlikely(fatal_signal_pending(current)))
1756 return i ? i : -ERESTARTSYS;
1757
1758 cond_resched();
1759 while (!(page = follow_page(vma, start, foll_flags))) {
1760 int ret;
1761 unsigned int fault_flags = 0;
1762
1763 /* For mlock, just skip the stack guard page. */
1764 if (foll_flags & FOLL_MLOCK) {
1765 if (stack_guard_page(vma, start))
1766 goto next_page;
1767 }
1768 if (foll_flags & FOLL_WRITE)
1769 fault_flags |= FAULT_FLAG_WRITE;
1770 if (nonblocking)
1771 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1772 if (foll_flags & FOLL_NOWAIT)
1773 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1774
1775 ret = handle_mm_fault(mm, vma, start,
1776 fault_flags);
1777
1778 if (ret & VM_FAULT_ERROR) {
1779 if (ret & VM_FAULT_OOM)
1780 return i ? i : -ENOMEM;
1781 if (ret & (VM_FAULT_HWPOISON |
1782 VM_FAULT_HWPOISON_LARGE)) {
1783 if (i)
1784 return i;
1785 else if (gup_flags & FOLL_HWPOISON)
1786 return -EHWPOISON;
1787 else
1788 return -EFAULT;
1789 }
1790 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1791 return i ? i : -EFAULT;
1792 BUG();
1793 }
1794
1795 if (tsk) {
1796 if (ret & VM_FAULT_MAJOR)
1797 tsk->maj_flt++;
1798 else
1799 tsk->min_flt++;
1800 }
1801
1802 if (ret & VM_FAULT_RETRY) {
1803 if (nonblocking)
1804 *nonblocking = 0;
1805 return i;
1806 }
1807
1808 /*
1809 * The VM_FAULT_WRITE bit tells us that
1810 * do_wp_page has broken COW when necessary,
1811 * even if maybe_mkwrite decided not to set
1812 * pte_write. We can thus safely do subsequent
1813 * page lookups as if they were reads. But only
1814 * do so when looping for pte_write is futile:
1815 * in some cases userspace may also be wanting
1816 * to write to the gotten user page, which a
1817 * read fault here might prevent (a readonly
1818 * page might get reCOWed by userspace write).
1819 */
1820 if ((ret & VM_FAULT_WRITE) &&
1821 !(vma->vm_flags & VM_WRITE))
1822 foll_flags &= ~FOLL_WRITE;
1823
1824 cond_resched();
1825 }
1826 if (IS_ERR(page))
1827 return i ? i : PTR_ERR(page);
1828 if (pages) {
1829 pages[i] = page;
1830
1831 flush_anon_page(vma, page, start);
1832 flush_dcache_page(page);
1833 }
1834next_page:
1835 if (vmas)
1836 vmas[i] = vma;
1837 i++;
1838 start += PAGE_SIZE;
1839 nr_pages--;
1840 } while (nr_pages && start < vma->vm_end);
1841 } while (nr_pages);
1842 return i;
1843}
1844EXPORT_SYMBOL(__get_user_pages);
1845
1846/*
1847 * fixup_user_fault() - manually resolve a user page fault
1848 * @tsk: the task_struct to use for page fault accounting, or
1849 * NULL if faults are not to be recorded.
1850 * @mm: mm_struct of target mm
1851 * @address: user address
1852 * @fault_flags:flags to pass down to handle_mm_fault()
1853 *
1854 * This is meant to be called in the specific scenario where for locking reasons
1855 * we try to access user memory in atomic context (within a pagefault_disable()
1856 * section), this returns -EFAULT, and we want to resolve the user fault before
1857 * trying again.
1858 *
1859 * Typically this is meant to be used by the futex code.
1860 *
1861 * The main difference with get_user_pages() is that this function will
1862 * unconditionally call handle_mm_fault() which will in turn perform all the
1863 * necessary SW fixup of the dirty and young bits in the PTE, while
1864 * handle_mm_fault() only guarantees to update these in the struct page.
1865 *
1866 * This is important for some architectures where those bits also gate the
1867 * access permission to the page because they are maintained in software. On
1868 * such architectures, gup() will not be enough to make a subsequent access
1869 * succeed.
1870 *
1871 * This should be called with the mm_sem held for read.
1872 */
1873int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1874 unsigned long address, unsigned int fault_flags)
1875{
1876 struct vm_area_struct *vma;
1877 vm_flags_t vm_flags;
1878 int ret;
1879
1880 vma = find_extend_vma(mm, address);
1881 if (!vma || address < vma->vm_start)
1882 return -EFAULT;
1883
1884 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1885 if (!(vm_flags & vma->vm_flags))
1886 return -EFAULT;
1887
1888 ret = handle_mm_fault(mm, vma, address, fault_flags);
1889 if (ret & VM_FAULT_ERROR) {
1890 if (ret & VM_FAULT_OOM)
1891 return -ENOMEM;
1892 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1893 return -EHWPOISON;
1894 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1895 return -EFAULT;
1896 BUG();
1897 }
1898 if (tsk) {
1899 if (ret & VM_FAULT_MAJOR)
1900 tsk->maj_flt++;
1901 else
1902 tsk->min_flt++;
1903 }
1904 return 0;
1905}
1906
1907/*
1908 * get_user_pages() - pin user pages in memory
1909 * @tsk: the task_struct to use for page fault accounting, or
1910 * NULL if faults are not to be recorded.
1911 * @mm: mm_struct of target mm
1912 * @start: starting user address
1913 * @nr_pages: number of pages from start to pin
1914 * @write: whether pages will be written to by the caller
1915 * @force: whether to force write access even if user mapping is
1916 * readonly. This will result in the page being COWed even
1917 * in MAP_SHARED mappings. You do not want this.
1918 * @pages: array that receives pointers to the pages pinned.
1919 * Should be at least nr_pages long. Or NULL, if caller
1920 * only intends to ensure the pages are faulted in.
1921 * @vmas: array of pointers to vmas corresponding to each page.
1922 * Or NULL if the caller does not require them.
1923 *
1924 * Returns number of pages pinned. This may be fewer than the number
1925 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1926 * were pinned, returns -errno. Each page returned must be released
1927 * with a put_page() call when it is finished with. vmas will only
1928 * remain valid while mmap_sem is held.
1929 *
1930 * Must be called with mmap_sem held for read or write.
1931 *
1932 * get_user_pages walks a process's page tables and takes a reference to
1933 * each struct page that each user address corresponds to at a given
1934 * instant. That is, it takes the page that would be accessed if a user
1935 * thread accesses the given user virtual address at that instant.
1936 *
1937 * This does not guarantee that the page exists in the user mappings when
1938 * get_user_pages returns, and there may even be a completely different
1939 * page there in some cases (eg. if mmapped pagecache has been invalidated
1940 * and subsequently re faulted). However it does guarantee that the page
1941 * won't be freed completely. And mostly callers simply care that the page
1942 * contains data that was valid *at some point in time*. Typically, an IO
1943 * or similar operation cannot guarantee anything stronger anyway because
1944 * locks can't be held over the syscall boundary.
1945 *
1946 * If write=0, the page must not be written to. If the page is written to,
1947 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1948 * after the page is finished with, and before put_page is called.
1949 *
1950 * get_user_pages is typically used for fewer-copy IO operations, to get a
1951 * handle on the memory by some means other than accesses via the user virtual
1952 * addresses. The pages may be submitted for DMA to devices or accessed via
1953 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1954 * use the correct cache flushing APIs.
1955 *
1956 * See also get_user_pages_fast, for performance critical applications.
1957 */
1958int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1959 unsigned long start, int nr_pages, int write, int force,
1960 struct page **pages, struct vm_area_struct **vmas)
1961{
1962 int flags = FOLL_TOUCH;
1963
1964 if (pages)
1965 flags |= FOLL_GET;
1966 if (write)
1967 flags |= FOLL_WRITE;
1968 if (force)
1969 flags |= FOLL_FORCE;
1970
1971 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1972 NULL);
1973}
1974EXPORT_SYMBOL(get_user_pages);
1975
1976/**
1977 * get_dump_page() - pin user page in memory while writing it to core dump
1978 * @addr: user address
1979 *
1980 * Returns struct page pointer of user page pinned for dump,
1981 * to be freed afterwards by page_cache_release() or put_page().
1982 *
1983 * Returns NULL on any kind of failure - a hole must then be inserted into
1984 * the corefile, to preserve alignment with its headers; and also returns
1985 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1986 * allowing a hole to be left in the corefile to save diskspace.
1987 *
1988 * Called without mmap_sem, but after all other threads have been killed.
1989 */
1990#ifdef CONFIG_ELF_CORE
1991struct page *get_dump_page(unsigned long addr)
1992{
1993 struct vm_area_struct *vma;
1994 struct page *page;
1995
1996 if (__get_user_pages(current, current->mm, addr, 1,
1997 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1998 NULL) < 1)
1999 return NULL;
2000 flush_cache_page(vma, addr, page_to_pfn(page));
2001 return page;
2002}
2003#endif /* CONFIG_ELF_CORE */
2004
2005pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2006 spinlock_t **ptl)
2007{
2008 pgd_t * pgd = pgd_offset(mm, addr);
2009 pud_t * pud = pud_alloc(mm, pgd, addr);
2010 if (pud) {
2011 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2012 if (pmd) {
2013 VM_BUG_ON(pmd_trans_huge(*pmd));
2014 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2015 }
2016 }
2017 return NULL;
2018}
2019
2020/*
2021 * This is the old fallback for page remapping.
2022 *
2023 * For historical reasons, it only allows reserved pages. Only
2024 * old drivers should use this, and they needed to mark their
2025 * pages reserved for the old functions anyway.
2026 */
2027static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2028 struct page *page, pgprot_t prot)
2029{
2030 struct mm_struct *mm = vma->vm_mm;
2031 int retval;
2032 pte_t *pte;
2033 spinlock_t *ptl;
2034
2035 retval = -EINVAL;
2036 if (PageAnon(page))
2037 goto out;
2038 retval = -ENOMEM;
2039 flush_dcache_page(page);
2040 pte = get_locked_pte(mm, addr, &ptl);
2041 if (!pte)
2042 goto out;
2043 retval = -EBUSY;
2044 if (!pte_none(*pte))
2045 goto out_unlock;
2046
2047 /* Ok, finally just insert the thing.. */
2048 get_page(page);
2049 inc_mm_counter_fast(mm, MM_FILEPAGES);
2050 page_add_file_rmap(page);
2051 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2052
2053 retval = 0;
2054 pte_unmap_unlock(pte, ptl);
2055 return retval;
2056out_unlock:
2057 pte_unmap_unlock(pte, ptl);
2058out:
2059 return retval;
2060}
2061
2062/**
2063 * vm_insert_page - insert single page into user vma
2064 * @vma: user vma to map to
2065 * @addr: target user address of this page
2066 * @page: source kernel page
2067 *
2068 * This allows drivers to insert individual pages they've allocated
2069 * into a user vma.
2070 *
2071 * The page has to be a nice clean _individual_ kernel allocation.
2072 * If you allocate a compound page, you need to have marked it as
2073 * such (__GFP_COMP), or manually just split the page up yourself
2074 * (see split_page()).
2075 *
2076 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2077 * took an arbitrary page protection parameter. This doesn't allow
2078 * that. Your vma protection will have to be set up correctly, which
2079 * means that if you want a shared writable mapping, you'd better
2080 * ask for a shared writable mapping!
2081 *
2082 * The page does not need to be reserved.
2083 */
2084int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2085 struct page *page)
2086{
2087 if (addr < vma->vm_start || addr >= vma->vm_end)
2088 return -EFAULT;
2089 if (!page_count(page))
2090 return -EINVAL;
2091 vma->vm_flags |= VM_INSERTPAGE;
2092 return insert_page(vma, addr, page, vma->vm_page_prot);
2093}
2094EXPORT_SYMBOL(vm_insert_page);
2095
2096static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2097 unsigned long pfn, pgprot_t prot)
2098{
2099 struct mm_struct *mm = vma->vm_mm;
2100 int retval;
2101 pte_t *pte, entry;
2102 spinlock_t *ptl;
2103
2104 retval = -ENOMEM;
2105 pte = get_locked_pte(mm, addr, &ptl);
2106 if (!pte)
2107 goto out;
2108 retval = -EBUSY;
2109 if (!pte_none(*pte))
2110 goto out_unlock;
2111
2112 /* Ok, finally just insert the thing.. */
2113 entry = pte_mkspecial(pfn_pte(pfn, prot));
2114 set_pte_at(mm, addr, pte, entry);
2115 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2116
2117 retval = 0;
2118out_unlock:
2119 pte_unmap_unlock(pte, ptl);
2120out:
2121 return retval;
2122}
2123
2124/**
2125 * vm_insert_pfn - insert single pfn into user vma
2126 * @vma: user vma to map to
2127 * @addr: target user address of this page
2128 * @pfn: source kernel pfn
2129 *
2130 * Similar to vm_inert_page, this allows drivers to insert individual pages
2131 * they've allocated into a user vma. Same comments apply.
2132 *
2133 * This function should only be called from a vm_ops->fault handler, and
2134 * in that case the handler should return NULL.
2135 *
2136 * vma cannot be a COW mapping.
2137 *
2138 * As this is called only for pages that do not currently exist, we
2139 * do not need to flush old virtual caches or the TLB.
2140 */
2141int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2142 unsigned long pfn)
2143{
2144 int ret;
2145 pgprot_t pgprot = vma->vm_page_prot;
2146 /*
2147 * Technically, architectures with pte_special can avoid all these
2148 * restrictions (same for remap_pfn_range). However we would like
2149 * consistency in testing and feature parity among all, so we should
2150 * try to keep these invariants in place for everybody.
2151 */
2152 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2153 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2154 (VM_PFNMAP|VM_MIXEDMAP));
2155 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2156 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2157
2158 if (addr < vma->vm_start || addr >= vma->vm_end)
2159 return -EFAULT;
2160 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2161 return -EINVAL;
2162
2163 ret = insert_pfn(vma, addr, pfn, pgprot);
2164
2165 if (ret)
2166 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2167
2168 return ret;
2169}
2170EXPORT_SYMBOL(vm_insert_pfn);
2171
2172int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2173 unsigned long pfn)
2174{
2175 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2176
2177 if (addr < vma->vm_start || addr >= vma->vm_end)
2178 return -EFAULT;
2179
2180 /*
2181 * If we don't have pte special, then we have to use the pfn_valid()
2182 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2183 * refcount the page if pfn_valid is true (hence insert_page rather
2184 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2185 * without pte special, it would there be refcounted as a normal page.
2186 */
2187 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2188 struct page *page;
2189
2190 page = pfn_to_page(pfn);
2191 return insert_page(vma, addr, page, vma->vm_page_prot);
2192 }
2193 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2194}
2195EXPORT_SYMBOL(vm_insert_mixed);
2196
2197/*
2198 * maps a range of physical memory into the requested pages. the old
2199 * mappings are removed. any references to nonexistent pages results
2200 * in null mappings (currently treated as "copy-on-access")
2201 */
2202static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205{
2206 pte_t *pte;
2207 spinlock_t *ptl;
2208
2209 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2210 if (!pte)
2211 return -ENOMEM;
2212 arch_enter_lazy_mmu_mode();
2213 do {
2214 BUG_ON(!pte_none(*pte));
2215 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2216 pfn++;
2217 } while (pte++, addr += PAGE_SIZE, addr != end);
2218 arch_leave_lazy_mmu_mode();
2219 pte_unmap_unlock(pte - 1, ptl);
2220 return 0;
2221}
2222
2223static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2224 unsigned long addr, unsigned long end,
2225 unsigned long pfn, pgprot_t prot)
2226{
2227 pmd_t *pmd;
2228 unsigned long next;
2229
2230 pfn -= addr >> PAGE_SHIFT;
2231 pmd = pmd_alloc(mm, pud, addr);
2232 if (!pmd)
2233 return -ENOMEM;
2234 VM_BUG_ON(pmd_trans_huge(*pmd));
2235 do {
2236 next = pmd_addr_end(addr, end);
2237 if (remap_pte_range(mm, pmd, addr, next,
2238 pfn + (addr >> PAGE_SHIFT), prot))
2239 return -ENOMEM;
2240 } while (pmd++, addr = next, addr != end);
2241 return 0;
2242}
2243
2244static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2245 unsigned long addr, unsigned long end,
2246 unsigned long pfn, pgprot_t prot)
2247{
2248 pud_t *pud;
2249 unsigned long next;
2250
2251 pfn -= addr >> PAGE_SHIFT;
2252 pud = pud_alloc(mm, pgd, addr);
2253 if (!pud)
2254 return -ENOMEM;
2255 do {
2256 next = pud_addr_end(addr, end);
2257 if (remap_pmd_range(mm, pud, addr, next,
2258 pfn + (addr >> PAGE_SHIFT), prot))
2259 return -ENOMEM;
2260 } while (pud++, addr = next, addr != end);
2261 return 0;
2262}
2263
2264/**
2265 * remap_pfn_range - remap kernel memory to userspace
2266 * @vma: user vma to map to
2267 * @addr: target user address to start at
2268 * @pfn: physical address of kernel memory
2269 * @size: size of map area
2270 * @prot: page protection flags for this mapping
2271 *
2272 * Note: this is only safe if the mm semaphore is held when called.
2273 */
2274int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2275 unsigned long pfn, unsigned long size, pgprot_t prot)
2276{
2277 pgd_t *pgd;
2278 unsigned long next;
2279 unsigned long end = addr + PAGE_ALIGN(size);
2280 struct mm_struct *mm = vma->vm_mm;
2281 int err;
2282
2283 /*
2284 * Physically remapped pages are special. Tell the
2285 * rest of the world about it:
2286 * VM_IO tells people not to look at these pages
2287 * (accesses can have side effects).
2288 * VM_RESERVED is specified all over the place, because
2289 * in 2.4 it kept swapout's vma scan off this vma; but
2290 * in 2.6 the LRU scan won't even find its pages, so this
2291 * flag means no more than count its pages in reserved_vm,
2292 * and omit it from core dump, even when VM_IO turned off.
2293 * VM_PFNMAP tells the core MM that the base pages are just
2294 * raw PFN mappings, and do not have a "struct page" associated
2295 * with them.
2296 *
2297 * There's a horrible special case to handle copy-on-write
2298 * behaviour that some programs depend on. We mark the "original"
2299 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2300 */
2301 if (addr == vma->vm_start && end == vma->vm_end) {
2302 vma->vm_pgoff = pfn;
2303 vma->vm_flags |= VM_PFN_AT_MMAP;
2304 } else if (is_cow_mapping(vma->vm_flags))
2305 return -EINVAL;
2306
2307 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2308
2309 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2310 if (err) {
2311 /*
2312 * To indicate that track_pfn related cleanup is not
2313 * needed from higher level routine calling unmap_vmas
2314 */
2315 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2316 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2317 return -EINVAL;
2318 }
2319
2320 BUG_ON(addr >= end);
2321 pfn -= addr >> PAGE_SHIFT;
2322 pgd = pgd_offset(mm, addr);
2323 flush_cache_range(vma, addr, end);
2324 do {
2325 next = pgd_addr_end(addr, end);
2326 err = remap_pud_range(mm, pgd, addr, next,
2327 pfn + (addr >> PAGE_SHIFT), prot);
2328 if (err)
2329 break;
2330 } while (pgd++, addr = next, addr != end);
2331
2332 if (err)
2333 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2334
2335 return err;
2336}
2337EXPORT_SYMBOL(remap_pfn_range);
2338
2339/**
2340 * vm_iomap_memory - remap memory to userspace
2341 * @vma: user vma to map to
2342 * @start: start of area
2343 * @len: size of area
2344 *
2345 * This is a simplified io_remap_pfn_range() for common driver use. The
2346 * driver just needs to give us the physical memory range to be mapped,
2347 * we'll figure out the rest from the vma information.
2348 *
2349 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2350 * whatever write-combining details or similar.
2351 */
2352int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2353{
2354 unsigned long vm_len, pfn, pages;
2355
2356 /* Check that the physical memory area passed in looks valid */
2357 if (start + len < start)
2358 return -EINVAL;
2359 /*
2360 * You *really* shouldn't map things that aren't page-aligned,
2361 * but we've historically allowed it because IO memory might
2362 * just have smaller alignment.
2363 */
2364 len += start & ~PAGE_MASK;
2365 pfn = start >> PAGE_SHIFT;
2366 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2367 if (pfn + pages < pfn)
2368 return -EINVAL;
2369
2370 /* We start the mapping 'vm_pgoff' pages into the area */
2371 if (vma->vm_pgoff > pages)
2372 return -EINVAL;
2373 pfn += vma->vm_pgoff;
2374 pages -= vma->vm_pgoff;
2375
2376 /* Can we fit all of the mapping? */
2377 vm_len = vma->vm_end - vma->vm_start;
2378 if (vm_len >> PAGE_SHIFT > pages)
2379 return -EINVAL;
2380
2381 /* Ok, let it rip */
2382 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2383}
2384EXPORT_SYMBOL(vm_iomap_memory);
2385
2386static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2387 unsigned long addr, unsigned long end,
2388 pte_fn_t fn, void *data)
2389{
2390 pte_t *pte;
2391 int err;
2392 pgtable_t token;
2393 spinlock_t *uninitialized_var(ptl);
2394
2395 pte = (mm == &init_mm) ?
2396 pte_alloc_kernel(pmd, addr) :
2397 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2398 if (!pte)
2399 return -ENOMEM;
2400
2401 BUG_ON(pmd_huge(*pmd));
2402
2403 arch_enter_lazy_mmu_mode();
2404
2405 token = pmd_pgtable(*pmd);
2406
2407 do {
2408 err = fn(pte++, token, addr, data);
2409 if (err)
2410 break;
2411 } while (addr += PAGE_SIZE, addr != end);
2412
2413 arch_leave_lazy_mmu_mode();
2414
2415 if (mm != &init_mm)
2416 pte_unmap_unlock(pte-1, ptl);
2417 return err;
2418}
2419
2420static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2421 unsigned long addr, unsigned long end,
2422 pte_fn_t fn, void *data)
2423{
2424 pmd_t *pmd;
2425 unsigned long next;
2426 int err;
2427
2428 BUG_ON(pud_huge(*pud));
2429
2430 pmd = pmd_alloc(mm, pud, addr);
2431 if (!pmd)
2432 return -ENOMEM;
2433 do {
2434 next = pmd_addr_end(addr, end);
2435 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2436 if (err)
2437 break;
2438 } while (pmd++, addr = next, addr != end);
2439 return err;
2440}
2441
2442static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2443 unsigned long addr, unsigned long end,
2444 pte_fn_t fn, void *data)
2445{
2446 pud_t *pud;
2447 unsigned long next;
2448 int err;
2449
2450 pud = pud_alloc(mm, pgd, addr);
2451 if (!pud)
2452 return -ENOMEM;
2453 do {
2454 next = pud_addr_end(addr, end);
2455 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2456 if (err)
2457 break;
2458 } while (pud++, addr = next, addr != end);
2459 return err;
2460}
2461
2462/*
2463 * Scan a region of virtual memory, filling in page tables as necessary
2464 * and calling a provided function on each leaf page table.
2465 */
2466int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2467 unsigned long size, pte_fn_t fn, void *data)
2468{
2469 pgd_t *pgd;
2470 unsigned long next;
2471 unsigned long end = addr + size;
2472 int err;
2473
2474 BUG_ON(addr >= end);
2475 pgd = pgd_offset(mm, addr);
2476 do {
2477 next = pgd_addr_end(addr, end);
2478 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2479 if (err)
2480 break;
2481 } while (pgd++, addr = next, addr != end);
2482
2483 return err;
2484}
2485EXPORT_SYMBOL_GPL(apply_to_page_range);
2486
2487/*
2488 * handle_pte_fault chooses page fault handler according to an entry
2489 * which was read non-atomically. Before making any commitment, on
2490 * those architectures or configurations (e.g. i386 with PAE) which
2491 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2492 * must check under lock before unmapping the pte and proceeding
2493 * (but do_wp_page is only called after already making such a check;
2494 * and do_anonymous_page can safely check later on).
2495 */
2496static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2497 pte_t *page_table, pte_t orig_pte)
2498{
2499 int same = 1;
2500#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2501 if (sizeof(pte_t) > sizeof(unsigned long)) {
2502 spinlock_t *ptl = pte_lockptr(mm, pmd);
2503 spin_lock(ptl);
2504 same = pte_same(*page_table, orig_pte);
2505 spin_unlock(ptl);
2506 }
2507#endif
2508 pte_unmap(page_table);
2509 return same;
2510}
2511
2512static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2513{
2514 /*
2515 * If the source page was a PFN mapping, we don't have
2516 * a "struct page" for it. We do a best-effort copy by
2517 * just copying from the original user address. If that
2518 * fails, we just zero-fill it. Live with it.
2519 */
2520 if (unlikely(!src)) {
2521 void *kaddr = kmap_atomic(dst);
2522 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2523
2524 /*
2525 * This really shouldn't fail, because the page is there
2526 * in the page tables. But it might just be unreadable,
2527 * in which case we just give up and fill the result with
2528 * zeroes.
2529 */
2530 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2531 clear_page(kaddr);
2532 kunmap_atomic(kaddr);
2533 flush_dcache_page(dst);
2534 } else
2535 copy_user_highpage(dst, src, va, vma);
2536}
2537
2538/*
2539 * This routine handles present pages, when users try to write
2540 * to a shared page. It is done by copying the page to a new address
2541 * and decrementing the shared-page counter for the old page.
2542 *
2543 * Note that this routine assumes that the protection checks have been
2544 * done by the caller (the low-level page fault routine in most cases).
2545 * Thus we can safely just mark it writable once we've done any necessary
2546 * COW.
2547 *
2548 * We also mark the page dirty at this point even though the page will
2549 * change only once the write actually happens. This avoids a few races,
2550 * and potentially makes it more efficient.
2551 *
2552 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2553 * but allow concurrent faults), with pte both mapped and locked.
2554 * We return with mmap_sem still held, but pte unmapped and unlocked.
2555 */
2556static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2557 unsigned long address, pte_t *page_table, pmd_t *pmd,
2558 spinlock_t *ptl, pte_t orig_pte)
2559 __releases(ptl)
2560{
2561 struct page *old_page, *new_page;
2562 pte_t entry;
2563 int ret = 0;
2564 int page_mkwrite = 0;
2565 struct page *dirty_page = NULL;
2566
2567 old_page = vm_normal_page(vma, address, orig_pte);
2568 if (!old_page) {
2569 /*
2570 * VM_MIXEDMAP !pfn_valid() case
2571 *
2572 * We should not cow pages in a shared writeable mapping.
2573 * Just mark the pages writable as we can't do any dirty
2574 * accounting on raw pfn maps.
2575 */
2576 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2577 (VM_WRITE|VM_SHARED))
2578 goto reuse;
2579 goto gotten;
2580 }
2581
2582 /*
2583 * Take out anonymous pages first, anonymous shared vmas are
2584 * not dirty accountable.
2585 */
2586 if (PageAnon(old_page) && !PageKsm(old_page)) {
2587 if (!trylock_page(old_page)) {
2588 page_cache_get(old_page);
2589 pte_unmap_unlock(page_table, ptl);
2590 lock_page(old_page);
2591 page_table = pte_offset_map_lock(mm, pmd, address,
2592 &ptl);
2593 if (!pte_same(*page_table, orig_pte)) {
2594 unlock_page(old_page);
2595 goto unlock;
2596 }
2597 page_cache_release(old_page);
2598 }
2599 if (reuse_swap_page(old_page)) {
2600 /*
2601 * The page is all ours. Move it to our anon_vma so
2602 * the rmap code will not search our parent or siblings.
2603 * Protected against the rmap code by the page lock.
2604 */
2605 page_move_anon_rmap(old_page, vma, address);
2606 unlock_page(old_page);
2607 goto reuse;
2608 }
2609 unlock_page(old_page);
2610 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2611 (VM_WRITE|VM_SHARED))) {
2612 /*
2613 * Only catch write-faults on shared writable pages,
2614 * read-only shared pages can get COWed by
2615 * get_user_pages(.write=1, .force=1).
2616 */
2617 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2618 struct vm_fault vmf;
2619 int tmp;
2620
2621 vmf.virtual_address = (void __user *)(address &
2622 PAGE_MASK);
2623 vmf.pgoff = old_page->index;
2624 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2625 vmf.page = old_page;
2626
2627 /*
2628 * Notify the address space that the page is about to
2629 * become writable so that it can prohibit this or wait
2630 * for the page to get into an appropriate state.
2631 *
2632 * We do this without the lock held, so that it can
2633 * sleep if it needs to.
2634 */
2635 page_cache_get(old_page);
2636 pte_unmap_unlock(page_table, ptl);
2637
2638 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2639 if (unlikely(tmp &
2640 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2641 ret = tmp;
2642 goto unwritable_page;
2643 }
2644 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2645 lock_page(old_page);
2646 if (!old_page->mapping) {
2647 ret = 0; /* retry the fault */
2648 unlock_page(old_page);
2649 goto unwritable_page;
2650 }
2651 } else
2652 VM_BUG_ON(!PageLocked(old_page));
2653
2654 /*
2655 * Since we dropped the lock we need to revalidate
2656 * the PTE as someone else may have changed it. If
2657 * they did, we just return, as we can count on the
2658 * MMU to tell us if they didn't also make it writable.
2659 */
2660 page_table = pte_offset_map_lock(mm, pmd, address,
2661 &ptl);
2662 if (!pte_same(*page_table, orig_pte)) {
2663 unlock_page(old_page);
2664 goto unlock;
2665 }
2666
2667 page_mkwrite = 1;
2668 }
2669 dirty_page = old_page;
2670 get_page(dirty_page);
2671
2672reuse:
2673 flush_cache_page(vma, address, pte_pfn(orig_pte));
2674 entry = pte_mkyoung(orig_pte);
2675 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2676 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2677 update_mmu_cache(vma, address, page_table);
2678 pte_unmap_unlock(page_table, ptl);
2679 ret |= VM_FAULT_WRITE;
2680
2681 if (!dirty_page)
2682 return ret;
2683
2684 if (!page_mkwrite) {
2685 struct address_space *mapping;
2686 int dirtied;
2687
2688 lock_page(dirty_page);
2689 dirtied = set_page_dirty(dirty_page);
2690 VM_BUG_ON(dirty_page);
2691 mapping = dirty_page->mapping;
2692 unlock_page(dirty_page);
2693
2694 if (dirtied && mapping) {
2695 /*
2696 * Some device drivers do not set page.mapping
2697 * but still dirty their pages
2698 */
2699 balance_dirty_pages_ratelimited(mapping);
2700 }
2701 }
2702
2703 put_page(dirty_page);
2704 if (page_mkwrite) {
2705 struct address_space *mapping = dirty_page->mapping;
2706
2707 set_page_dirty(dirty_page);
2708 unlock_page(dirty_page);
2709 page_cache_release(dirty_page);
2710 if (mapping) {
2711 /*
2712 * Some device drivers do not set page.mapping
2713 * but still dirty their pages
2714 */
2715 balance_dirty_pages_ratelimited(mapping);
2716 }
2717 }
2718
2719 /* file_update_time outside page_lock */
2720 if (vma->vm_file)
2721 file_update_time(vma->vm_file);
2722
2723 return ret;
2724 }
2725
2726 /*
2727 * Ok, we need to copy. Oh, well..
2728 */
2729 page_cache_get(old_page);
2730gotten:
2731 pte_unmap_unlock(page_table, ptl);
2732
2733 if (unlikely(anon_vma_prepare(vma)))
2734 goto oom;
2735
2736 if (is_zero_pfn(pte_pfn(orig_pte))) {
2737 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2738 if (!new_page)
2739 goto oom;
2740 } else {
2741 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2742 if (!new_page)
2743 goto oom;
2744 cow_user_page(new_page, old_page, address, vma);
2745 }
2746 __SetPageUptodate(new_page);
2747
2748 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2749 goto oom_free_new;
2750
2751 /*
2752 * Re-check the pte - we dropped the lock
2753 */
2754 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2755 if (likely(pte_same(*page_table, orig_pte))) {
2756 if (old_page) {
2757 if (!PageAnon(old_page)) {
2758 dec_mm_counter_fast(mm, MM_FILEPAGES);
2759 inc_mm_counter_fast(mm, MM_ANONPAGES);
2760 }
2761 } else
2762 inc_mm_counter_fast(mm, MM_ANONPAGES);
2763 flush_cache_page(vma, address, pte_pfn(orig_pte));
2764 entry = mk_pte(new_page, vma->vm_page_prot);
2765 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2766 /*
2767 * Clear the pte entry and flush it first, before updating the
2768 * pte with the new entry. This will avoid a race condition
2769 * seen in the presence of one thread doing SMC and another
2770 * thread doing COW.
2771 */
2772 ptep_clear_flush(vma, address, page_table);
2773 page_add_new_anon_rmap(new_page, vma, address);
2774 /*
2775 * We call the notify macro here because, when using secondary
2776 * mmu page tables (such as kvm shadow page tables), we want the
2777 * new page to be mapped directly into the secondary page table.
2778 */
2779 set_pte_at_notify(mm, address, page_table, entry);
2780 update_mmu_cache(vma, address, page_table);
2781 if (old_page) {
2782 /*
2783 * Only after switching the pte to the new page may
2784 * we remove the mapcount here. Otherwise another
2785 * process may come and find the rmap count decremented
2786 * before the pte is switched to the new page, and
2787 * "reuse" the old page writing into it while our pte
2788 * here still points into it and can be read by other
2789 * threads.
2790 *
2791 * The critical issue is to order this
2792 * page_remove_rmap with the ptp_clear_flush above.
2793 * Those stores are ordered by (if nothing else,)
2794 * the barrier present in the atomic_add_negative
2795 * in page_remove_rmap.
2796 *
2797 * Then the TLB flush in ptep_clear_flush ensures that
2798 * no process can access the old page before the
2799 * decremented mapcount is visible. And the old page
2800 * cannot be reused until after the decremented
2801 * mapcount is visible. So transitively, TLBs to
2802 * old page will be flushed before it can be reused.
2803 */
2804 page_remove_rmap(old_page);
2805 }
2806
2807 /* Free the old page.. */
2808 new_page = old_page;
2809 ret |= VM_FAULT_WRITE;
2810 } else
2811 mem_cgroup_uncharge_page(new_page);
2812
2813 if (new_page)
2814 page_cache_release(new_page);
2815unlock:
2816 pte_unmap_unlock(page_table, ptl);
2817 if (old_page) {
2818 /*
2819 * Don't let another task, with possibly unlocked vma,
2820 * keep the mlocked page.
2821 */
2822 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2823 lock_page(old_page); /* LRU manipulation */
2824 munlock_vma_page(old_page);
2825 unlock_page(old_page);
2826 }
2827 page_cache_release(old_page);
2828 }
2829 return ret;
2830oom_free_new:
2831 page_cache_release(new_page);
2832oom:
2833 if (old_page) {
2834 if (page_mkwrite) {
2835 unlock_page(old_page);
2836 page_cache_release(old_page);
2837 }
2838 page_cache_release(old_page);
2839 }
2840 return VM_FAULT_OOM;
2841
2842unwritable_page:
2843 page_cache_release(old_page);
2844 return ret;
2845}
2846
2847static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2848 unsigned long start_addr, unsigned long end_addr,
2849 struct zap_details *details)
2850{
2851 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2852}
2853
2854static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2855 struct zap_details *details)
2856{
2857 struct vm_area_struct *vma;
2858 struct prio_tree_iter iter;
2859 pgoff_t vba, vea, zba, zea;
2860
2861 vma_prio_tree_foreach(vma, &iter, root,
2862 details->first_index, details->last_index) {
2863
2864 vba = vma->vm_pgoff;
2865 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2866 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2867 zba = details->first_index;
2868 if (zba < vba)
2869 zba = vba;
2870 zea = details->last_index;
2871 if (zea > vea)
2872 zea = vea;
2873
2874 unmap_mapping_range_vma(vma,
2875 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2876 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2877 details);
2878 }
2879}
2880
2881static inline void unmap_mapping_range_list(struct list_head *head,
2882 struct zap_details *details)
2883{
2884 struct vm_area_struct *vma;
2885
2886 /*
2887 * In nonlinear VMAs there is no correspondence between virtual address
2888 * offset and file offset. So we must perform an exhaustive search
2889 * across *all* the pages in each nonlinear VMA, not just the pages
2890 * whose virtual address lies outside the file truncation point.
2891 */
2892 list_for_each_entry(vma, head, shared.vm_set.list) {
2893 details->nonlinear_vma = vma;
2894 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2895 }
2896}
2897
2898/**
2899 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2900 * @mapping: the address space containing mmaps to be unmapped.
2901 * @holebegin: byte in first page to unmap, relative to the start of
2902 * the underlying file. This will be rounded down to a PAGE_SIZE
2903 * boundary. Note that this is different from truncate_pagecache(), which
2904 * must keep the partial page. In contrast, we must get rid of
2905 * partial pages.
2906 * @holelen: size of prospective hole in bytes. This will be rounded
2907 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2908 * end of the file.
2909 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910 * but 0 when invalidating pagecache, don't throw away private data.
2911 */
2912void unmap_mapping_range(struct address_space *mapping,
2913 loff_t const holebegin, loff_t const holelen, int even_cows)
2914{
2915 struct zap_details details;
2916 pgoff_t hba = holebegin >> PAGE_SHIFT;
2917 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2918
2919 /* Check for overflow. */
2920 if (sizeof(holelen) > sizeof(hlen)) {
2921 long long holeend =
2922 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2923 if (holeend & ~(long long)ULONG_MAX)
2924 hlen = ULONG_MAX - hba + 1;
2925 }
2926
2927 details.check_mapping = even_cows? NULL: mapping;
2928 details.nonlinear_vma = NULL;
2929 details.first_index = hba;
2930 details.last_index = hba + hlen - 1;
2931 if (details.last_index < details.first_index)
2932 details.last_index = ULONG_MAX;
2933
2934
2935 mutex_lock(&mapping->i_mmap_mutex);
2936 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2937 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2938 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2939 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2940 mutex_unlock(&mapping->i_mmap_mutex);
2941}
2942EXPORT_SYMBOL(unmap_mapping_range);
2943
2944/*
2945 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2946 * but allow concurrent faults), and pte mapped but not yet locked.
2947 * We return with mmap_sem still held, but pte unmapped and unlocked.
2948 */
2949static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2950 unsigned long address, pte_t *page_table, pmd_t *pmd,
2951 unsigned int flags, pte_t orig_pte)
2952{
2953 spinlock_t *ptl;
2954 struct page *page, *swapcache = NULL;
2955 swp_entry_t entry;
2956 pte_t pte;
2957 int locked;
2958 struct mem_cgroup *ptr;
2959 int exclusive = 0;
2960 int ret = 0;
2961
2962 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2963 goto out;
2964
2965 entry = pte_to_swp_entry(orig_pte);
2966 if (unlikely(non_swap_entry(entry))) {
2967 if (is_migration_entry(entry)) {
2968 migration_entry_wait(mm, pmd, address);
2969 } else if (is_hwpoison_entry(entry)) {
2970 ret = VM_FAULT_HWPOISON;
2971 } else {
2972 print_bad_pte(vma, address, orig_pte, NULL);
2973 ret = VM_FAULT_SIGBUS;
2974 }
2975 goto out;
2976 }
2977 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2978 page = lookup_swap_cache(entry);
2979 if (!page) {
2980 grab_swap_token(mm); /* Contend for token _before_ read-in */
2981 page = swapin_readahead(entry,
2982 GFP_HIGHUSER_MOVABLE, vma, address);
2983 if (!page) {
2984 /*
2985 * Back out if somebody else faulted in this pte
2986 * while we released the pte lock.
2987 */
2988 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2989 if (likely(pte_same(*page_table, orig_pte)))
2990 ret = VM_FAULT_OOM;
2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 goto unlock;
2993 }
2994
2995 /* Had to read the page from swap area: Major fault */
2996 ret = VM_FAULT_MAJOR;
2997 count_vm_event(PGMAJFAULT);
2998 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2999 } else if (PageHWPoison(page)) {
3000 /*
3001 * hwpoisoned dirty swapcache pages are kept for killing
3002 * owner processes (which may be unknown at hwpoison time)
3003 */
3004 ret = VM_FAULT_HWPOISON;
3005 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3006 goto out_release;
3007 }
3008
3009 locked = lock_page_or_retry(page, mm, flags);
3010 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3011 if (!locked) {
3012 ret |= VM_FAULT_RETRY;
3013 goto out_release;
3014 }
3015
3016 /*
3017 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3018 * release the swapcache from under us. The page pin, and pte_same
3019 * test below, are not enough to exclude that. Even if it is still
3020 * swapcache, we need to check that the page's swap has not changed.
3021 */
3022 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3023 goto out_page;
3024
3025 if (ksm_might_need_to_copy(page, vma, address)) {
3026 swapcache = page;
3027 page = ksm_does_need_to_copy(page, vma, address);
3028
3029 if (unlikely(!page)) {
3030 ret = VM_FAULT_OOM;
3031 page = swapcache;
3032 swapcache = NULL;
3033 goto out_page;
3034 }
3035 }
3036
3037 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3038 ret = VM_FAULT_OOM;
3039 goto out_page;
3040 }
3041
3042 /*
3043 * Back out if somebody else already faulted in this pte.
3044 */
3045 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3046 if (unlikely(!pte_same(*page_table, orig_pte)))
3047 goto out_nomap;
3048
3049 if (unlikely(!PageUptodate(page))) {
3050 ret = VM_FAULT_SIGBUS;
3051 goto out_nomap;
3052 }
3053
3054 /*
3055 * The page isn't present yet, go ahead with the fault.
3056 *
3057 * Be careful about the sequence of operations here.
3058 * To get its accounting right, reuse_swap_page() must be called
3059 * while the page is counted on swap but not yet in mapcount i.e.
3060 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3061 * must be called after the swap_free(), or it will never succeed.
3062 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3063 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3064 * in page->private. In this case, a record in swap_cgroup is silently
3065 * discarded at swap_free().
3066 */
3067
3068 inc_mm_counter_fast(mm, MM_ANONPAGES);
3069 dec_mm_counter_fast(mm, MM_SWAPENTS);
3070 pte = mk_pte(page, vma->vm_page_prot);
3071 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3072 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3073 flags &= ~FAULT_FLAG_WRITE;
3074 ret |= VM_FAULT_WRITE;
3075 exclusive = 1;
3076 }
3077 flush_icache_page(vma, page);
3078 set_pte_at(mm, address, page_table, pte);
3079 do_page_add_anon_rmap(page, vma, address, exclusive);
3080 /* It's better to call commit-charge after rmap is established */
3081 mem_cgroup_commit_charge_swapin(page, ptr);
3082
3083 swap_free(entry);
3084 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3085 try_to_free_swap(page);
3086 unlock_page(page);
3087 if (swapcache) {
3088 /*
3089 * Hold the lock to avoid the swap entry to be reused
3090 * until we take the PT lock for the pte_same() check
3091 * (to avoid false positives from pte_same). For
3092 * further safety release the lock after the swap_free
3093 * so that the swap count won't change under a
3094 * parallel locked swapcache.
3095 */
3096 unlock_page(swapcache);
3097 page_cache_release(swapcache);
3098 }
3099
3100 if (flags & FAULT_FLAG_WRITE) {
3101 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3102 if (ret & VM_FAULT_ERROR)
3103 ret &= VM_FAULT_ERROR;
3104 goto out;
3105 }
3106
3107 /* No need to invalidate - it was non-present before */
3108 update_mmu_cache(vma, address, page_table);
3109unlock:
3110 pte_unmap_unlock(page_table, ptl);
3111out:
3112 return ret;
3113out_nomap:
3114 mem_cgroup_cancel_charge_swapin(ptr);
3115 pte_unmap_unlock(page_table, ptl);
3116out_page:
3117 unlock_page(page);
3118out_release:
3119 page_cache_release(page);
3120 if (swapcache) {
3121 unlock_page(swapcache);
3122 page_cache_release(swapcache);
3123 }
3124 return ret;
3125}
3126
3127/*
3128 * This is like a special single-page "expand_{down|up}wards()",
3129 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3130 * doesn't hit another vma.
3131 */
3132static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3133{
3134 address &= PAGE_MASK;
3135 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3136 struct vm_area_struct *prev = vma->vm_prev;
3137
3138 /*
3139 * Is there a mapping abutting this one below?
3140 *
3141 * That's only ok if it's the same stack mapping
3142 * that has gotten split..
3143 */
3144 if (prev && prev->vm_end == address)
3145 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3146
3147 return expand_downwards(vma, address - PAGE_SIZE);
3148 }
3149 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3150 struct vm_area_struct *next = vma->vm_next;
3151
3152 /* As VM_GROWSDOWN but s/below/above/ */
3153 if (next && next->vm_start == address + PAGE_SIZE)
3154 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3155
3156 return expand_upwards(vma, address + PAGE_SIZE);
3157 }
3158 return 0;
3159}
3160
3161/*
3162 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3163 * but allow concurrent faults), and pte mapped but not yet locked.
3164 * We return with mmap_sem still held, but pte unmapped and unlocked.
3165 */
3166static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3167 unsigned long address, pte_t *page_table, pmd_t *pmd,
3168 unsigned int flags)
3169{
3170 struct page *page;
3171 spinlock_t *ptl;
3172 pte_t entry;
3173
3174 pte_unmap(page_table);
3175
3176 /*Fix for HUB: CVE-2015-3288*/
3177 /* File mapping without ->vm_ops ? */
3178 if (vma->vm_flags & VM_SHARED)
3179 return VM_FAULT_SIGBUS;
3180
3181 /* Check if we need to add a guard page to the stack */
3182 if (check_stack_guard_page(vma, address) < 0)
3183 return VM_FAULT_SIGSEGV;
3184
3185 /* Use the zero-page for reads */
3186 if (!(flags & FAULT_FLAG_WRITE)) {
3187 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3188 vma->vm_page_prot));
3189 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3190 if (!pte_none(*page_table))
3191 goto unlock;
3192 goto setpte;
3193 }
3194
3195 /* Allocate our own private page. */
3196 if (unlikely(anon_vma_prepare(vma)))
3197 goto oom;
3198 page = alloc_zeroed_user_highpage_movable(vma, address);
3199 if (!page)
3200 goto oom;
3201 __SetPageUptodate(page);
3202
3203 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3204 goto oom_free_page;
3205
3206 entry = mk_pte(page, vma->vm_page_prot);
3207 if (vma->vm_flags & VM_WRITE)
3208 entry = pte_mkwrite(pte_mkdirty(entry));
3209
3210 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3211 if (!pte_none(*page_table))
3212 goto release;
3213
3214 inc_mm_counter_fast(mm, MM_ANONPAGES);
3215 page_add_new_anon_rmap(page, vma, address);
3216setpte:
3217 set_pte_at(mm, address, page_table, entry);
3218
3219 /* No need to invalidate - it was non-present before */
3220 update_mmu_cache(vma, address, page_table);
3221unlock:
3222 pte_unmap_unlock(page_table, ptl);
3223 return 0;
3224release:
3225 mem_cgroup_uncharge_page(page);
3226 page_cache_release(page);
3227 goto unlock;
3228oom_free_page:
3229 page_cache_release(page);
3230oom:
3231 return VM_FAULT_OOM;
3232}
3233
3234/*
3235 * __do_fault() tries to create a new page mapping. It aggressively
3236 * tries to share with existing pages, but makes a separate copy if
3237 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3238 * the next page fault.
3239 *
3240 * As this is called only for pages that do not currently exist, we
3241 * do not need to flush old virtual caches or the TLB.
3242 *
3243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3244 * but allow concurrent faults), and pte neither mapped nor locked.
3245 * We return with mmap_sem still held, but pte unmapped and unlocked.
3246 */
3247static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3248 unsigned long address, pmd_t *pmd,
3249 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3250{
3251 pte_t *page_table;
3252 spinlock_t *ptl;
3253 struct page *page;
3254 struct page *cow_page;
3255 pte_t entry;
3256 int anon = 0;
3257 struct page *dirty_page = NULL;
3258 struct vm_fault vmf;
3259 int ret;
3260 int page_mkwrite = 0;
3261
3262 /*Fix for HUB: CVE-2015-3288*/
3263 if (!vma->vm_ops->fault)
3264 return VM_FAULT_SIGBUS;
3265 /*
3266 * If we do COW later, allocate page befor taking lock_page()
3267 * on the file cache page. This will reduce lock holding time.
3268 */
3269 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3270
3271 if (unlikely(anon_vma_prepare(vma)))
3272 return VM_FAULT_OOM;
3273
3274 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3275 if (!cow_page)
3276 return VM_FAULT_OOM;
3277
3278 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3279 page_cache_release(cow_page);
3280 return VM_FAULT_OOM;
3281 }
3282 } else
3283 cow_page = NULL;
3284
3285 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3286 vmf.pgoff = pgoff;
3287 vmf.flags = flags;
3288 vmf.page = NULL;
3289
3290 ret = vma->vm_ops->fault(vma, &vmf);
3291 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3292 VM_FAULT_RETRY)))
3293 goto uncharge_out;
3294
3295 if (unlikely(PageHWPoison(vmf.page))) {
3296 if (ret & VM_FAULT_LOCKED)
3297 unlock_page(vmf.page);
3298 ret = VM_FAULT_HWPOISON;
3299 goto uncharge_out;
3300 }
3301
3302 /*
3303 * For consistency in subsequent calls, make the faulted page always
3304 * locked.
3305 */
3306 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3307 lock_page(vmf.page);
3308 else
3309 VM_BUG_ON(!PageLocked(vmf.page));
3310
3311 /*
3312 * Should we do an early C-O-W break?
3313 */
3314 page = vmf.page;
3315 if (flags & FAULT_FLAG_WRITE) {
3316 if (!(vma->vm_flags & VM_SHARED)) {
3317 page = cow_page;
3318 anon = 1;
3319 copy_user_highpage(page, vmf.page, address, vma);
3320 __SetPageUptodate(page);
3321 } else {
3322 /*
3323 * If the page will be shareable, see if the backing
3324 * address space wants to know that the page is about
3325 * to become writable
3326 */
3327 if (vma->vm_ops->page_mkwrite) {
3328 int tmp;
3329
3330 unlock_page(page);
3331 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3332 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3333 if (unlikely(tmp &
3334 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3335 ret = tmp;
3336 goto unwritable_page;
3337 }
3338 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3339 lock_page(page);
3340 if (!page->mapping) {
3341 ret = 0; /* retry the fault */
3342 unlock_page(page);
3343 goto unwritable_page;
3344 }
3345 } else
3346 VM_BUG_ON(!PageLocked(page));
3347 page_mkwrite = 1;
3348 }
3349 }
3350
3351 }
3352
3353 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3354
3355 /*
3356 * This silly early PAGE_DIRTY setting removes a race
3357 * due to the bad i386 page protection. But it's valid
3358 * for other architectures too.
3359 *
3360 * Note that if FAULT_FLAG_WRITE is set, we either now have
3361 * an exclusive copy of the page, or this is a shared mapping,
3362 * so we can make it writable and dirty to avoid having to
3363 * handle that later.
3364 */
3365 /* Only go through if we didn't race with anybody else... */
3366 if (likely(pte_same(*page_table, orig_pte))) {
3367 flush_icache_page(vma, page);
3368 entry = mk_pte(page, vma->vm_page_prot);
3369 if (flags & FAULT_FLAG_WRITE)
3370 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3371 if (anon) {
3372 inc_mm_counter_fast(mm, MM_ANONPAGES);
3373 page_add_new_anon_rmap(page, vma, address);
3374 } else {
3375 inc_mm_counter_fast(mm, MM_FILEPAGES);
3376 page_add_file_rmap(page);
3377 if (flags & FAULT_FLAG_WRITE) {
3378 dirty_page = page;
3379 get_page(dirty_page);
3380 }
3381 }
3382 set_pte_at(mm, address, page_table, entry);
3383
3384 /* no need to invalidate: a not-present page won't be cached */
3385 update_mmu_cache(vma, address, page_table);
3386 } else {
3387 if (cow_page)
3388 mem_cgroup_uncharge_page(cow_page);
3389 if (anon)
3390 page_cache_release(page);
3391 else
3392 anon = 1; /* no anon but release faulted_page */
3393 }
3394
3395 pte_unmap_unlock(page_table, ptl);
3396
3397 if (dirty_page) {
3398 struct address_space *mapping = page->mapping;
3399
3400 if (set_page_dirty(dirty_page))
3401 page_mkwrite = 1;
3402 unlock_page(dirty_page);
3403 put_page(dirty_page);
3404 if (page_mkwrite && mapping) {
3405 /*
3406 * Some device drivers do not set page.mapping but still
3407 * dirty their pages
3408 */
3409 balance_dirty_pages_ratelimited(mapping);
3410 }
3411
3412 /* file_update_time outside page_lock */
3413 if (vma->vm_file)
3414 file_update_time(vma->vm_file);
3415 } else {
3416 unlock_page(vmf.page);
3417 if (anon)
3418 page_cache_release(vmf.page);
3419 }
3420
3421 return ret;
3422
3423unwritable_page:
3424 page_cache_release(page);
3425 return ret;
3426uncharge_out:
3427 /* fs's fault handler get error */
3428 if (cow_page) {
3429 mem_cgroup_uncharge_page(cow_page);
3430 page_cache_release(cow_page);
3431 }
3432 return ret;
3433}
3434
3435static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3436 unsigned long address, pte_t *page_table, pmd_t *pmd,
3437 unsigned int flags, pte_t orig_pte)
3438{
3439 pgoff_t pgoff = (((address & PAGE_MASK)
3440 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3441
3442 pte_unmap(page_table);
3443 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3444}
3445
3446/*
3447 * Fault of a previously existing named mapping. Repopulate the pte
3448 * from the encoded file_pte if possible. This enables swappable
3449 * nonlinear vmas.
3450 *
3451 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3452 * but allow concurrent faults), and pte mapped but not yet locked.
3453 * We return with mmap_sem still held, but pte unmapped and unlocked.
3454 */
3455static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3456 unsigned long address, pte_t *page_table, pmd_t *pmd,
3457 unsigned int flags, pte_t orig_pte)
3458{
3459 pgoff_t pgoff;
3460
3461 flags |= FAULT_FLAG_NONLINEAR;
3462
3463 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3464 return 0;
3465
3466 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3467 /*
3468 * Page table corrupted: show pte and kill process.
3469 */
3470 print_bad_pte(vma, address, orig_pte, NULL);
3471 return VM_FAULT_SIGBUS;
3472 }
3473
3474 pgoff = pte_to_pgoff(orig_pte);
3475 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3476}
3477
3478/*
3479 * These routines also need to handle stuff like marking pages dirty
3480 * and/or accessed for architectures that don't do it in hardware (most
3481 * RISC architectures). The early dirtying is also good on the i386.
3482 *
3483 * There is also a hook called "update_mmu_cache()" that architectures
3484 * with external mmu caches can use to update those (ie the Sparc or
3485 * PowerPC hashed page tables that act as extended TLBs).
3486 *
3487 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3488 * but allow concurrent faults), and pte mapped but not yet locked.
3489 * We return with mmap_sem still held, but pte unmapped and unlocked.
3490 */
3491int handle_pte_fault(struct mm_struct *mm,
3492 struct vm_area_struct *vma, unsigned long address,
3493 pte_t *pte, pmd_t *pmd, unsigned int flags)
3494{
3495 pte_t entry;
3496 spinlock_t *ptl;
3497
3498 entry = *pte;
3499 if (!pte_present(entry)) {
3500 if (pte_none(entry)) {
3501 /*Fix for HUB: CVE-2015-3288*/
3502 if (vma->vm_ops) {
3503 return do_linear_fault(mm, vma, address,
3504 pte, pmd, flags, entry);
3505 }
3506 return do_anonymous_page(mm, vma, address,
3507 pte, pmd, flags);
3508 }
3509 if (pte_file(entry))
3510 return do_nonlinear_fault(mm, vma, address,
3511 pte, pmd, flags, entry);
3512 return do_swap_page(mm, vma, address,
3513 pte, pmd, flags, entry);
3514 }
3515
3516 ptl = pte_lockptr(mm, pmd);
3517 spin_lock(ptl);
3518 if (unlikely(!pte_same(*pte, entry)))
3519 goto unlock;
3520 if (flags & FAULT_FLAG_WRITE) {
3521 if (!pte_write(entry))
3522 return do_wp_page(mm, vma, address,
3523 pte, pmd, ptl, entry);
3524 entry = pte_mkdirty(entry);
3525 }
3526 entry = pte_mkyoung(entry);
3527 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3528 update_mmu_cache(vma, address, pte);
3529 } else {
3530 /*
3531 * This is needed only for protection faults but the arch code
3532 * is not yet telling us if this is a protection fault or not.
3533 * This still avoids useless tlb flushes for .text page faults
3534 * with threads.
3535 */
3536 if (flags & FAULT_FLAG_WRITE)
3537 flush_tlb_fix_spurious_fault(vma, address);
3538 }
3539unlock:
3540 pte_unmap_unlock(pte, ptl);
3541 return 0;
3542}
3543
3544#ifdef CONFIG_PREEMPT_RT_FULL
3545void pagefault_disable(void)
3546{
3547 migrate_disable();
3548 current->pagefault_disabled++;
3549 /*
3550 * make sure to have issued the store before a pagefault
3551 * can hit.
3552 */
3553 barrier();
3554}
3555EXPORT_SYMBOL_GPL(pagefault_disable);
3556
3557void pagefault_enable(void)
3558{
3559 /*
3560 * make sure to issue those last loads/stores before enabling
3561 * the pagefault handler again.
3562 */
3563 barrier();
3564 current->pagefault_disabled--;
3565 migrate_enable();
3566}
3567EXPORT_SYMBOL_GPL(pagefault_enable);
3568#endif
3569
3570/*
3571 * By the time we get here, we already hold the mm semaphore
3572 */
3573int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3574 unsigned long address, unsigned int flags)
3575{
3576 pgd_t *pgd;
3577 pud_t *pud;
3578 pmd_t *pmd;
3579 pte_t *pte;
3580
3581 __set_current_state(TASK_RUNNING);
3582
3583 count_vm_event(PGFAULT);
3584 mem_cgroup_count_vm_event(mm, PGFAULT);
3585
3586 /* do counter updates before entering really critical section. */
3587 check_sync_rss_stat(current);
3588
3589 if (unlikely(is_vm_hugetlb_page(vma)))
3590 return hugetlb_fault(mm, vma, address, flags);
3591
3592retry:
3593 pgd = pgd_offset(mm, address);
3594 pud = pud_alloc(mm, pgd, address);
3595 if (!pud)
3596 return VM_FAULT_OOM;
3597 pmd = pmd_alloc(mm, pud, address);
3598 if (!pmd)
3599 return VM_FAULT_OOM;
3600 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3601 if (!vma->vm_ops)
3602 return do_huge_pmd_anonymous_page(mm, vma, address,
3603 pmd, flags);
3604 } else {
3605 pmd_t orig_pmd = *pmd;
3606 int ret;
3607
3608 barrier();
3609 if (pmd_trans_huge(orig_pmd)) {
3610 if (flags & FAULT_FLAG_WRITE &&
3611 !pmd_write(orig_pmd) &&
3612 !pmd_trans_splitting(orig_pmd)) {
3613 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3614 orig_pmd);
3615 /*
3616 * If COW results in an oom, the huge pmd will
3617 * have been split, so retry the fault on the
3618 * pte for a smaller charge.
3619 */
3620 if (unlikely(ret & VM_FAULT_OOM))
3621 goto retry;
3622 return ret;
3623 }
3624 return 0;
3625 }
3626 }
3627
3628 /*
3629 * Use __pte_alloc instead of pte_alloc_map, because we can't
3630 * run pte_offset_map on the pmd, if an huge pmd could
3631 * materialize from under us from a different thread.
3632 */
3633 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3634 return VM_FAULT_OOM;
3635 /* if an huge pmd materialized from under us just retry later */
3636 if (unlikely(pmd_trans_huge(*pmd)))
3637 return 0;
3638 /*
3639 * A regular pmd is established and it can't morph into a huge pmd
3640 * from under us anymore at this point because we hold the mmap_sem
3641 * read mode and khugepaged takes it in write mode. So now it's
3642 * safe to run pte_offset_map().
3643 */
3644 pte = pte_offset_map(pmd, address);
3645
3646 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3647}
3648
3649#ifndef __PAGETABLE_PUD_FOLDED
3650/*
3651 * Allocate page upper directory.
3652 * We've already handled the fast-path in-line.
3653 */
3654int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3655{
3656 pud_t *new = pud_alloc_one(mm, address);
3657 if (!new)
3658 return -ENOMEM;
3659
3660 smp_wmb(); /* See comment in __pte_alloc */
3661
3662 spin_lock(&mm->page_table_lock);
3663 if (pgd_present(*pgd)) /* Another has populated it */
3664 pud_free(mm, new);
3665 else
3666 pgd_populate(mm, pgd, new);
3667 spin_unlock(&mm->page_table_lock);
3668 return 0;
3669}
3670#endif /* __PAGETABLE_PUD_FOLDED */
3671
3672#ifndef __PAGETABLE_PMD_FOLDED
3673/*
3674 * Allocate page middle directory.
3675 * We've already handled the fast-path in-line.
3676 */
3677int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3678{
3679 pmd_t *new = pmd_alloc_one(mm, address);
3680 if (!new)
3681 return -ENOMEM;
3682
3683 smp_wmb(); /* See comment in __pte_alloc */
3684
3685 spin_lock(&mm->page_table_lock);
3686#ifndef __ARCH_HAS_4LEVEL_HACK
3687 if (pud_present(*pud)) /* Another has populated it */
3688 pmd_free(mm, new);
3689 else
3690 pud_populate(mm, pud, new);
3691#else
3692 if (pgd_present(*pud)) /* Another has populated it */
3693 pmd_free(mm, new);
3694 else
3695 pgd_populate(mm, pud, new);
3696#endif /* __ARCH_HAS_4LEVEL_HACK */
3697 spin_unlock(&mm->page_table_lock);
3698 return 0;
3699}
3700#endif /* __PAGETABLE_PMD_FOLDED */
3701
3702int make_pages_present(unsigned long addr, unsigned long end)
3703{
3704 int ret, len, write;
3705 struct vm_area_struct * vma;
3706
3707 vma = find_vma(current->mm, addr);
3708 if (!vma)
3709 return -ENOMEM;
3710 /*
3711 * We want to touch writable mappings with a write fault in order
3712 * to break COW, except for shared mappings because these don't COW
3713 * and we would not want to dirty them for nothing.
3714 */
3715 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3716 BUG_ON(addr >= end);
3717 BUG_ON(end > vma->vm_end);
3718 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3719 ret = get_user_pages(current, current->mm, addr,
3720 len, write, 0, NULL, NULL);
3721 if (ret < 0)
3722 return ret;
3723 return ret == len ? 0 : -EFAULT;
3724}
3725
3726#if !defined(__HAVE_ARCH_GATE_AREA)
3727
3728#if defined(AT_SYSINFO_EHDR)
3729static struct vm_area_struct gate_vma;
3730
3731static int __init gate_vma_init(void)
3732{
3733 gate_vma.vm_mm = NULL;
3734 gate_vma.vm_start = FIXADDR_USER_START;
3735 gate_vma.vm_end = FIXADDR_USER_END;
3736 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3737 gate_vma.vm_page_prot = __P101;
3738
3739 return 0;
3740}
3741__initcall(gate_vma_init);
3742#endif
3743
3744struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3745{
3746#ifdef AT_SYSINFO_EHDR
3747 return &gate_vma;
3748#else
3749 return NULL;
3750#endif
3751}
3752
3753int in_gate_area_no_mm(unsigned long addr)
3754{
3755#ifdef AT_SYSINFO_EHDR
3756 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3757 return 1;
3758#endif
3759 return 0;
3760}
3761
3762#endif /* __HAVE_ARCH_GATE_AREA */
3763
3764static int __follow_pte(struct mm_struct *mm, unsigned long address,
3765 pte_t **ptepp, spinlock_t **ptlp)
3766{
3767 pgd_t *pgd;
3768 pud_t *pud;
3769 pmd_t *pmd;
3770 pte_t *ptep;
3771
3772 pgd = pgd_offset(mm, address);
3773 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3774 goto out;
3775
3776 pud = pud_offset(pgd, address);
3777 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3778 goto out;
3779
3780 pmd = pmd_offset(pud, address);
3781 VM_BUG_ON(pmd_trans_huge(*pmd));
3782 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3783 goto out;
3784
3785 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3786 if (pmd_huge(*pmd))
3787 goto out;
3788
3789 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3790 if (!ptep)
3791 goto out;
3792 if (!pte_present(*ptep))
3793 goto unlock;
3794 *ptepp = ptep;
3795 return 0;
3796unlock:
3797 pte_unmap_unlock(ptep, *ptlp);
3798out:
3799 return -EINVAL;
3800}
3801
3802static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3803 pte_t **ptepp, spinlock_t **ptlp)
3804{
3805 int res;
3806
3807 /* (void) is needed to make gcc happy */
3808 (void) __cond_lock(*ptlp,
3809 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3810 return res;
3811}
3812
3813/**
3814 * follow_pfn - look up PFN at a user virtual address
3815 * @vma: memory mapping
3816 * @address: user virtual address
3817 * @pfn: location to store found PFN
3818 *
3819 * Only IO mappings and raw PFN mappings are allowed.
3820 *
3821 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3822 */
3823int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3824 unsigned long *pfn)
3825{
3826 int ret = -EINVAL;
3827 spinlock_t *ptl;
3828 pte_t *ptep;
3829
3830 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3831 return ret;
3832
3833 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3834 if (ret)
3835 return ret;
3836 *pfn = pte_pfn(*ptep);
3837 pte_unmap_unlock(ptep, ptl);
3838 return 0;
3839}
3840EXPORT_SYMBOL(follow_pfn);
3841
3842#ifdef CONFIG_HAVE_IOREMAP_PROT
3843int follow_phys(struct vm_area_struct *vma,
3844 unsigned long address, unsigned int flags,
3845 unsigned long *prot, resource_size_t *phys)
3846{
3847 int ret = -EINVAL;
3848 pte_t *ptep, pte;
3849 spinlock_t *ptl;
3850
3851 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3852 goto out;
3853
3854 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3855 goto out;
3856 pte = *ptep;
3857
3858 if ((flags & FOLL_WRITE) && !pte_write(pte))
3859 goto unlock;
3860
3861 *prot = pgprot_val(pte_pgprot(pte));
3862 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3863
3864 ret = 0;
3865unlock:
3866 pte_unmap_unlock(ptep, ptl);
3867out:
3868 return ret;
3869}
3870
3871int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3872 void *buf, int len, int write)
3873{
3874 resource_size_t phys_addr;
3875 unsigned long prot = 0;
3876 void __iomem *maddr;
3877 int offset = addr & (PAGE_SIZE-1);
3878
3879 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3880 return -EINVAL;
3881
3882 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3883 if (write)
3884 memcpy_toio(maddr + offset, buf, len);
3885 else
3886 memcpy_fromio(buf, maddr + offset, len);
3887 iounmap(maddr);
3888
3889 return len;
3890}
3891#endif
3892
3893/*
3894 * Access another process' address space as given in mm. If non-NULL, use the
3895 * given task for page fault accounting.
3896 */
3897static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3898 unsigned long addr, void *buf, int len, int write)
3899{
3900 struct vm_area_struct *vma;
3901 void *old_buf = buf;
3902
3903 down_read(&mm->mmap_sem);
3904 /* ignore errors, just check how much was successfully transferred */
3905 while (len) {
3906 int bytes, ret, offset;
3907 void *maddr;
3908 struct page *page = NULL;
3909
3910 ret = get_user_pages(tsk, mm, addr, 1,
3911 write, 1, &page, &vma);
3912 if (ret <= 0) {
3913 /*
3914 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3915 * we can access using slightly different code.
3916 */
3917#ifdef CONFIG_HAVE_IOREMAP_PROT
3918 vma = find_vma(mm, addr);
3919 if (!vma || vma->vm_start > addr)
3920 break;
3921 if (vma->vm_ops && vma->vm_ops->access)
3922 ret = vma->vm_ops->access(vma, addr, buf,
3923 len, write);
3924 if (ret <= 0)
3925#endif
3926 break;
3927 bytes = ret;
3928 } else {
3929 bytes = len;
3930 offset = addr & (PAGE_SIZE-1);
3931 if (bytes > PAGE_SIZE-offset)
3932 bytes = PAGE_SIZE-offset;
3933
3934 maddr = kmap(page);
3935 if (write) {
3936 copy_to_user_page(vma, page, addr,
3937 maddr + offset, buf, bytes);
3938 set_page_dirty_lock(page);
3939 } else {
3940 copy_from_user_page(vma, page, addr,
3941 buf, maddr + offset, bytes);
3942 }
3943 kunmap(page);
3944 page_cache_release(page);
3945 }
3946 len -= bytes;
3947 buf += bytes;
3948 addr += bytes;
3949 }
3950 up_read(&mm->mmap_sem);
3951
3952 return buf - old_buf;
3953}
3954
3955/**
3956 * access_remote_vm - access another process' address space
3957 * @mm: the mm_struct of the target address space
3958 * @addr: start address to access
3959 * @buf: source or destination buffer
3960 * @len: number of bytes to transfer
3961 * @write: whether the access is a write
3962 *
3963 * The caller must hold a reference on @mm.
3964 */
3965int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3966 void *buf, int len, int write)
3967{
3968 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3969}
3970
3971/*
3972 * Access another process' address space.
3973 * Source/target buffer must be kernel space,
3974 * Do not walk the page table directly, use get_user_pages
3975 */
3976int access_process_vm(struct task_struct *tsk, unsigned long addr,
3977 void *buf, int len, int write)
3978{
3979 struct mm_struct *mm;
3980 int ret;
3981
3982 mm = get_task_mm(tsk);
3983 if (!mm)
3984 return 0;
3985
3986 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3987 mmput(mm);
3988
3989 return ret;
3990}
3991
3992/*
3993 * Print the name of a VMA.
3994 */
3995void print_vma_addr(char *prefix, unsigned long ip)
3996{
3997 struct mm_struct *mm = current->mm;
3998 struct vm_area_struct *vma;
3999
4000 /*
4001 * Do not print if we are in atomic
4002 * contexts (in exception stacks, etc.):
4003 */
4004 if (preempt_count())
4005 return;
4006
4007 down_read(&mm->mmap_sem);
4008 vma = find_vma(mm, ip);
4009 if (vma && vma->vm_file) {
4010 struct file *f = vma->vm_file;
4011 char *buf = (char *)__get_free_page(GFP_KERNEL);
4012 if (buf) {
4013 char *p, *s;
4014
4015 p = d_path(&f->f_path, buf, PAGE_SIZE);
4016 if (IS_ERR(p))
4017 p = "?";
4018 s = strrchr(p, '/');
4019 if (s)
4020 p = s+1;
4021 printk("%s%s[%lx+%lx]", prefix, p,
4022 vma->vm_start,
4023 vma->vm_end - vma->vm_start);
4024 free_page((unsigned long)buf);
4025 }
4026 }
4027 up_read(&current->mm->mmap_sem);
4028}
4029
4030#ifdef CONFIG_PROVE_LOCKING
4031void might_fault(void)
4032{
4033 /*
4034 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4035 * holding the mmap_sem, this is safe because kernel memory doesn't
4036 * get paged out, therefore we'll never actually fault, and the
4037 * below annotations will generate false positives.
4038 */
4039 if (segment_eq(get_fs(), KERNEL_DS))
4040 return;
4041
4042 might_sleep();
4043 /*
4044 * it would be nicer only to annotate paths which are not under
4045 * pagefault_disable, however that requires a larger audit and
4046 * providing helpers like get_user_atomic.
4047 */
4048 if (!in_atomic() && current->mm)
4049 might_lock_read(&current->mm->mmap_sem);
4050}
4051EXPORT_SYMBOL(might_fault);
4052#endif
4053
4054#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4055static void clear_gigantic_page(struct page *page,
4056 unsigned long addr,
4057 unsigned int pages_per_huge_page)
4058{
4059 int i;
4060 struct page *p = page;
4061
4062 might_sleep();
4063 for (i = 0; i < pages_per_huge_page;
4064 i++, p = mem_map_next(p, page, i)) {
4065 cond_resched();
4066 clear_user_highpage(p, addr + i * PAGE_SIZE);
4067 }
4068}
4069void clear_huge_page(struct page *page,
4070 unsigned long addr, unsigned int pages_per_huge_page)
4071{
4072 int i;
4073
4074 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4075 clear_gigantic_page(page, addr, pages_per_huge_page);
4076 return;
4077 }
4078
4079 might_sleep();
4080 for (i = 0; i < pages_per_huge_page; i++) {
4081 cond_resched();
4082 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4083 }
4084}
4085
4086static void copy_user_gigantic_page(struct page *dst, struct page *src,
4087 unsigned long addr,
4088 struct vm_area_struct *vma,
4089 unsigned int pages_per_huge_page)
4090{
4091 int i;
4092 struct page *dst_base = dst;
4093 struct page *src_base = src;
4094
4095 for (i = 0; i < pages_per_huge_page; ) {
4096 cond_resched();
4097 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4098
4099 i++;
4100 dst = mem_map_next(dst, dst_base, i);
4101 src = mem_map_next(src, src_base, i);
4102 }
4103}
4104
4105void copy_user_huge_page(struct page *dst, struct page *src,
4106 unsigned long addr, struct vm_area_struct *vma,
4107 unsigned int pages_per_huge_page)
4108{
4109 int i;
4110
4111 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4112 copy_user_gigantic_page(dst, src, addr, vma,
4113 pages_per_huge_page);
4114 return;
4115 }
4116
4117 might_sleep();
4118 for (i = 0; i < pages_per_huge_page; i++) {
4119 cond_resched();
4120 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4121 }
4122}
4123#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4124
4125#if defined(CONFIG_PREEMPT_RT_FULL) && (USE_SPLIT_PTLOCKS > 0)
4126/*
4127 * Heinous hack, relies on the caller doing something like:
4128 *
4129 * pte = alloc_pages(PGALLOC_GFP, 0);
4130 * if (pte)
4131 * pgtable_page_ctor(pte);
4132 * return pte;
4133 *
4134 * This ensures we release the page and return NULL when the
4135 * lock allocation fails.
4136 */
4137struct page *pte_lock_init(struct page *page)
4138{
4139 page->ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL);
4140 if (page->ptl) {
4141 spin_lock_init(__pte_lockptr(page));
4142 } else {
4143 __free_page(page);
4144 page = NULL;
4145 }
4146 return page;
4147}
4148
4149void pte_lock_deinit(struct page *page)
4150{
4151 kfree(page->ptl);
4152 page->mapping = NULL;
4153}
4154
4155#endif