blob: 7a84dd1f5ec60a2e7bc9503e81d23fdbaea0792b [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8#include <linux/capability.h>
9#include <linux/mman.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/syscalls.h>
16#include <linux/sched.h>
17#include <linux/export.h>
18#include <linux/rmap.h>
19#include <linux/mmzone.h>
20#include <linux/hugetlb.h>
21
22#include "internal.h"
23
24int can_do_mlock(void)
25{
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (rlimit(RLIMIT_MEMLOCK) != 0)
29 return 1;
30 return 0;
31}
32EXPORT_SYMBOL(can_do_mlock);
33
34/*
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
38 *
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
43 *
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
49 */
50
51/*
52 * LRU accounting for clear_page_mlock()
53 */
54void __clear_page_mlock(struct page *page)
55{
56 VM_BUG_ON(!PageLocked(page));
57
58 if (!page->mapping) { /* truncated ? */
59 return;
60 }
61
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
67 /*
68 * We lost the race. the page already moved to evictable list.
69 */
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
72 }
73}
74
75/*
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
78 */
79void mlock_vma_page(struct page *page)
80{
81 /* Serialize with page migration */
82 BUG_ON(!PageLocked(page));
83
84 if (!TestSetPageMlocked(page)) {
85 inc_zone_page_state(page, NR_MLOCK);
86 count_vm_event(UNEVICTABLE_PGMLOCKED);
87 if (!isolate_lru_page(page))
88 putback_lru_page(page);
89 }
90}
91
92/**
93 * munlock_vma_page - munlock a vma page
94 * @page - page to be unlocked
95 *
96 * called from munlock()/munmap() path with page supposedly on the LRU.
97 * When we munlock a page, because the vma where we found the page is being
98 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
99 * page locked so that we can leave it on the unevictable lru list and not
100 * bother vmscan with it. However, to walk the page's rmap list in
101 * try_to_munlock() we must isolate the page from the LRU. If some other
102 * task has removed the page from the LRU, we won't be able to do that.
103 * So we clear the PageMlocked as we might not get another chance. If we
104 * can't isolate the page, we leave it for putback_lru_page() and vmscan
105 * [page_referenced()/try_to_unmap()] to deal with.
106 */
107void munlock_vma_page(struct page *page)
108{
109 /* For try_to_munlock() and to serialize with page migration */
110 BUG_ON(!PageLocked(page));
111
112 if (TestClearPageMlocked(page)) {
113 dec_zone_page_state(page, NR_MLOCK);
114 if (!isolate_lru_page(page)) {
115 int ret = SWAP_AGAIN;
116
117 /*
118 * Optimization: if the page was mapped just once,
119 * that's our mapping and we don't need to check all the
120 * other vmas.
121 */
122 if (page_mapcount(page) > 1)
123 ret = try_to_munlock(page);
124 /*
125 * did try_to_unlock() succeed or punt?
126 */
127 if (ret != SWAP_MLOCK)
128 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
129
130 putback_lru_page(page);
131 } else {
132 /*
133 * Some other task has removed the page from the LRU.
134 * putback_lru_page() will take care of removing the
135 * page from the unevictable list, if necessary.
136 * vmscan [page_referenced()] will move the page back
137 * to the unevictable list if some other vma has it
138 * mlocked.
139 */
140 if (PageUnevictable(page))
141 count_vm_event(UNEVICTABLE_PGSTRANDED);
142 else
143 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
144 }
145 }
146}
147
148/**
149 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
150 * @vma: target vma
151 * @start: start address
152 * @end: end address
153 *
154 * This takes care of making the pages present too.
155 *
156 * return 0 on success, negative error code on error.
157 *
158 * vma->vm_mm->mmap_sem must be held for at least read.
159 */
160static long __mlock_vma_pages_range(struct vm_area_struct *vma,
161 unsigned long start, unsigned long end,
162 int *nonblocking)
163{
164 struct mm_struct *mm = vma->vm_mm;
165 unsigned long addr = start;
166 int nr_pages = (end - start) / PAGE_SIZE;
167 int gup_flags;
168
169 VM_BUG_ON(start & ~PAGE_MASK);
170 VM_BUG_ON(end & ~PAGE_MASK);
171 VM_BUG_ON(start < vma->vm_start);
172 VM_BUG_ON(end > vma->vm_end);
173 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
174
175 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
176 /*
177 * We want to touch writable mappings with a write fault in order
178 * to break COW, except for shared mappings because these don't COW
179 * and we would not want to dirty them for nothing.
180 */
181 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
182 gup_flags |= FOLL_WRITE;
183
184 /*
185 * We want mlock to succeed for regions that have any permissions
186 * other than PROT_NONE.
187 */
188 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
189 gup_flags |= FOLL_FORCE;
190
191 return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
192 NULL, NULL, nonblocking);
193}
194
195/*
196 * convert get_user_pages() return value to posix mlock() error
197 */
198static int __mlock_posix_error_return(long retval)
199{
200 if (retval == -EFAULT)
201 retval = -ENOMEM;
202 else if (retval == -ENOMEM)
203 retval = -EAGAIN;
204 return retval;
205}
206
207/**
208 * mlock_vma_pages_range() - mlock pages in specified vma range.
209 * @vma - the vma containing the specfied address range
210 * @start - starting address in @vma to mlock
211 * @end - end address [+1] in @vma to mlock
212 *
213 * For mmap()/mremap()/expansion of mlocked vma.
214 *
215 * return 0 on success for "normal" vmas.
216 *
217 * return number of pages [> 0] to be removed from locked_vm on success
218 * of "special" vmas.
219 */
220long mlock_vma_pages_range(struct vm_area_struct *vma,
221 unsigned long start, unsigned long end)
222{
223 int nr_pages = (end - start) / PAGE_SIZE;
224 BUG_ON(!(vma->vm_flags & VM_LOCKED));
225
226 /*
227 * filter unlockable vmas
228 */
229 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
230 goto no_mlock;
231
232 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
233 is_vm_hugetlb_page(vma) ||
234 vma == get_gate_vma(current->mm))) {
235
236 __mlock_vma_pages_range(vma, start, end, NULL);
237
238 /* Hide errors from mmap() and other callers */
239 return 0;
240 }
241
242 /*
243 * User mapped kernel pages or huge pages:
244 * make these pages present to populate the ptes, but
245 * fall thru' to reset VM_LOCKED--no need to unlock, and
246 * return nr_pages so these don't get counted against task's
247 * locked limit. huge pages are already counted against
248 * locked vm limit.
249 */
250 make_pages_present(start, end);
251
252no_mlock:
253 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
254 return nr_pages; /* error or pages NOT mlocked */
255}
256
257/*
258 * munlock_vma_pages_range() - munlock all pages in the vma range.'
259 * @vma - vma containing range to be munlock()ed.
260 * @start - start address in @vma of the range
261 * @end - end of range in @vma.
262 *
263 * For mremap(), munmap() and exit().
264 *
265 * Called with @vma VM_LOCKED.
266 *
267 * Returns with VM_LOCKED cleared. Callers must be prepared to
268 * deal with this.
269 *
270 * We don't save and restore VM_LOCKED here because pages are
271 * still on lru. In unmap path, pages might be scanned by reclaim
272 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
273 * free them. This will result in freeing mlocked pages.
274 */
275void munlock_vma_pages_range(struct vm_area_struct *vma,
276 unsigned long start, unsigned long end)
277{
278 unsigned long addr;
279
280 lru_add_drain();
281 vma->vm_flags &= ~VM_LOCKED;
282
283 for (addr = start; addr < end; addr += PAGE_SIZE) {
284 struct page *page;
285 /*
286 * Although FOLL_DUMP is intended for get_dump_page(),
287 * it just so happens that its special treatment of the
288 * ZERO_PAGE (returning an error instead of doing get_page)
289 * suits munlock very well (and if somehow an abnormal page
290 * has sneaked into the range, we won't oops here: great).
291 */
292 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
293 if (page && !IS_ERR(page)) {
294 lock_page(page);
295 /*
296 * Like in __mlock_vma_pages_range(),
297 * because we lock page here and migration is
298 * blocked by the elevated reference, we need
299 * only check for file-cache page truncation.
300 */
301 if (page->mapping)
302 munlock_vma_page(page);
303 unlock_page(page);
304 put_page(page);
305 }
306 cond_resched();
307 }
308}
309
310/*
311 * mlock_fixup - handle mlock[all]/munlock[all] requests.
312 *
313 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
314 * munlock is a no-op. However, for some special vmas, we go ahead and
315 * populate the ptes via make_pages_present().
316 *
317 * For vmas that pass the filters, merge/split as appropriate.
318 */
319static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
320 unsigned long start, unsigned long end, vm_flags_t newflags)
321{
322 struct mm_struct *mm = vma->vm_mm;
323 pgoff_t pgoff;
324 int nr_pages;
325 int ret = 0;
326 int lock = !!(newflags & VM_LOCKED);
327
328 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
329 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
330 goto out; /* don't set VM_LOCKED, don't count */
331
332 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
333 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
334 vma->vm_file, pgoff, vma_policy(vma));
335 if (*prev) {
336 vma = *prev;
337 goto success;
338 }
339
340 if (start != vma->vm_start) {
341 ret = split_vma(mm, vma, start, 1);
342 if (ret)
343 goto out;
344 }
345
346 if (end != vma->vm_end) {
347 ret = split_vma(mm, vma, end, 0);
348 if (ret)
349 goto out;
350 }
351
352success:
353 /*
354 * Keep track of amount of locked VM.
355 */
356 nr_pages = (end - start) >> PAGE_SHIFT;
357 if (!lock)
358 nr_pages = -nr_pages;
359 mm->locked_vm += nr_pages;
360
361 /*
362 * vm_flags is protected by the mmap_sem held in write mode.
363 * It's okay if try_to_unmap_one unmaps a page just after we
364 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
365 */
366
367 if (lock)
368 vma->vm_flags = newflags;
369 else
370 munlock_vma_pages_range(vma, start, end);
371
372out:
373 *prev = vma;
374 return ret;
375}
376
377static int do_mlock(unsigned long start, size_t len, int on)
378{
379 unsigned long nstart, end, tmp;
380 struct vm_area_struct * vma, * prev;
381 int error;
382
383 VM_BUG_ON(start & ~PAGE_MASK);
384 VM_BUG_ON(len != PAGE_ALIGN(len));
385 end = start + len;
386 if (end < start)
387 return -EINVAL;
388 if (end == start)
389 return 0;
390 vma = find_vma(current->mm, start);
391 if (!vma || vma->vm_start > start)
392 return -ENOMEM;
393
394 prev = vma->vm_prev;
395 if (start > vma->vm_start)
396 prev = vma;
397
398 for (nstart = start ; ; ) {
399 vm_flags_t newflags;
400
401 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
402
403 newflags = vma->vm_flags | VM_LOCKED;
404 if (!on)
405 newflags &= ~VM_LOCKED;
406
407 tmp = vma->vm_end;
408 if (tmp > end)
409 tmp = end;
410 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
411 if (error)
412 break;
413 nstart = tmp;
414 if (nstart < prev->vm_end)
415 nstart = prev->vm_end;
416 if (nstart >= end)
417 break;
418
419 vma = prev->vm_next;
420 if (!vma || vma->vm_start != nstart) {
421 error = -ENOMEM;
422 break;
423 }
424 }
425 return error;
426}
427
428static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
429{
430 struct mm_struct *mm = current->mm;
431 unsigned long end, nstart, nend;
432 struct vm_area_struct *vma = NULL;
433 int locked = 0;
434 int ret = 0;
435
436 VM_BUG_ON(start & ~PAGE_MASK);
437 VM_BUG_ON(len != PAGE_ALIGN(len));
438 end = start + len;
439
440 for (nstart = start; nstart < end; nstart = nend) {
441 /*
442 * We want to fault in pages for [nstart; end) address range.
443 * Find first corresponding VMA.
444 */
445 if (!locked) {
446 locked = 1;
447 down_read(&mm->mmap_sem);
448 vma = find_vma(mm, nstart);
449 } else if (nstart >= vma->vm_end)
450 vma = vma->vm_next;
451 if (!vma || vma->vm_start >= end)
452 break;
453 /*
454 * Set [nstart; nend) to intersection of desired address
455 * range with the first VMA. Also, skip undesirable VMA types.
456 */
457 nend = min(end, vma->vm_end);
458 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
459 continue;
460 if (nstart < vma->vm_start)
461 nstart = vma->vm_start;
462 /*
463 * Now fault in a range of pages. __mlock_vma_pages_range()
464 * double checks the vma flags, so that it won't mlock pages
465 * if the vma was already munlocked.
466 */
467 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
468 if (ret < 0) {
469 if (ignore_errors) {
470 ret = 0;
471 continue; /* continue at next VMA */
472 }
473 ret = __mlock_posix_error_return(ret);
474 break;
475 }
476 nend = nstart + ret * PAGE_SIZE;
477 ret = 0;
478 }
479 if (locked)
480 up_read(&mm->mmap_sem);
481 return ret; /* 0 or negative error code */
482}
483
484SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
485{
486 unsigned long locked;
487 unsigned long lock_limit;
488 int error = -ENOMEM;
489
490 if (!can_do_mlock())
491 return -EPERM;
492
493 lru_add_drain_all(); /* flush pagevec */
494
495 down_write(&current->mm->mmap_sem);
496 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
497 start &= PAGE_MASK;
498
499 locked = len >> PAGE_SHIFT;
500 locked += current->mm->locked_vm;
501
502 lock_limit = rlimit(RLIMIT_MEMLOCK);
503 lock_limit >>= PAGE_SHIFT;
504
505 /* check against resource limits */
506 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
507 error = do_mlock(start, len, 1);
508 up_write(&current->mm->mmap_sem);
509 if (!error)
510 error = do_mlock_pages(start, len, 0);
511 return error;
512}
513
514SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
515{
516 int ret;
517
518 down_write(&current->mm->mmap_sem);
519 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
520 start &= PAGE_MASK;
521 ret = do_mlock(start, len, 0);
522 up_write(&current->mm->mmap_sem);
523 return ret;
524}
525
526static int do_mlockall(int flags)
527{
528 struct vm_area_struct * vma, * prev = NULL;
529 unsigned int def_flags = 0;
530
531 if (flags & MCL_FUTURE)
532 def_flags = VM_LOCKED;
533 current->mm->def_flags = def_flags;
534 if (flags == MCL_FUTURE)
535 goto out;
536
537 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
538 vm_flags_t newflags;
539
540 newflags = vma->vm_flags | VM_LOCKED;
541 if (!(flags & MCL_CURRENT))
542 newflags &= ~VM_LOCKED;
543
544 /* Ignore errors */
545 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
546 }
547out:
548 return 0;
549}
550
551SYSCALL_DEFINE1(mlockall, int, flags)
552{
553 unsigned long lock_limit;
554 int ret = -EINVAL;
555
556 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
557 goto out;
558
559 ret = -EPERM;
560 if (!can_do_mlock())
561 goto out;
562
563 if (flags & MCL_CURRENT)
564 lru_add_drain_all(); /* flush pagevec */
565
566 down_write(&current->mm->mmap_sem);
567
568 lock_limit = rlimit(RLIMIT_MEMLOCK);
569 lock_limit >>= PAGE_SHIFT;
570
571 ret = -ENOMEM;
572 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
573 capable(CAP_IPC_LOCK))
574 ret = do_mlockall(flags);
575 up_write(&current->mm->mmap_sem);
576 if (!ret && (flags & MCL_CURRENT)) {
577 /* Ignore errors */
578 do_mlock_pages(0, TASK_SIZE, 1);
579 }
580out:
581 return ret;
582}
583
584SYSCALL_DEFINE0(munlockall)
585{
586 int ret;
587
588 down_write(&current->mm->mmap_sem);
589 ret = do_mlockall(0);
590 up_write(&current->mm->mmap_sem);
591 return ret;
592}
593
594/*
595 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
596 * shm segments) get accounted against the user_struct instead.
597 */
598static DEFINE_SPINLOCK(shmlock_user_lock);
599
600int user_shm_lock(size_t size, struct user_struct *user)
601{
602 unsigned long lock_limit, locked;
603 int allowed = 0;
604
605 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
606 lock_limit = rlimit(RLIMIT_MEMLOCK);
607 if (lock_limit == RLIM_INFINITY)
608 allowed = 1;
609 lock_limit >>= PAGE_SHIFT;
610 spin_lock(&shmlock_user_lock);
611 if (!allowed &&
612 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
613 goto out;
614 get_uid(user);
615 user->locked_shm += locked;
616 allowed = 1;
617out:
618 spin_unlock(&shmlock_user_lock);
619 return allowed;
620}
621
622void user_shm_unlock(size_t size, struct user_struct *user)
623{
624 spin_lock(&shmlock_user_lock);
625 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
626 spin_unlock(&shmlock_user_lock);
627 free_uid(user);
628}