blob: 69e2141bfd2c15f90e8386e9395a28b65d13ad3d [file] [log] [blame]
xf.libdd93d52023-05-12 07:10:14 -07001/* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
20
21/*
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24
25 There have been substantial changes made after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
28
29* Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32
33* Quickstart
34
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
43
44* Why use this malloc?
45
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
51
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
61
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
64
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
70
71* Contents, described in more detail in "description of public routines" below.
72
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
82
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 cfree(void* p);
88 malloc_trim(size_t pad);
89 malloc_usable_size(void* p);
90 malloc_stats();
91
92* Vital statistics:
93
94 Supported pointer representation: 4 or 8 bytes
95 Supported size_t representation: 4 or 8 bytes
96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
97 You can adjust this by defining INTERNAL_SIZE_T
98
99 Alignment: 2 * sizeof(size_t) (default)
100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
103
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
106 and status information.
107
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
110
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
116
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
119
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
126
127 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
128 8-byte size_t: 2^64 minus about two pages
129
130 It is assumed that (possibly signed) size_t values suffice to
131 represent chunk sizes. `Possibly signed' is due to the fact
132 that `size_t' may be defined on a system as either a signed or
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
142
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
146
147 Thread-safety: thread-safe
148
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
150 Also SVID/XPG, ANSI C, and probably others as well.
151
152* Synopsis of compile-time options:
153
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
156 below. It has been tested most extensively on Solaris and Linux.
157 People also report using it in stand-alone embedded systems.
158
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than
164 declare locals because people reported that some debuggers
165 otherwise get confused.)
166
167 OPTION DEFAULT VALUE
168
169 Compilation Environment options:
170
171 HAVE_MREMAP 0
172
173 Changing default word sizes:
174
175 INTERNAL_SIZE_T size_t
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
178
179 Configuration and functionality options:
180
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
185 TRIM_FASTBINS 0
186
187 Options for customizing MORECORE:
188
189 MORECORE sbrk
190 MORECORE_FAILURE -1
191 MORECORE_CONTIGUOUS 1
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
195
196 Tuning options that are also dynamically changeable via mallopt:
197
198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
203
204 There are several other #defined constants and macros that you
205 probably don't want to touch unless you are extending or adapting malloc. */
206
207/*
208 void* is the pointer type that malloc should say it returns
209*/
210
211#ifndef void
212#define void void
213#endif /*void*/
214
215#include <stddef.h> /* for size_t */
216#include <stdlib.h> /* for getenv(), abort() */
217#include <unistd.h> /* for __libc_enable_secure */
218
219#include <malloc-machine.h>
220#include <malloc-sysdep.h>
221
222#include <atomic.h>
223#include <_itoa.h>
224#include <bits/wordsize.h>
225#include <sys/sysinfo.h>
226
227#include <ldsodefs.h>
228
229#include <unistd.h>
230#include <stdio.h> /* needed for malloc_stats */
231#include <errno.h>
232
233#include <shlib-compat.h>
234
235/* For uintptr_t. */
236#include <stdint.h>
237
238/* For va_arg, va_start, va_end. */
239#include <stdarg.h>
240
241/* For MIN, MAX, powerof2. */
242#include <sys/param.h>
243
244/* For ALIGN_UP et. al. */
245#include <libc-internal.h>
246
247
248/*
249 Debugging:
250
251 Because freed chunks may be overwritten with bookkeeping fields, this
252 malloc will often die when freed memory is overwritten by user
253 programs. This can be very effective (albeit in an annoying way)
254 in helping track down dangling pointers.
255
256 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
257 enabled that will catch more memory errors. You probably won't be
258 able to make much sense of the actual assertion errors, but they
259 should help you locate incorrectly overwritten memory. The checking
260 is fairly extensive, and will slow down execution
261 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
262 will attempt to check every non-mmapped allocated and free chunk in
263 the course of computing the summmaries. (By nature, mmapped regions
264 cannot be checked very much automatically.)
265
266 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
267 this code. The assertions in the check routines spell out in more
268 detail the assumptions and invariants underlying the algorithms.
269
270 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
271 checking that all accesses to malloced memory stay within their
272 bounds. However, there are several add-ons and adaptations of this
273 or other mallocs available that do this.
274*/
275
276#ifndef MALLOC_DEBUG
277#define MALLOC_DEBUG 0
278#endif
279
280#ifdef NDEBUG
281# define assert(expr) ((void) 0)
282#else
283# define assert(expr) \
284 ((expr) \
285 ? ((void) 0) \
286 : __malloc_assert (#expr, __FILE__, __LINE__, __func__))
287
288extern const char *__progname;
289
290static void
291__malloc_assert (const char *assertion, const char *file, unsigned int line,
292 const char *function)
293{
294 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
295 __progname, __progname[0] ? ": " : "",
296 file, line,
297 function ? function : "", function ? ": " : "",
298 assertion);
299 fflush (stderr);
300 abort ();
301}
302#endif
303
304
305/*
306 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
307 of chunk sizes.
308
309 The default version is the same as size_t.
310
311 While not strictly necessary, it is best to define this as an
312 unsigned type, even if size_t is a signed type. This may avoid some
313 artificial size limitations on some systems.
314
315 On a 64-bit machine, you may be able to reduce malloc overhead by
316 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
317 expense of not being able to handle more than 2^32 of malloced
318 space. If this limitation is acceptable, you are encouraged to set
319 this unless you are on a platform requiring 16byte alignments. In
320 this case the alignment requirements turn out to negate any
321 potential advantages of decreasing size_t word size.
322
323 Implementors: Beware of the possible combinations of:
324 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
325 and might be the same width as int or as long
326 - size_t might have different width and signedness as INTERNAL_SIZE_T
327 - int and long might be 32 or 64 bits, and might be the same width
328 To deal with this, most comparisons and difference computations
329 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
330 aware of the fact that casting an unsigned int to a wider long does
331 not sign-extend. (This also makes checking for negative numbers
332 awkward.) Some of these casts result in harmless compiler warnings
333 on some systems.
334*/
335
336#ifndef INTERNAL_SIZE_T
337#define INTERNAL_SIZE_T size_t
338#endif
339
340/* The corresponding word size */
341#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
342
343
344/*
345 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
346 It must be a power of two at least 2 * SIZE_SZ, even on machines
347 for which smaller alignments would suffice. It may be defined as
348 larger than this though. Note however that code and data structures
349 are optimized for the case of 8-byte alignment.
350*/
351
352
353#ifndef MALLOC_ALIGNMENT
354# if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16)
355/* This is the correct definition when there is no past ABI to constrain it.
356
357 Among configurations with a past ABI constraint, it differs from
358 2*SIZE_SZ only on powerpc32. For the time being, changing this is
359 causing more compatibility problems due to malloc_get_state and
360 malloc_set_state than will returning blocks not adequately aligned for
361 long double objects under -mlong-double-128. */
362
363# define MALLOC_ALIGNMENT (2 *SIZE_SZ < __alignof__ (long double) \
364 ? __alignof__ (long double) : 2 *SIZE_SZ)
365# else
366# define MALLOC_ALIGNMENT (2 *SIZE_SZ)
367# endif
368#endif
369
370/* The corresponding bit mask value */
371#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
372
373
374
375/*
376 REALLOC_ZERO_BYTES_FREES should be set if a call to
377 realloc with zero bytes should be the same as a call to free.
378 This is required by the C standard. Otherwise, since this malloc
379 returns a unique pointer for malloc(0), so does realloc(p, 0).
380*/
381
382#ifndef REALLOC_ZERO_BYTES_FREES
383#define REALLOC_ZERO_BYTES_FREES 1
384#endif
385
386/*
387 TRIM_FASTBINS controls whether free() of a very small chunk can
388 immediately lead to trimming. Setting to true (1) can reduce memory
389 footprint, but will almost always slow down programs that use a lot
390 of small chunks.
391
392 Define this only if you are willing to give up some speed to more
393 aggressively reduce system-level memory footprint when releasing
394 memory in programs that use many small chunks. You can get
395 essentially the same effect by setting MXFAST to 0, but this can
396 lead to even greater slowdowns in programs using many small chunks.
397 TRIM_FASTBINS is an in-between compile-time option, that disables
398 only those chunks bordering topmost memory from being placed in
399 fastbins.
400*/
401
402#ifndef TRIM_FASTBINS
403#define TRIM_FASTBINS 0
404#endif
405
406
407/* Definition for getting more memory from the OS. */
408#define MORECORE (*__morecore)
409#define MORECORE_FAILURE 0
410void * __default_morecore (ptrdiff_t);
411void *(*__morecore)(ptrdiff_t) = __default_morecore;
412
413
414#include <string.h>
415
416/*
417 MORECORE-related declarations. By default, rely on sbrk
418*/
419
420
421/*
422 MORECORE is the name of the routine to call to obtain more memory
423 from the system. See below for general guidance on writing
424 alternative MORECORE functions, as well as a version for WIN32 and a
425 sample version for pre-OSX macos.
426*/
427
428#ifndef MORECORE
429#define MORECORE sbrk
430#endif
431
432/*
433 MORECORE_FAILURE is the value returned upon failure of MORECORE
434 as well as mmap. Since it cannot be an otherwise valid memory address,
435 and must reflect values of standard sys calls, you probably ought not
436 try to redefine it.
437*/
438
439#ifndef MORECORE_FAILURE
440#define MORECORE_FAILURE (-1)
441#endif
442
443/*
444 If MORECORE_CONTIGUOUS is true, take advantage of fact that
445 consecutive calls to MORECORE with positive arguments always return
446 contiguous increasing addresses. This is true of unix sbrk. Even
447 if not defined, when regions happen to be contiguous, malloc will
448 permit allocations spanning regions obtained from different
449 calls. But defining this when applicable enables some stronger
450 consistency checks and space efficiencies.
451*/
452
453#ifndef MORECORE_CONTIGUOUS
454#define MORECORE_CONTIGUOUS 1
455#endif
456
457/*
458 Define MORECORE_CANNOT_TRIM if your version of MORECORE
459 cannot release space back to the system when given negative
460 arguments. This is generally necessary only if you are using
461 a hand-crafted MORECORE function that cannot handle negative arguments.
462*/
463
464/* #define MORECORE_CANNOT_TRIM */
465
466/* MORECORE_CLEARS (default 1)
467 The degree to which the routine mapped to MORECORE zeroes out
468 memory: never (0), only for newly allocated space (1) or always
469 (2). The distinction between (1) and (2) is necessary because on
470 some systems, if the application first decrements and then
471 increments the break value, the contents of the reallocated space
472 are unspecified.
473 */
474
475#ifndef MORECORE_CLEARS
476# define MORECORE_CLEARS 1
477#endif
478
479
480/*
481 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
482 sbrk fails, and mmap is used as a backup. The value must be a
483 multiple of page size. This backup strategy generally applies only
484 when systems have "holes" in address space, so sbrk cannot perform
485 contiguous expansion, but there is still space available on system.
486 On systems for which this is known to be useful (i.e. most linux
487 kernels), this occurs only when programs allocate huge amounts of
488 memory. Between this, and the fact that mmap regions tend to be
489 limited, the size should be large, to avoid too many mmap calls and
490 thus avoid running out of kernel resources. */
491
492#ifndef MMAP_AS_MORECORE_SIZE
493#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
494#endif
495
496/*
497 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
498 large blocks.
499*/
500
501#ifndef HAVE_MREMAP
502#define HAVE_MREMAP 0
503#endif
504
505
506/*
507 This version of malloc supports the standard SVID/XPG mallinfo
508 routine that returns a struct containing usage properties and
509 statistics. It should work on any SVID/XPG compliant system that has
510 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
511 install such a thing yourself, cut out the preliminary declarations
512 as described above and below and save them in a malloc.h file. But
513 there's no compelling reason to bother to do this.)
514
515 The main declaration needed is the mallinfo struct that is returned
516 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
517 bunch of fields that are not even meaningful in this version of
518 malloc. These fields are are instead filled by mallinfo() with
519 other numbers that might be of interest.
520*/
521
522
523/* ---------- description of public routines ------------ */
524
525/*
526 malloc(size_t n)
527 Returns a pointer to a newly allocated chunk of at least n bytes, or null
528 if no space is available. Additionally, on failure, errno is
529 set to ENOMEM on ANSI C systems.
530
531 If n is zero, malloc returns a minumum-sized chunk. (The minimum
532 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
533 systems.) On most systems, size_t is an unsigned type, so calls
534 with negative arguments are interpreted as requests for huge amounts
535 of space, which will often fail. The maximum supported value of n
536 differs across systems, but is in all cases less than the maximum
537 representable value of a size_t.
538*/
539void* __libc_malloc(size_t);
540libc_hidden_proto (__libc_malloc)
541
542/*
543 free(void* p)
544 Releases the chunk of memory pointed to by p, that had been previously
545 allocated using malloc or a related routine such as realloc.
546 It has no effect if p is null. It can have arbitrary (i.e., bad!)
547 effects if p has already been freed.
548
549 Unless disabled (using mallopt), freeing very large spaces will
550 when possible, automatically trigger operations that give
551 back unused memory to the system, thus reducing program footprint.
552*/
553void __libc_free(void*);
554libc_hidden_proto (__libc_free)
555
556/*
557 calloc(size_t n_elements, size_t element_size);
558 Returns a pointer to n_elements * element_size bytes, with all locations
559 set to zero.
560*/
561void* __libc_calloc(size_t, size_t);
562
563/*
564 realloc(void* p, size_t n)
565 Returns a pointer to a chunk of size n that contains the same data
566 as does chunk p up to the minimum of (n, p's size) bytes, or null
567 if no space is available.
568
569 The returned pointer may or may not be the same as p. The algorithm
570 prefers extending p when possible, otherwise it employs the
571 equivalent of a malloc-copy-free sequence.
572
573 If p is null, realloc is equivalent to malloc.
574
575 If space is not available, realloc returns null, errno is set (if on
576 ANSI) and p is NOT freed.
577
578 if n is for fewer bytes than already held by p, the newly unused
579 space is lopped off and freed if possible. Unless the #define
580 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
581 zero (re)allocates a minimum-sized chunk.
582
583 Large chunks that were internally obtained via mmap will always
584 be reallocated using malloc-copy-free sequences unless
585 the system supports MREMAP (currently only linux).
586
587 The old unix realloc convention of allowing the last-free'd chunk
588 to be used as an argument to realloc is not supported.
589*/
590void* __libc_realloc(void*, size_t);
591libc_hidden_proto (__libc_realloc)
592
593/*
594 memalign(size_t alignment, size_t n);
595 Returns a pointer to a newly allocated chunk of n bytes, aligned
596 in accord with the alignment argument.
597
598 The alignment argument should be a power of two. If the argument is
599 not a power of two, the nearest greater power is used.
600 8-byte alignment is guaranteed by normal malloc calls, so don't
601 bother calling memalign with an argument of 8 or less.
602
603 Overreliance on memalign is a sure way to fragment space.
604*/
605void* __libc_memalign(size_t, size_t);
606libc_hidden_proto (__libc_memalign)
607
608/*
609 valloc(size_t n);
610 Equivalent to memalign(pagesize, n), where pagesize is the page
611 size of the system. If the pagesize is unknown, 4096 is used.
612*/
613void* __libc_valloc(size_t);
614
615
616
617/*
618 mallopt(int parameter_number, int parameter_value)
619 Sets tunable parameters The format is to provide a
620 (parameter-number, parameter-value) pair. mallopt then sets the
621 corresponding parameter to the argument value if it can (i.e., so
622 long as the value is meaningful), and returns 1 if successful else
623 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
624 normally defined in malloc.h. Only one of these (M_MXFAST) is used
625 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
626 so setting them has no effect. But this malloc also supports four
627 other options in mallopt. See below for details. Briefly, supported
628 parameters are as follows (listed defaults are for "typical"
629 configurations).
630
631 Symbol param # default allowed param values
632 M_MXFAST 1 64 0-80 (0 disables fastbins)
633 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
634 M_TOP_PAD -2 0 any
635 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
636 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
637*/
638int __libc_mallopt(int, int);
639libc_hidden_proto (__libc_mallopt)
640
641
642/*
643 mallinfo()
644 Returns (by copy) a struct containing various summary statistics:
645
646 arena: current total non-mmapped bytes allocated from system
647 ordblks: the number of free chunks
648 smblks: the number of fastbin blocks (i.e., small chunks that
649 have been freed but not use resused or consolidated)
650 hblks: current number of mmapped regions
651 hblkhd: total bytes held in mmapped regions
652 usmblks: the maximum total allocated space. This will be greater
653 than current total if trimming has occurred.
654 fsmblks: total bytes held in fastbin blocks
655 uordblks: current total allocated space (normal or mmapped)
656 fordblks: total free space
657 keepcost: the maximum number of bytes that could ideally be released
658 back to system via malloc_trim. ("ideally" means that
659 it ignores page restrictions etc.)
660
661 Because these fields are ints, but internal bookkeeping may
662 be kept as longs, the reported values may wrap around zero and
663 thus be inaccurate.
664*/
665struct mallinfo __libc_mallinfo(void);
666
667
668/*
669 pvalloc(size_t n);
670 Equivalent to valloc(minimum-page-that-holds(n)), that is,
671 round up n to nearest pagesize.
672 */
673void* __libc_pvalloc(size_t);
674
675/*
676 malloc_trim(size_t pad);
677
678 If possible, gives memory back to the system (via negative
679 arguments to sbrk) if there is unused memory at the `high' end of
680 the malloc pool. You can call this after freeing large blocks of
681 memory to potentially reduce the system-level memory requirements
682 of a program. However, it cannot guarantee to reduce memory. Under
683 some allocation patterns, some large free blocks of memory will be
684 locked between two used chunks, so they cannot be given back to
685 the system.
686
687 The `pad' argument to malloc_trim represents the amount of free
688 trailing space to leave untrimmed. If this argument is zero,
689 only the minimum amount of memory to maintain internal data
690 structures will be left (one page or less). Non-zero arguments
691 can be supplied to maintain enough trailing space to service
692 future expected allocations without having to re-obtain memory
693 from the system.
694
695 Malloc_trim returns 1 if it actually released any memory, else 0.
696 On systems that do not support "negative sbrks", it will always
697 return 0.
698*/
699int __malloc_trim(size_t);
700
701/*
702 malloc_usable_size(void* p);
703
704 Returns the number of bytes you can actually use in
705 an allocated chunk, which may be more than you requested (although
706 often not) due to alignment and minimum size constraints.
707 You can use this many bytes without worrying about
708 overwriting other allocated objects. This is not a particularly great
709 programming practice. malloc_usable_size can be more useful in
710 debugging and assertions, for example:
711
712 p = malloc(n);
713 assert(malloc_usable_size(p) >= 256);
714
715*/
716size_t __malloc_usable_size(void*);
717
718/*
719 malloc_stats();
720 Prints on stderr the amount of space obtained from the system (both
721 via sbrk and mmap), the maximum amount (which may be more than
722 current if malloc_trim and/or munmap got called), and the current
723 number of bytes allocated via malloc (or realloc, etc) but not yet
724 freed. Note that this is the number of bytes allocated, not the
725 number requested. It will be larger than the number requested
726 because of alignment and bookkeeping overhead. Because it includes
727 alignment wastage as being in use, this figure may be greater than
728 zero even when no user-level chunks are allocated.
729
730 The reported current and maximum system memory can be inaccurate if
731 a program makes other calls to system memory allocation functions
732 (normally sbrk) outside of malloc.
733
734 malloc_stats prints only the most commonly interesting statistics.
735 More information can be obtained by calling mallinfo.
736
737*/
738void __malloc_stats(void);
739
740/*
741 malloc_get_state(void);
742
743 Returns the state of all malloc variables in an opaque data
744 structure.
745*/
746void* __malloc_get_state(void);
747
748/*
749 malloc_set_state(void* state);
750
751 Restore the state of all malloc variables from data obtained with
752 malloc_get_state().
753*/
754int __malloc_set_state(void*);
755
756/*
757 posix_memalign(void **memptr, size_t alignment, size_t size);
758
759 POSIX wrapper like memalign(), checking for validity of size.
760*/
761int __posix_memalign(void **, size_t, size_t);
762
763/* mallopt tuning options */
764
765/*
766 M_MXFAST is the maximum request size used for "fastbins", special bins
767 that hold returned chunks without consolidating their spaces. This
768 enables future requests for chunks of the same size to be handled
769 very quickly, but can increase fragmentation, and thus increase the
770 overall memory footprint of a program.
771
772 This malloc manages fastbins very conservatively yet still
773 efficiently, so fragmentation is rarely a problem for values less
774 than or equal to the default. The maximum supported value of MXFAST
775 is 80. You wouldn't want it any higher than this anyway. Fastbins
776 are designed especially for use with many small structs, objects or
777 strings -- the default handles structs/objects/arrays with sizes up
778 to 8 4byte fields, or small strings representing words, tokens,
779 etc. Using fastbins for larger objects normally worsens
780 fragmentation without improving speed.
781
782 M_MXFAST is set in REQUEST size units. It is internally used in
783 chunksize units, which adds padding and alignment. You can reduce
784 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
785 algorithm to be a closer approximation of fifo-best-fit in all cases,
786 not just for larger requests, but will generally cause it to be
787 slower.
788*/
789
790
791/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
792#ifndef M_MXFAST
793#define M_MXFAST 1
794#endif
795
796#ifndef DEFAULT_MXFAST
797#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
798#endif
799
800
801/*
802 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
803 to keep before releasing via malloc_trim in free().
804
805 Automatic trimming is mainly useful in long-lived programs.
806 Because trimming via sbrk can be slow on some systems, and can
807 sometimes be wasteful (in cases where programs immediately
808 afterward allocate more large chunks) the value should be high
809 enough so that your overall system performance would improve by
810 releasing this much memory.
811
812 The trim threshold and the mmap control parameters (see below)
813 can be traded off with one another. Trimming and mmapping are
814 two different ways of releasing unused memory back to the
815 system. Between these two, it is often possible to keep
816 system-level demands of a long-lived program down to a bare
817 minimum. For example, in one test suite of sessions measuring
818 the XF86 X server on Linux, using a trim threshold of 128K and a
819 mmap threshold of 192K led to near-minimal long term resource
820 consumption.
821
822 If you are using this malloc in a long-lived program, it should
823 pay to experiment with these values. As a rough guide, you
824 might set to a value close to the average size of a process
825 (program) running on your system. Releasing this much memory
826 would allow such a process to run in memory. Generally, it's
827 worth it to tune for trimming rather tham memory mapping when a
828 program undergoes phases where several large chunks are
829 allocated and released in ways that can reuse each other's
830 storage, perhaps mixed with phases where there are no such
831 chunks at all. And in well-behaved long-lived programs,
832 controlling release of large blocks via trimming versus mapping
833 is usually faster.
834
835 However, in most programs, these parameters serve mainly as
836 protection against the system-level effects of carrying around
837 massive amounts of unneeded memory. Since frequent calls to
838 sbrk, mmap, and munmap otherwise degrade performance, the default
839 parameters are set to relatively high values that serve only as
840 safeguards.
841
842 The trim value It must be greater than page size to have any useful
843 effect. To disable trimming completely, you can set to
844 (unsigned long)(-1)
845
846 Trim settings interact with fastbin (MXFAST) settings: Unless
847 TRIM_FASTBINS is defined, automatic trimming never takes place upon
848 freeing a chunk with size less than or equal to MXFAST. Trimming is
849 instead delayed until subsequent freeing of larger chunks. However,
850 you can still force an attempted trim by calling malloc_trim.
851
852 Also, trimming is not generally possible in cases where
853 the main arena is obtained via mmap.
854
855 Note that the trick some people use of mallocing a huge space and
856 then freeing it at program startup, in an attempt to reserve system
857 memory, doesn't have the intended effect under automatic trimming,
858 since that memory will immediately be returned to the system.
859*/
860
861#define M_TRIM_THRESHOLD -1
862
863#ifndef DEFAULT_TRIM_THRESHOLD
864#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
865#endif
866
867/*
868 M_TOP_PAD is the amount of extra `padding' space to allocate or
869 retain whenever sbrk is called. It is used in two ways internally:
870
871 * When sbrk is called to extend the top of the arena to satisfy
872 a new malloc request, this much padding is added to the sbrk
873 request.
874
875 * When malloc_trim is called automatically from free(),
876 it is used as the `pad' argument.
877
878 In both cases, the actual amount of padding is rounded
879 so that the end of the arena is always a system page boundary.
880
881 The main reason for using padding is to avoid calling sbrk so
882 often. Having even a small pad greatly reduces the likelihood
883 that nearly every malloc request during program start-up (or
884 after trimming) will invoke sbrk, which needlessly wastes
885 time.
886
887 Automatic rounding-up to page-size units is normally sufficient
888 to avoid measurable overhead, so the default is 0. However, in
889 systems where sbrk is relatively slow, it can pay to increase
890 this value, at the expense of carrying around more memory than
891 the program needs.
892*/
893
894#define M_TOP_PAD -2
895
896#ifndef DEFAULT_TOP_PAD
897#define DEFAULT_TOP_PAD (0)
898#endif
899
900/*
901 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
902 adjusted MMAP_THRESHOLD.
903*/
904
905#ifndef DEFAULT_MMAP_THRESHOLD_MIN
906#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
907#endif
908
909#ifndef DEFAULT_MMAP_THRESHOLD_MAX
910 /* For 32-bit platforms we cannot increase the maximum mmap
911 threshold much because it is also the minimum value for the
912 maximum heap size and its alignment. Going above 512k (i.e., 1M
913 for new heaps) wastes too much address space. */
914# if __WORDSIZE == 32
915# define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
916# else
917# define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
918# endif
919#endif
920
921/*
922 M_MMAP_THRESHOLD is the request size threshold for using mmap()
923 to service a request. Requests of at least this size that cannot
924 be allocated using already-existing space will be serviced via mmap.
925 (If enough normal freed space already exists it is used instead.)
926
927 Using mmap segregates relatively large chunks of memory so that
928 they can be individually obtained and released from the host
929 system. A request serviced through mmap is never reused by any
930 other request (at least not directly; the system may just so
931 happen to remap successive requests to the same locations).
932
933 Segregating space in this way has the benefits that:
934
935 1. Mmapped space can ALWAYS be individually released back
936 to the system, which helps keep the system level memory
937 demands of a long-lived program low.
938 2. Mapped memory can never become `locked' between
939 other chunks, as can happen with normally allocated chunks, which
940 means that even trimming via malloc_trim would not release them.
941 3. On some systems with "holes" in address spaces, mmap can obtain
942 memory that sbrk cannot.
943
944 However, it has the disadvantages that:
945
946 1. The space cannot be reclaimed, consolidated, and then
947 used to service later requests, as happens with normal chunks.
948 2. It can lead to more wastage because of mmap page alignment
949 requirements
950 3. It causes malloc performance to be more dependent on host
951 system memory management support routines which may vary in
952 implementation quality and may impose arbitrary
953 limitations. Generally, servicing a request via normal
954 malloc steps is faster than going through a system's mmap.
955
956 The advantages of mmap nearly always outweigh disadvantages for
957 "large" chunks, but the value of "large" varies across systems. The
958 default is an empirically derived value that works well in most
959 systems.
960
961
962 Update in 2006:
963 The above was written in 2001. Since then the world has changed a lot.
964 Memory got bigger. Applications got bigger. The virtual address space
965 layout in 32 bit linux changed.
966
967 In the new situation, brk() and mmap space is shared and there are no
968 artificial limits on brk size imposed by the kernel. What is more,
969 applications have started using transient allocations larger than the
970 128Kb as was imagined in 2001.
971
972 The price for mmap is also high now; each time glibc mmaps from the
973 kernel, the kernel is forced to zero out the memory it gives to the
974 application. Zeroing memory is expensive and eats a lot of cache and
975 memory bandwidth. This has nothing to do with the efficiency of the
976 virtual memory system, by doing mmap the kernel just has no choice but
977 to zero.
978
979 In 2001, the kernel had a maximum size for brk() which was about 800
980 megabytes on 32 bit x86, at that point brk() would hit the first
981 mmaped shared libaries and couldn't expand anymore. With current 2.6
982 kernels, the VA space layout is different and brk() and mmap
983 both can span the entire heap at will.
984
985 Rather than using a static threshold for the brk/mmap tradeoff,
986 we are now using a simple dynamic one. The goal is still to avoid
987 fragmentation. The old goals we kept are
988 1) try to get the long lived large allocations to use mmap()
989 2) really large allocations should always use mmap()
990 and we're adding now:
991 3) transient allocations should use brk() to avoid forcing the kernel
992 having to zero memory over and over again
993
994 The implementation works with a sliding threshold, which is by default
995 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
996 out at 128Kb as per the 2001 default.
997
998 This allows us to satisfy requirement 1) under the assumption that long
999 lived allocations are made early in the process' lifespan, before it has
1000 started doing dynamic allocations of the same size (which will
1001 increase the threshold).
1002
1003 The upperbound on the threshold satisfies requirement 2)
1004
1005 The threshold goes up in value when the application frees memory that was
1006 allocated with the mmap allocator. The idea is that once the application
1007 starts freeing memory of a certain size, it's highly probable that this is
1008 a size the application uses for transient allocations. This estimator
1009 is there to satisfy the new third requirement.
1010
1011*/
1012
1013#define M_MMAP_THRESHOLD -3
1014
1015#ifndef DEFAULT_MMAP_THRESHOLD
1016#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1017#endif
1018
1019/*
1020 M_MMAP_MAX is the maximum number of requests to simultaneously
1021 service using mmap. This parameter exists because
1022 some systems have a limited number of internal tables for
1023 use by mmap, and using more than a few of them may degrade
1024 performance.
1025
1026 The default is set to a value that serves only as a safeguard.
1027 Setting to 0 disables use of mmap for servicing large requests.
1028*/
1029
1030#define M_MMAP_MAX -4
1031
1032#ifndef DEFAULT_MMAP_MAX
1033#define DEFAULT_MMAP_MAX (65536)
1034#endif
1035
1036#include <malloc.h>
1037
1038#ifndef RETURN_ADDRESS
1039#define RETURN_ADDRESS(X_) (NULL)
1040#endif
1041
1042/* On some platforms we can compile internal, not exported functions better.
1043 Let the environment provide a macro and define it to be empty if it
1044 is not available. */
1045#ifndef internal_function
1046# define internal_function
1047#endif
1048
1049/* Forward declarations. */
1050struct malloc_chunk;
1051typedef struct malloc_chunk* mchunkptr;
1052
1053/* Internal routines. */
1054
1055static void* _int_malloc(mstate, size_t);
1056static void _int_free(mstate, mchunkptr, int);
1057static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1058 INTERNAL_SIZE_T);
1059static void* _int_memalign(mstate, size_t, size_t);
1060static void* _mid_memalign(size_t, size_t, void *);
1061
1062static void malloc_printerr(int action, const char *str, void *ptr, mstate av);
1063
1064static void* internal_function mem2mem_check(void *p, size_t sz);
1065static int internal_function top_check(void);
1066static void internal_function munmap_chunk(mchunkptr p);
1067#if HAVE_MREMAP
1068static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1069#endif
1070
1071static void* malloc_check(size_t sz, const void *caller);
1072static void free_check(void* mem, const void *caller);
1073static void* realloc_check(void* oldmem, size_t bytes,
1074 const void *caller);
1075static void* memalign_check(size_t alignment, size_t bytes,
1076 const void *caller);
1077#ifndef NO_THREADS
1078static void* malloc_atfork(size_t sz, const void *caller);
1079static void free_atfork(void* mem, const void *caller);
1080#endif
1081
1082/* ------------------ MMAP support ------------------ */
1083
1084
1085#include <fcntl.h>
1086#include <sys/mman.h>
1087
1088#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1089# define MAP_ANONYMOUS MAP_ANON
1090#endif
1091
1092#ifndef MAP_NORESERVE
1093# define MAP_NORESERVE 0
1094#endif
1095
1096#define MMAP(addr, size, prot, flags) \
1097 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1098
1099
1100/*
1101 ----------------------- Chunk representations -----------------------
1102*/
1103
1104
1105/*
1106 This struct declaration is misleading (but accurate and necessary).
1107 It declares a "view" into memory allowing access to necessary
1108 fields at known offsets from a given base. See explanation below.
1109*/
1110
1111struct malloc_chunk {
1112
1113 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1114 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1115
1116 struct malloc_chunk* fd; /* double links -- used only if free. */
1117 struct malloc_chunk* bk;
1118
1119 /* Only used for large blocks: pointer to next larger size. */
1120 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1121 struct malloc_chunk* bk_nextsize;
1122};
1123
1124
1125/*
1126 malloc_chunk details:
1127
1128 (The following includes lightly edited explanations by Colin Plumb.)
1129
1130 Chunks of memory are maintained using a `boundary tag' method as
1131 described in e.g., Knuth or Standish. (See the paper by Paul
1132 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1133 survey of such techniques.) Sizes of free chunks are stored both
1134 in the front of each chunk and at the end. This makes
1135 consolidating fragmented chunks into bigger chunks very fast. The
1136 size fields also hold bits representing whether chunks are free or
1137 in use.
1138
1139 An allocated chunk looks like this:
1140
1141
1142 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1143 | Size of previous chunk, if allocated | |
1144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1145 | Size of chunk, in bytes |M|P|
1146 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1147 | User data starts here... .
1148 . .
1149 . (malloc_usable_size() bytes) .
1150 . |
1151nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1152 | Size of chunk |
1153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1154
1155
1156 Where "chunk" is the front of the chunk for the purpose of most of
1157 the malloc code, but "mem" is the pointer that is returned to the
1158 user. "Nextchunk" is the beginning of the next contiguous chunk.
1159
1160 Chunks always begin on even word boundaries, so the mem portion
1161 (which is returned to the user) is also on an even word boundary, and
1162 thus at least double-word aligned.
1163
1164 Free chunks are stored in circular doubly-linked lists, and look like this:
1165
1166 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1167 | Size of previous chunk |
1168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1169 `head:' | Size of chunk, in bytes |P|
1170 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1171 | Forward pointer to next chunk in list |
1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1173 | Back pointer to previous chunk in list |
1174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1175 | Unused space (may be 0 bytes long) .
1176 . .
1177 . |
1178nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179 `foot:' | Size of chunk, in bytes |
1180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181
1182 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1183 chunk size (which is always a multiple of two words), is an in-use
1184 bit for the *previous* chunk. If that bit is *clear*, then the
1185 word before the current chunk size contains the previous chunk
1186 size, and can be used to find the front of the previous chunk.
1187 The very first chunk allocated always has this bit set,
1188 preventing access to non-existent (or non-owned) memory. If
1189 prev_inuse is set for any given chunk, then you CANNOT determine
1190 the size of the previous chunk, and might even get a memory
1191 addressing fault when trying to do so.
1192
1193 Note that the `foot' of the current chunk is actually represented
1194 as the prev_size of the NEXT chunk. This makes it easier to
1195 deal with alignments etc but can be very confusing when trying
1196 to extend or adapt this code.
1197
1198 The two exceptions to all this are
1199
1200 1. The special chunk `top' doesn't bother using the
1201 trailing size field since there is no next contiguous chunk
1202 that would have to index off it. After initialization, `top'
1203 is forced to always exist. If it would become less than
1204 MINSIZE bytes long, it is replenished.
1205
1206 2. Chunks allocated via mmap, which have the second-lowest-order
1207 bit M (IS_MMAPPED) set in their size fields. Because they are
1208 allocated one-by-one, each must contain its own trailing size field.
1209
1210*/
1211
1212/*
1213 ---------- Size and alignment checks and conversions ----------
1214*/
1215
1216/* conversion from malloc headers to user pointers, and back */
1217
1218#define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1219#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1220
1221/* The smallest possible chunk */
1222#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1223
1224/* The smallest size we can malloc is an aligned minimal chunk */
1225
1226#define MINSIZE \
1227 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1228
1229/* Check if m has acceptable alignment */
1230
1231#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1232
1233#define misaligned_chunk(p) \
1234 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1235 & MALLOC_ALIGN_MASK)
1236
1237
1238/*
1239 Check if a request is so large that it would wrap around zero when
1240 padded and aligned. To simplify some other code, the bound is made
1241 low enough so that adding MINSIZE will also not wrap around zero.
1242 */
1243
1244#define REQUEST_OUT_OF_RANGE(req) \
1245 ((unsigned long) (req) >= \
1246 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
1247
1248/* pad request bytes into a usable size -- internal version */
1249
1250#define request2size(req) \
1251 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1252 MINSIZE : \
1253 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1254
xf.lif2330622024-05-15 18:17:18 -07001255/* Same, except also perform an argument and result check. First, we check
1256 that the padding done by request2size didn't result in an integer
1257 overflow. Then we check (using REQUEST_OUT_OF_RANGE) that the resulting
1258 size isn't so large that a later alignment would lead to another integer
1259 overflow. */
1260#define checked_request2size(req, sz) \
1261({ \
1262 (sz) = request2size (req); \
1263 if (((sz) < (req)) \
1264 || REQUEST_OUT_OF_RANGE (sz)) \
1265 { \
1266 __set_errno (ENOMEM); \
1267 return 0; \
1268 } \
1269})
xf.libdd93d52023-05-12 07:10:14 -07001270
1271/*
1272 --------------- Physical chunk operations ---------------
1273 */
1274
1275
1276/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1277#define PREV_INUSE 0x1
1278
1279/* extract inuse bit of previous chunk */
1280#define prev_inuse(p) ((p)->size & PREV_INUSE)
1281
1282
1283/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1284#define IS_MMAPPED 0x2
1285
1286/* check for mmap()'ed chunk */
1287#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1288
1289
1290/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1291 from a non-main arena. This is only set immediately before handing
1292 the chunk to the user, if necessary. */
1293#define NON_MAIN_ARENA 0x4
1294
1295/* check for chunk from non-main arena */
1296#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1297
1298
1299/*
1300 Bits to mask off when extracting size
1301
1302 Note: IS_MMAPPED is intentionally not masked off from size field in
1303 macros for which mmapped chunks should never be seen. This should
1304 cause helpful core dumps to occur if it is tried by accident by
1305 people extending or adapting this malloc.
1306 */
1307#define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1308
1309/* Get size, ignoring use bits */
1310#define chunksize(p) ((p)->size & ~(SIZE_BITS))
1311
1312
1313/* Ptr to next physical malloc_chunk. */
1314#define next_chunk(p) ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))
1315
1316/* Ptr to previous physical malloc_chunk */
1317#define prev_chunk(p) ((mchunkptr) (((char *) (p)) - ((p)->prev_size)))
1318
1319/* Treat space at ptr + offset as a chunk */
1320#define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1321
1322/* extract p's inuse bit */
1323#define inuse(p) \
1324 ((((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1325
1326/* set/clear chunk as being inuse without otherwise disturbing */
1327#define set_inuse(p) \
1328 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1329
1330#define clear_inuse(p) \
1331 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1332
1333
1334/* check/set/clear inuse bits in known places */
1335#define inuse_bit_at_offset(p, s) \
1336 (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE)
1337
1338#define set_inuse_bit_at_offset(p, s) \
1339 (((mchunkptr) (((char *) (p)) + (s)))->size |= PREV_INUSE)
1340
1341#define clear_inuse_bit_at_offset(p, s) \
1342 (((mchunkptr) (((char *) (p)) + (s)))->size &= ~(PREV_INUSE))
1343
1344
1345/* Set size at head, without disturbing its use bit */
1346#define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1347
1348/* Set size/use field */
1349#define set_head(p, s) ((p)->size = (s))
1350
1351/* Set size at footer (only when chunk is not in use) */
1352#define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->prev_size = (s))
1353
1354
1355/*
1356 -------------------- Internal data structures --------------------
1357
1358 All internal state is held in an instance of malloc_state defined
1359 below. There are no other static variables, except in two optional
1360 cases:
1361 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1362 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1363 for mmap.
1364
1365 Beware of lots of tricks that minimize the total bookkeeping space
1366 requirements. The result is a little over 1K bytes (for 4byte
1367 pointers and size_t.)
1368 */
1369
1370/*
1371 Bins
1372
1373 An array of bin headers for free chunks. Each bin is doubly
1374 linked. The bins are approximately proportionally (log) spaced.
1375 There are a lot of these bins (128). This may look excessive, but
1376 works very well in practice. Most bins hold sizes that are
1377 unusual as malloc request sizes, but are more usual for fragments
1378 and consolidated sets of chunks, which is what these bins hold, so
1379 they can be found quickly. All procedures maintain the invariant
1380 that no consolidated chunk physically borders another one, so each
1381 chunk in a list is known to be preceeded and followed by either
1382 inuse chunks or the ends of memory.
1383
1384 Chunks in bins are kept in size order, with ties going to the
1385 approximately least recently used chunk. Ordering isn't needed
1386 for the small bins, which all contain the same-sized chunks, but
1387 facilitates best-fit allocation for larger chunks. These lists
1388 are just sequential. Keeping them in order almost never requires
1389 enough traversal to warrant using fancier ordered data
1390 structures.
1391
1392 Chunks of the same size are linked with the most
1393 recently freed at the front, and allocations are taken from the
1394 back. This results in LRU (FIFO) allocation order, which tends
1395 to give each chunk an equal opportunity to be consolidated with
1396 adjacent freed chunks, resulting in larger free chunks and less
1397 fragmentation.
1398
1399 To simplify use in double-linked lists, each bin header acts
1400 as a malloc_chunk. This avoids special-casing for headers.
1401 But to conserve space and improve locality, we allocate
1402 only the fd/bk pointers of bins, and then use repositioning tricks
1403 to treat these as the fields of a malloc_chunk*.
1404 */
1405
1406typedef struct malloc_chunk *mbinptr;
1407
1408/* addressing -- note that bin_at(0) does not exist */
1409#define bin_at(m, i) \
1410 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1411 - offsetof (struct malloc_chunk, fd))
1412
1413/* analog of ++bin */
1414#define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1415
1416/* Reminders about list directionality within bins */
1417#define first(b) ((b)->fd)
1418#define last(b) ((b)->bk)
1419
1420/* Take a chunk off a bin list */
1421#define unlink(AV, P, BK, FD) { \
1422 FD = P->fd; \
1423 BK = P->bk; \
1424 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1425 malloc_printerr (check_action, "corrupted double-linked list", P, AV); \
1426 else { \
1427 FD->bk = BK; \
1428 BK->fd = FD; \
1429 if (!in_smallbin_range (P->size) \
1430 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1431 if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \
1432 || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \
1433 malloc_printerr (check_action, \
1434 "corrupted double-linked list (not small)", \
1435 P, AV); \
1436 if (FD->fd_nextsize == NULL) { \
1437 if (P->fd_nextsize == P) \
1438 FD->fd_nextsize = FD->bk_nextsize = FD; \
1439 else { \
1440 FD->fd_nextsize = P->fd_nextsize; \
1441 FD->bk_nextsize = P->bk_nextsize; \
1442 P->fd_nextsize->bk_nextsize = FD; \
1443 P->bk_nextsize->fd_nextsize = FD; \
1444 } \
1445 } else { \
1446 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1447 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1448 } \
1449 } \
1450 } \
1451}
1452
1453/*
1454 Indexing
1455
1456 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1457 8 bytes apart. Larger bins are approximately logarithmically spaced:
1458
1459 64 bins of size 8
1460 32 bins of size 64
1461 16 bins of size 512
1462 8 bins of size 4096
1463 4 bins of size 32768
1464 2 bins of size 262144
1465 1 bin of size what's left
1466
1467 There is actually a little bit of slop in the numbers in bin_index
1468 for the sake of speed. This makes no difference elsewhere.
1469
1470 The bins top out around 1MB because we expect to service large
1471 requests via mmap.
1472
1473 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1474 a valid chunk size the small bins are bumped up one.
1475 */
1476
1477#define NBINS 128
1478#define NSMALLBINS 64
1479#define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1480#define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1481#define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1482
1483#define in_smallbin_range(sz) \
1484 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1485
1486#define smallbin_index(sz) \
1487 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1488 + SMALLBIN_CORRECTION)
1489
1490#define largebin_index_32(sz) \
1491 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1492 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1493 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1494 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1495 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1496 126)
1497
1498#define largebin_index_32_big(sz) \
1499 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1500 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1501 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1502 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1503 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1504 126)
1505
1506// XXX It remains to be seen whether it is good to keep the widths of
1507// XXX the buckets the same or whether it should be scaled by a factor
1508// XXX of two as well.
1509#define largebin_index_64(sz) \
1510 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1511 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1512 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1513 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1514 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1515 126)
1516
1517#define largebin_index(sz) \
1518 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1519 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1520 : largebin_index_32 (sz))
1521
1522#define bin_index(sz) \
1523 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1524
1525
1526/*
1527 Unsorted chunks
1528
1529 All remainders from chunk splits, as well as all returned chunks,
1530 are first placed in the "unsorted" bin. They are then placed
1531 in regular bins after malloc gives them ONE chance to be used before
1532 binning. So, basically, the unsorted_chunks list acts as a queue,
1533 with chunks being placed on it in free (and malloc_consolidate),
1534 and taken off (to be either used or placed in bins) in malloc.
1535
1536 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1537 does not have to be taken into account in size comparisons.
1538 */
1539
1540/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1541#define unsorted_chunks(M) (bin_at (M, 1))
1542
1543/*
1544 Top
1545
1546 The top-most available chunk (i.e., the one bordering the end of
1547 available memory) is treated specially. It is never included in
1548 any bin, is used only if no other chunk is available, and is
1549 released back to the system if it is very large (see
1550 M_TRIM_THRESHOLD). Because top initially
1551 points to its own bin with initial zero size, thus forcing
1552 extension on the first malloc request, we avoid having any special
1553 code in malloc to check whether it even exists yet. But we still
1554 need to do so when getting memory from system, so we make
1555 initial_top treat the bin as a legal but unusable chunk during the
1556 interval between initialization and the first call to
1557 sysmalloc. (This is somewhat delicate, since it relies on
1558 the 2 preceding words to be zero during this interval as well.)
1559 */
1560
1561/* Conveniently, the unsorted bin can be used as dummy top on first call */
1562#define initial_top(M) (unsorted_chunks (M))
1563
1564/*
1565 Binmap
1566
1567 To help compensate for the large number of bins, a one-level index
1568 structure is used for bin-by-bin searching. `binmap' is a
1569 bitvector recording whether bins are definitely empty so they can
1570 be skipped over during during traversals. The bits are NOT always
1571 cleared as soon as bins are empty, but instead only
1572 when they are noticed to be empty during traversal in malloc.
1573 */
1574
1575/* Conservatively use 32 bits per map word, even if on 64bit system */
1576#define BINMAPSHIFT 5
1577#define BITSPERMAP (1U << BINMAPSHIFT)
1578#define BINMAPSIZE (NBINS / BITSPERMAP)
1579
1580#define idx2block(i) ((i) >> BINMAPSHIFT)
1581#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1582
1583#define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1584#define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1585#define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1586
1587/*
1588 Fastbins
1589
1590 An array of lists holding recently freed small chunks. Fastbins
1591 are not doubly linked. It is faster to single-link them, and
1592 since chunks are never removed from the middles of these lists,
1593 double linking is not necessary. Also, unlike regular bins, they
1594 are not even processed in FIFO order (they use faster LIFO) since
1595 ordering doesn't much matter in the transient contexts in which
1596 fastbins are normally used.
1597
1598 Chunks in fastbins keep their inuse bit set, so they cannot
1599 be consolidated with other free chunks. malloc_consolidate
1600 releases all chunks in fastbins and consolidates them with
1601 other free chunks.
1602 */
1603
1604typedef struct malloc_chunk *mfastbinptr;
1605#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1606
1607/* offset 2 to use otherwise unindexable first 2 bins */
1608#define fastbin_index(sz) \
1609 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1610
1611
1612/* The maximum fastbin request size we support */
1613#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1614
1615#define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1616
1617/*
1618 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1619 that triggers automatic consolidation of possibly-surrounding
1620 fastbin chunks. This is a heuristic, so the exact value should not
1621 matter too much. It is defined at half the default trim threshold as a
1622 compromise heuristic to only attempt consolidation if it is likely
1623 to lead to trimming. However, it is not dynamically tunable, since
1624 consolidation reduces fragmentation surrounding large chunks even
1625 if trimming is not used.
1626 */
1627
1628#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1629
1630/*
1631 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1632 they are used as flags.
1633 */
1634
1635/*
1636 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1637 some fastbin chunks. It is set true on entering a chunk into any
1638 fastbin, and cleared only in malloc_consolidate.
1639
1640 The truth value is inverted so that have_fastchunks will be true
1641 upon startup (since statics are zero-filled), simplifying
1642 initialization checks.
1643 */
1644
1645#define FASTCHUNKS_BIT (1U)
1646
1647#define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1648#define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1649#define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1650
1651/*
1652 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1653 regions. Otherwise, contiguity is exploited in merging together,
1654 when possible, results from consecutive MORECORE calls.
1655
1656 The initial value comes from MORECORE_CONTIGUOUS, but is
1657 changed dynamically if mmap is ever used as an sbrk substitute.
1658 */
1659
1660#define NONCONTIGUOUS_BIT (2U)
1661
1662#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1663#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1664#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1665#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1666
1667/* ARENA_CORRUPTION_BIT is set if a memory corruption was detected on the
1668 arena. Such an arena is no longer used to allocate chunks. Chunks
1669 allocated in that arena before detecting corruption are not freed. */
1670
1671#define ARENA_CORRUPTION_BIT (4U)
1672
1673#define arena_is_corrupt(A) (((A)->flags & ARENA_CORRUPTION_BIT))
1674#define set_arena_corrupt(A) ((A)->flags |= ARENA_CORRUPTION_BIT)
1675
1676/*
1677 Set value of max_fast.
1678 Use impossibly small value if 0.
1679 Precondition: there are no existing fastbin chunks.
1680 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1681 */
1682
1683#define set_max_fast(s) \
1684 global_max_fast = (((s) == 0) \
1685 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1686#define get_max_fast() global_max_fast
1687
1688
1689/*
1690 ----------- Internal state representation and initialization -----------
1691 */
1692
1693struct malloc_state
1694{
1695 /* Serialize access. */
1696 mutex_t mutex;
1697
1698 /* Flags (formerly in max_fast). */
1699 int flags;
1700
1701 /* Fastbins */
1702 mfastbinptr fastbinsY[NFASTBINS];
1703
1704 /* Base of the topmost chunk -- not otherwise kept in a bin */
1705 mchunkptr top;
1706
1707 /* The remainder from the most recent split of a small request */
1708 mchunkptr last_remainder;
1709
1710 /* Normal bins packed as described above */
1711 mchunkptr bins[NBINS * 2 - 2];
1712
1713 /* Bitmap of bins */
1714 unsigned int binmap[BINMAPSIZE];
1715
1716 /* Linked list */
1717 struct malloc_state *next;
1718
1719 /* Linked list for free arenas. Access to this field is serialized
1720 by free_list_lock in arena.c. */
1721 struct malloc_state *next_free;
1722
1723 /* Number of threads attached to this arena. 0 if the arena is on
1724 the free list. Access to this field is serialized by
1725 free_list_lock in arena.c. */
1726 INTERNAL_SIZE_T attached_threads;
1727
1728 /* Memory allocated from the system in this arena. */
1729 INTERNAL_SIZE_T system_mem;
1730 INTERNAL_SIZE_T max_system_mem;
1731};
1732
1733struct malloc_par
1734{
1735 /* Tunable parameters */
1736 unsigned long trim_threshold;
1737 INTERNAL_SIZE_T top_pad;
1738 INTERNAL_SIZE_T mmap_threshold;
1739 INTERNAL_SIZE_T arena_test;
1740 INTERNAL_SIZE_T arena_max;
1741
1742 /* Memory map support */
1743 int n_mmaps;
1744 int n_mmaps_max;
1745 int max_n_mmaps;
1746 /* the mmap_threshold is dynamic, until the user sets
1747 it manually, at which point we need to disable any
1748 dynamic behavior. */
1749 int no_dyn_threshold;
1750
1751 /* Statistics */
1752 INTERNAL_SIZE_T mmapped_mem;
1753 /*INTERNAL_SIZE_T sbrked_mem;*/
1754 /*INTERNAL_SIZE_T max_sbrked_mem;*/
1755 INTERNAL_SIZE_T max_mmapped_mem;
1756 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
1757
1758 /* First address handed out by MORECORE/sbrk. */
1759 char *sbrk_base;
1760};
1761
1762/* There are several instances of this struct ("arenas") in this
1763 malloc. If you are adapting this malloc in a way that does NOT use
1764 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1765 before using. This malloc relies on the property that malloc_state
1766 is initialized to all zeroes (as is true of C statics). */
1767
1768static struct malloc_state main_arena =
1769{
1770 .mutex = _LIBC_LOCK_INITIALIZER,
1771 .next = &main_arena,
1772 .attached_threads = 1
1773};
1774
1775/* There is only one instance of the malloc parameters. */
1776
1777static struct malloc_par mp_ =
1778{
1779 .top_pad = DEFAULT_TOP_PAD,
1780 .n_mmaps_max = DEFAULT_MMAP_MAX,
1781 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1782 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1783#define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1784 .arena_test = NARENAS_FROM_NCORES (1)
1785};
1786
1787
1788/* Non public mallopt parameters. */
1789#define M_ARENA_TEST -7
1790#define M_ARENA_MAX -8
1791
1792
1793/* Maximum size of memory handled in fastbins. */
1794static INTERNAL_SIZE_T global_max_fast;
1795
1796/*
1797 Initialize a malloc_state struct.
1798
1799 This is called only from within malloc_consolidate, which needs
1800 be called in the same contexts anyway. It is never called directly
1801 outside of malloc_consolidate because some optimizing compilers try
1802 to inline it at all call points, which turns out not to be an
1803 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1804 */
1805
1806static void
1807malloc_init_state (mstate av)
1808{
1809 int i;
1810 mbinptr bin;
1811
1812 /* Establish circular links for normal bins */
1813 for (i = 1; i < NBINS; ++i)
1814 {
1815 bin = bin_at (av, i);
1816 bin->fd = bin->bk = bin;
1817 }
1818
1819#if MORECORE_CONTIGUOUS
1820 if (av != &main_arena)
1821#endif
1822 set_noncontiguous (av);
1823 if (av == &main_arena)
1824 set_max_fast (DEFAULT_MXFAST);
1825 av->flags |= FASTCHUNKS_BIT;
1826
1827 av->top = initial_top (av);
1828}
1829
1830/*
1831 Other internal utilities operating on mstates
1832 */
1833
1834static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1835static int systrim (size_t, mstate);
1836static void malloc_consolidate (mstate);
1837
1838
1839/* -------------- Early definitions for debugging hooks ---------------- */
1840
1841/* Define and initialize the hook variables. These weak definitions must
1842 appear before any use of the variables in a function (arena.c uses one). */
1843#ifndef weak_variable
1844/* In GNU libc we want the hook variables to be weak definitions to
1845 avoid a problem with Emacs. */
1846# define weak_variable weak_function
1847#endif
1848
1849/* Forward declarations. */
1850static void *malloc_hook_ini (size_t sz,
1851 const void *caller) __THROW;
1852static void *realloc_hook_ini (void *ptr, size_t sz,
1853 const void *caller) __THROW;
1854static void *memalign_hook_ini (size_t alignment, size_t sz,
1855 const void *caller) __THROW;
1856
1857void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1858void weak_variable (*__free_hook) (void *__ptr,
1859 const void *) = NULL;
1860void *weak_variable (*__malloc_hook)
1861 (size_t __size, const void *) = malloc_hook_ini;
1862void *weak_variable (*__realloc_hook)
1863 (void *__ptr, size_t __size, const void *)
1864 = realloc_hook_ini;
1865void *weak_variable (*__memalign_hook)
1866 (size_t __alignment, size_t __size, const void *)
1867 = memalign_hook_ini;
1868void weak_variable (*__after_morecore_hook) (void) = NULL;
1869
1870
1871/* ---------------- Error behavior ------------------------------------ */
1872
1873#ifndef DEFAULT_CHECK_ACTION
1874# define DEFAULT_CHECK_ACTION 3
1875#endif
1876
1877static int check_action = DEFAULT_CHECK_ACTION;
1878
1879
1880/* ------------------ Testing support ----------------------------------*/
1881
1882static int perturb_byte;
1883
1884static void
1885alloc_perturb (char *p, size_t n)
1886{
1887 if (__glibc_unlikely (perturb_byte))
1888 memset (p, perturb_byte ^ 0xff, n);
1889}
1890
1891static void
1892free_perturb (char *p, size_t n)
1893{
1894 if (__glibc_unlikely (perturb_byte))
1895 memset (p, perturb_byte, n);
1896}
1897
1898
1899
1900#include <stap-probe.h>
1901
1902/* ------------------- Support for multiple arenas -------------------- */
1903#include "arena.c"
1904
1905/*
1906 Debugging support
1907
1908 These routines make a number of assertions about the states
1909 of data structures that should be true at all times. If any
1910 are not true, it's very likely that a user program has somehow
1911 trashed memory. (It's also possible that there is a coding error
1912 in malloc. In which case, please report it!)
1913 */
1914
1915#if !MALLOC_DEBUG
1916
1917# define check_chunk(A, P)
1918# define check_free_chunk(A, P)
1919# define check_inuse_chunk(A, P)
1920# define check_remalloced_chunk(A, P, N)
1921# define check_malloced_chunk(A, P, N)
1922# define check_malloc_state(A)
1923
1924#else
1925
1926# define check_chunk(A, P) do_check_chunk (A, P)
1927# define check_free_chunk(A, P) do_check_free_chunk (A, P)
1928# define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1929# define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1930# define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1931# define check_malloc_state(A) do_check_malloc_state (A)
1932
1933/*
1934 Properties of all chunks
1935 */
1936
1937static void
1938do_check_chunk (mstate av, mchunkptr p)
1939{
1940 unsigned long sz = chunksize (p);
1941 /* min and max possible addresses assuming contiguous allocation */
1942 char *max_address = (char *) (av->top) + chunksize (av->top);
1943 char *min_address = max_address - av->system_mem;
1944
1945 if (!chunk_is_mmapped (p))
1946 {
1947 /* Has legal address ... */
1948 if (p != av->top)
1949 {
1950 if (contiguous (av))
1951 {
1952 assert (((char *) p) >= min_address);
1953 assert (((char *) p + sz) <= ((char *) (av->top)));
1954 }
1955 }
1956 else
1957 {
1958 /* top size is always at least MINSIZE */
1959 assert ((unsigned long) (sz) >= MINSIZE);
1960 /* top predecessor always marked inuse */
1961 assert (prev_inuse (p));
1962 }
1963 }
1964 else
1965 {
1966 /* address is outside main heap */
1967 if (contiguous (av) && av->top != initial_top (av))
1968 {
1969 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1970 }
1971 /* chunk is page-aligned */
1972 assert (((p->prev_size + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1973 /* mem is aligned */
1974 assert (aligned_OK (chunk2mem (p)));
1975 }
1976}
1977
1978/*
1979 Properties of free chunks
1980 */
1981
1982static void
1983do_check_free_chunk (mstate av, mchunkptr p)
1984{
1985 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1986 mchunkptr next = chunk_at_offset (p, sz);
1987
1988 do_check_chunk (av, p);
1989
1990 /* Chunk must claim to be free ... */
1991 assert (!inuse (p));
1992 assert (!chunk_is_mmapped (p));
1993
1994 /* Unless a special marker, must have OK fields */
1995 if ((unsigned long) (sz) >= MINSIZE)
1996 {
1997 assert ((sz & MALLOC_ALIGN_MASK) == 0);
1998 assert (aligned_OK (chunk2mem (p)));
1999 /* ... matching footer field */
2000 assert (next->prev_size == sz);
2001 /* ... and is fully consolidated */
2002 assert (prev_inuse (p));
2003 assert (next == av->top || inuse (next));
2004
2005 /* ... and has minimally sane links */
2006 assert (p->fd->bk == p);
2007 assert (p->bk->fd == p);
2008 }
2009 else /* markers are always of size SIZE_SZ */
2010 assert (sz == SIZE_SZ);
2011}
2012
2013/*
2014 Properties of inuse chunks
2015 */
2016
2017static void
2018do_check_inuse_chunk (mstate av, mchunkptr p)
2019{
2020 mchunkptr next;
2021
2022 do_check_chunk (av, p);
2023
2024 if (chunk_is_mmapped (p))
2025 return; /* mmapped chunks have no next/prev */
2026
2027 /* Check whether it claims to be in use ... */
2028 assert (inuse (p));
2029
2030 next = next_chunk (p);
2031
2032 /* ... and is surrounded by OK chunks.
2033 Since more things can be checked with free chunks than inuse ones,
2034 if an inuse chunk borders them and debug is on, it's worth doing them.
2035 */
2036 if (!prev_inuse (p))
2037 {
2038 /* Note that we cannot even look at prev unless it is not inuse */
2039 mchunkptr prv = prev_chunk (p);
2040 assert (next_chunk (prv) == p);
2041 do_check_free_chunk (av, prv);
2042 }
2043
2044 if (next == av->top)
2045 {
2046 assert (prev_inuse (next));
2047 assert (chunksize (next) >= MINSIZE);
2048 }
2049 else if (!inuse (next))
2050 do_check_free_chunk (av, next);
2051}
2052
2053/*
2054 Properties of chunks recycled from fastbins
2055 */
2056
2057static void
2058do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2059{
2060 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
2061
2062 if (!chunk_is_mmapped (p))
2063 {
2064 assert (av == arena_for_chunk (p));
2065 if (chunk_non_main_arena (p))
2066 assert (av != &main_arena);
2067 else
2068 assert (av == &main_arena);
2069 }
2070
2071 do_check_inuse_chunk (av, p);
2072
2073 /* Legal size ... */
2074 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2075 assert ((unsigned long) (sz) >= MINSIZE);
2076 /* ... and alignment */
2077 assert (aligned_OK (chunk2mem (p)));
2078 /* chunk is less than MINSIZE more than request */
2079 assert ((long) (sz) - (long) (s) >= 0);
2080 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2081}
2082
2083/*
2084 Properties of nonrecycled chunks at the point they are malloced
2085 */
2086
2087static void
2088do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2089{
2090 /* same as recycled case ... */
2091 do_check_remalloced_chunk (av, p, s);
2092
2093 /*
2094 ... plus, must obey implementation invariant that prev_inuse is
2095 always true of any allocated chunk; i.e., that each allocated
2096 chunk borders either a previously allocated and still in-use
2097 chunk, or the base of its memory arena. This is ensured
2098 by making all allocations from the `lowest' part of any found
2099 chunk. This does not necessarily hold however for chunks
2100 recycled via fastbins.
2101 */
2102
2103 assert (prev_inuse (p));
2104}
2105
2106
2107/*
2108 Properties of malloc_state.
2109
2110 This may be useful for debugging malloc, as well as detecting user
2111 programmer errors that somehow write into malloc_state.
2112
2113 If you are extending or experimenting with this malloc, you can
2114 probably figure out how to hack this routine to print out or
2115 display chunk addresses, sizes, bins, and other instrumentation.
2116 */
2117
2118static void
2119do_check_malloc_state (mstate av)
2120{
2121 int i;
2122 mchunkptr p;
2123 mchunkptr q;
2124 mbinptr b;
2125 unsigned int idx;
2126 INTERNAL_SIZE_T size;
2127 unsigned long total = 0;
2128 int max_fast_bin;
2129
2130 /* internal size_t must be no wider than pointer type */
2131 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2132
2133 /* alignment is a power of 2 */
2134 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2135
2136 /* cannot run remaining checks until fully initialized */
2137 if (av->top == 0 || av->top == initial_top (av))
2138 return;
2139
2140 /* pagesize is a power of 2 */
2141 assert (powerof2(GLRO (dl_pagesize)));
2142
2143 /* A contiguous main_arena is consistent with sbrk_base. */
2144 if (av == &main_arena && contiguous (av))
2145 assert ((char *) mp_.sbrk_base + av->system_mem ==
2146 (char *) av->top + chunksize (av->top));
2147
2148 /* properties of fastbins */
2149
2150 /* max_fast is in allowed range */
2151 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2152
2153 max_fast_bin = fastbin_index (get_max_fast ());
2154
2155 for (i = 0; i < NFASTBINS; ++i)
2156 {
2157 p = fastbin (av, i);
2158
2159 /* The following test can only be performed for the main arena.
2160 While mallopt calls malloc_consolidate to get rid of all fast
2161 bins (especially those larger than the new maximum) this does
2162 only happen for the main arena. Trying to do this for any
2163 other arena would mean those arenas have to be locked and
2164 malloc_consolidate be called for them. This is excessive. And
2165 even if this is acceptable to somebody it still cannot solve
2166 the problem completely since if the arena is locked a
2167 concurrent malloc call might create a new arena which then
2168 could use the newly invalid fast bins. */
2169
2170 /* all bins past max_fast are empty */
2171 if (av == &main_arena && i > max_fast_bin)
2172 assert (p == 0);
2173
2174 while (p != 0)
2175 {
2176 /* each chunk claims to be inuse */
2177 do_check_inuse_chunk (av, p);
2178 total += chunksize (p);
2179 /* chunk belongs in this bin */
2180 assert (fastbin_index (chunksize (p)) == i);
2181 p = p->fd;
2182 }
2183 }
2184
2185 if (total != 0)
2186 assert (have_fastchunks (av));
2187 else if (!have_fastchunks (av))
2188 assert (total == 0);
2189
2190 /* check normal bins */
2191 for (i = 1; i < NBINS; ++i)
2192 {
2193 b = bin_at (av, i);
2194
2195 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2196 if (i >= 2)
2197 {
2198 unsigned int binbit = get_binmap (av, i);
2199 int empty = last (b) == b;
2200 if (!binbit)
2201 assert (empty);
2202 else if (!empty)
2203 assert (binbit);
2204 }
2205
2206 for (p = last (b); p != b; p = p->bk)
2207 {
2208 /* each chunk claims to be free */
2209 do_check_free_chunk (av, p);
2210 size = chunksize (p);
2211 total += size;
2212 if (i >= 2)
2213 {
2214 /* chunk belongs in bin */
2215 idx = bin_index (size);
2216 assert (idx == i);
2217 /* lists are sorted */
2218 assert (p->bk == b ||
2219 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2220
2221 if (!in_smallbin_range (size))
2222 {
2223 if (p->fd_nextsize != NULL)
2224 {
2225 if (p->fd_nextsize == p)
2226 assert (p->bk_nextsize == p);
2227 else
2228 {
2229 if (p->fd_nextsize == first (b))
2230 assert (chunksize (p) < chunksize (p->fd_nextsize));
2231 else
2232 assert (chunksize (p) > chunksize (p->fd_nextsize));
2233
2234 if (p == first (b))
2235 assert (chunksize (p) > chunksize (p->bk_nextsize));
2236 else
2237 assert (chunksize (p) < chunksize (p->bk_nextsize));
2238 }
2239 }
2240 else
2241 assert (p->bk_nextsize == NULL);
2242 }
2243 }
2244 else if (!in_smallbin_range (size))
2245 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2246 /* chunk is followed by a legal chain of inuse chunks */
2247 for (q = next_chunk (p);
2248 (q != av->top && inuse (q) &&
2249 (unsigned long) (chunksize (q)) >= MINSIZE);
2250 q = next_chunk (q))
2251 do_check_inuse_chunk (av, q);
2252 }
2253 }
2254
2255 /* top chunk is OK */
2256 check_chunk (av, av->top);
2257}
2258#endif
2259
2260
2261/* ----------------- Support for debugging hooks -------------------- */
2262#include "hooks.c"
2263
2264
2265/* ----------- Routines dealing with system allocation -------------- */
2266
2267/*
2268 sysmalloc handles malloc cases requiring more memory from the system.
2269 On entry, it is assumed that av->top does not have enough
2270 space to service request for nb bytes, thus requiring that av->top
2271 be extended or replaced.
2272 */
2273
2274static void *
2275sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2276{
2277 mchunkptr old_top; /* incoming value of av->top */
2278 INTERNAL_SIZE_T old_size; /* its size */
2279 char *old_end; /* its end address */
2280
2281 long size; /* arg to first MORECORE or mmap call */
2282 char *brk; /* return value from MORECORE */
2283
2284 long correction; /* arg to 2nd MORECORE call */
2285 char *snd_brk; /* 2nd return val */
2286
2287 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2288 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2289 char *aligned_brk; /* aligned offset into brk */
2290
2291 mchunkptr p; /* the allocated/returned chunk */
2292 mchunkptr remainder; /* remainder from allocation */
2293 unsigned long remainder_size; /* its size */
2294
2295
2296 size_t pagesize = GLRO (dl_pagesize);
2297 bool tried_mmap = false;
2298
2299
2300 /*
2301 If have mmap, and the request size meets the mmap threshold, and
2302 the system supports mmap, and there are few enough currently
2303 allocated mmapped regions, try to directly map this request
2304 rather than expanding top.
2305 */
2306
2307 if (av == NULL
2308 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2309 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2310 {
2311 char *mm; /* return value from mmap call*/
2312
2313 try_mmap:
2314 /*
2315 Round up size to nearest page. For mmapped chunks, the overhead
2316 is one SIZE_SZ unit larger than for normal chunks, because there
2317 is no following chunk whose prev_size field could be used.
2318
2319 See the front_misalign handling below, for glibc there is no
2320 need for further alignments unless we have have high alignment.
2321 */
2322 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2323 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2324 else
2325 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2326 tried_mmap = true;
2327
2328 /* Don't try if size wraps around 0 */
2329 if ((unsigned long) (size) > (unsigned long) (nb))
2330 {
2331 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2332
2333 if (mm != MAP_FAILED)
2334 {
2335 /*
2336 The offset to the start of the mmapped region is stored
2337 in the prev_size field of the chunk. This allows us to adjust
2338 returned start address to meet alignment requirements here
2339 and in memalign(), and still be able to compute proper
2340 address argument for later munmap in free() and realloc().
2341 */
2342
2343 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2344 {
2345 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2346 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2347 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2348 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2349 front_misalign = 0;
2350 }
2351 else
2352 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2353 if (front_misalign > 0)
2354 {
2355 correction = MALLOC_ALIGNMENT - front_misalign;
2356 p = (mchunkptr) (mm + correction);
2357 p->prev_size = correction;
2358 set_head (p, (size - correction) | IS_MMAPPED);
2359 }
2360 else
2361 {
2362 p = (mchunkptr) mm;
2363 set_head (p, size | IS_MMAPPED);
2364 }
2365
2366 /* update statistics */
2367
2368 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2369 atomic_max (&mp_.max_n_mmaps, new);
2370
2371 unsigned long sum;
2372 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2373 atomic_max (&mp_.max_mmapped_mem, sum);
2374
2375 check_chunk (av, p);
2376
2377 return chunk2mem (p);
2378 }
2379 }
2380 }
2381
2382 /* There are no usable arenas and mmap also failed. */
2383 if (av == NULL)
2384 return 0;
2385
2386 /* Record incoming configuration of top */
2387
2388 old_top = av->top;
2389 old_size = chunksize (old_top);
2390 old_end = (char *) (chunk_at_offset (old_top, old_size));
2391
2392 brk = snd_brk = (char *) (MORECORE_FAILURE);
2393
2394 /*
2395 If not the first time through, we require old_size to be
2396 at least MINSIZE and to have prev_inuse set.
2397 */
2398
2399 assert ((old_top == initial_top (av) && old_size == 0) ||
2400 ((unsigned long) (old_size) >= MINSIZE &&
2401 prev_inuse (old_top) &&
2402 ((unsigned long) old_end & (pagesize - 1)) == 0));
2403
2404 /* Precondition: not enough current space to satisfy nb request */
2405 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2406
2407
2408 if (av != &main_arena)
2409 {
2410 heap_info *old_heap, *heap;
2411 size_t old_heap_size;
2412
2413 /* First try to extend the current heap. */
2414 old_heap = heap_for_ptr (old_top);
2415 old_heap_size = old_heap->size;
2416 if ((long) (MINSIZE + nb - old_size) > 0
2417 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2418 {
2419 av->system_mem += old_heap->size - old_heap_size;
2420 arena_mem += old_heap->size - old_heap_size;
2421 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2422 | PREV_INUSE);
2423 }
2424 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2425 {
2426 /* Use a newly allocated heap. */
2427 heap->ar_ptr = av;
2428 heap->prev = old_heap;
2429 av->system_mem += heap->size;
2430 arena_mem += heap->size;
2431 /* Set up the new top. */
2432 top (av) = chunk_at_offset (heap, sizeof (*heap));
2433 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2434
2435 /* Setup fencepost and free the old top chunk with a multiple of
2436 MALLOC_ALIGNMENT in size. */
2437 /* The fencepost takes at least MINSIZE bytes, because it might
2438 become the top chunk again later. Note that a footer is set
2439 up, too, although the chunk is marked in use. */
2440 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2441 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2442 if (old_size >= MINSIZE)
2443 {
2444 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2445 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2446 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2447 _int_free (av, old_top, 1);
2448 }
2449 else
2450 {
2451 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2452 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2453 }
2454 }
2455 else if (!tried_mmap)
2456 /* We can at least try to use to mmap memory. */
2457 goto try_mmap;
2458 }
2459 else /* av == main_arena */
2460
2461
2462 { /* Request enough space for nb + pad + overhead */
2463 size = nb + mp_.top_pad + MINSIZE;
2464
2465 /*
2466 If contiguous, we can subtract out existing space that we hope to
2467 combine with new space. We add it back later only if
2468 we don't actually get contiguous space.
2469 */
2470
2471 if (contiguous (av))
2472 size -= old_size;
2473
2474 /*
2475 Round to a multiple of page size.
2476 If MORECORE is not contiguous, this ensures that we only call it
2477 with whole-page arguments. And if MORECORE is contiguous and
2478 this is not first time through, this preserves page-alignment of
2479 previous calls. Otherwise, we correct to page-align below.
2480 */
2481
2482 size = ALIGN_UP (size, pagesize);
2483
2484 /*
2485 Don't try to call MORECORE if argument is so big as to appear
2486 negative. Note that since mmap takes size_t arg, it may succeed
2487 below even if we cannot call MORECORE.
2488 */
2489
2490 if (size > 0)
2491 {
2492 brk = (char *) (MORECORE (size));
2493 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2494 }
2495
2496 if (brk != (char *) (MORECORE_FAILURE))
2497 {
2498 /* Call the `morecore' hook if necessary. */
2499 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2500 if (__builtin_expect (hook != NULL, 0))
2501 (*hook)();
2502 }
2503 else
2504 {
2505 /*
2506 If have mmap, try using it as a backup when MORECORE fails or
2507 cannot be used. This is worth doing on systems that have "holes" in
2508 address space, so sbrk cannot extend to give contiguous space, but
2509 space is available elsewhere. Note that we ignore mmap max count
2510 and threshold limits, since the space will not be used as a
2511 segregated mmap region.
2512 */
2513
2514 /* Cannot merge with old top, so add its size back in */
2515 if (contiguous (av))
2516 size = ALIGN_UP (size + old_size, pagesize);
2517
2518 /* If we are relying on mmap as backup, then use larger units */
2519 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2520 size = MMAP_AS_MORECORE_SIZE;
2521
2522 /* Don't try if size wraps around 0 */
2523 if ((unsigned long) (size) > (unsigned long) (nb))
2524 {
2525 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2526
2527 if (mbrk != MAP_FAILED)
2528 {
2529 /* We do not need, and cannot use, another sbrk call to find end */
2530 brk = mbrk;
2531 snd_brk = brk + size;
2532
2533 /*
2534 Record that we no longer have a contiguous sbrk region.
2535 After the first time mmap is used as backup, we do not
2536 ever rely on contiguous space since this could incorrectly
2537 bridge regions.
2538 */
2539 set_noncontiguous (av);
2540 }
2541 }
2542 }
2543
2544 if (brk != (char *) (MORECORE_FAILURE))
2545 {
2546 if (mp_.sbrk_base == 0)
2547 mp_.sbrk_base = brk;
2548 av->system_mem += size;
2549
2550 /*
2551 If MORECORE extends previous space, we can likewise extend top size.
2552 */
2553
2554 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2555 set_head (old_top, (size + old_size) | PREV_INUSE);
2556
2557 else if (contiguous (av) && old_size && brk < old_end)
2558 {
2559 /* Oops! Someone else killed our space.. Can't touch anything. */
2560 malloc_printerr (3, "break adjusted to free malloc space", brk,
2561 av);
2562 }
2563
2564 /*
2565 Otherwise, make adjustments:
2566
2567 * If the first time through or noncontiguous, we need to call sbrk
2568 just to find out where the end of memory lies.
2569
2570 * We need to ensure that all returned chunks from malloc will meet
2571 MALLOC_ALIGNMENT
2572
2573 * If there was an intervening foreign sbrk, we need to adjust sbrk
2574 request size to account for fact that we will not be able to
2575 combine new space with existing space in old_top.
2576
2577 * Almost all systems internally allocate whole pages at a time, in
2578 which case we might as well use the whole last page of request.
2579 So we allocate enough more memory to hit a page boundary now,
2580 which in turn causes future contiguous calls to page-align.
2581 */
2582
2583 else
2584 {
2585 front_misalign = 0;
2586 end_misalign = 0;
2587 correction = 0;
2588 aligned_brk = brk;
2589
2590 /* handle contiguous cases */
2591 if (contiguous (av))
2592 {
2593 /* Count foreign sbrk as system_mem. */
2594 if (old_size)
2595 av->system_mem += brk - old_end;
2596
2597 /* Guarantee alignment of first new chunk made from this space */
2598
2599 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2600 if (front_misalign > 0)
2601 {
2602 /*
2603 Skip over some bytes to arrive at an aligned position.
2604 We don't need to specially mark these wasted front bytes.
2605 They will never be accessed anyway because
2606 prev_inuse of av->top (and any chunk created from its start)
2607 is always true after initialization.
2608 */
2609
2610 correction = MALLOC_ALIGNMENT - front_misalign;
2611 aligned_brk += correction;
2612 }
2613
2614 /*
2615 If this isn't adjacent to existing space, then we will not
2616 be able to merge with old_top space, so must add to 2nd request.
2617 */
2618
2619 correction += old_size;
2620
2621 /* Extend the end address to hit a page boundary */
2622 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2623 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2624
2625 assert (correction >= 0);
2626 snd_brk = (char *) (MORECORE (correction));
2627
2628 /*
2629 If can't allocate correction, try to at least find out current
2630 brk. It might be enough to proceed without failing.
2631
2632 Note that if second sbrk did NOT fail, we assume that space
2633 is contiguous with first sbrk. This is a safe assumption unless
2634 program is multithreaded but doesn't use locks and a foreign sbrk
2635 occurred between our first and second calls.
2636 */
2637
2638 if (snd_brk == (char *) (MORECORE_FAILURE))
2639 {
2640 correction = 0;
2641 snd_brk = (char *) (MORECORE (0));
2642 }
2643 else
2644 {
2645 /* Call the `morecore' hook if necessary. */
2646 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2647 if (__builtin_expect (hook != NULL, 0))
2648 (*hook)();
2649 }
2650 }
2651
2652 /* handle non-contiguous cases */
2653 else
2654 {
2655 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2656 /* MORECORE/mmap must correctly align */
2657 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2658 else
2659 {
2660 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2661 if (front_misalign > 0)
2662 {
2663 /*
2664 Skip over some bytes to arrive at an aligned position.
2665 We don't need to specially mark these wasted front bytes.
2666 They will never be accessed anyway because
2667 prev_inuse of av->top (and any chunk created from its start)
2668 is always true after initialization.
2669 */
2670
2671 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2672 }
2673 }
2674
2675 /* Find out current end of memory */
2676 if (snd_brk == (char *) (MORECORE_FAILURE))
2677 {
2678 snd_brk = (char *) (MORECORE (0));
2679 }
2680 }
2681
2682 /* Adjust top based on results of second sbrk */
2683 if (snd_brk != (char *) (MORECORE_FAILURE))
2684 {
2685 av->top = (mchunkptr) aligned_brk;
2686 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2687 av->system_mem += correction;
2688
2689 /*
2690 If not the first time through, we either have a
2691 gap due to foreign sbrk or a non-contiguous region. Insert a
2692 double fencepost at old_top to prevent consolidation with space
2693 we don't own. These fenceposts are artificial chunks that are
2694 marked as inuse and are in any case too small to use. We need
2695 two to make sizes and alignments work out.
2696 */
2697
2698 if (old_size != 0)
2699 {
2700 /*
2701 Shrink old_top to insert fenceposts, keeping size a
2702 multiple of MALLOC_ALIGNMENT. We know there is at least
2703 enough space in old_top to do this.
2704 */
2705 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2706 set_head (old_top, old_size | PREV_INUSE);
2707
2708 /*
2709 Note that the following assignments completely overwrite
2710 old_top when old_size was previously MINSIZE. This is
2711 intentional. We need the fencepost, even if old_top otherwise gets
2712 lost.
2713 */
2714 chunk_at_offset (old_top, old_size)->size =
2715 (2 * SIZE_SZ) | PREV_INUSE;
2716
2717 chunk_at_offset (old_top, old_size + 2 * SIZE_SZ)->size =
2718 (2 * SIZE_SZ) | PREV_INUSE;
2719
2720 /* If possible, release the rest. */
2721 if (old_size >= MINSIZE)
2722 {
2723 _int_free (av, old_top, 1);
2724 }
2725 }
2726 }
2727 }
2728 }
2729 } /* if (av != &main_arena) */
2730
2731 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2732 av->max_system_mem = av->system_mem;
2733 check_malloc_state (av);
2734
2735 /* finally, do the allocation */
2736 p = av->top;
2737 size = chunksize (p);
2738
2739 /* check that one of the above allocation paths succeeded */
2740 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2741 {
2742 remainder_size = size - nb;
2743 remainder = chunk_at_offset (p, nb);
2744 av->top = remainder;
2745 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2746 set_head (remainder, remainder_size | PREV_INUSE);
2747 check_malloced_chunk (av, p, nb);
2748 return chunk2mem (p);
2749 }
2750
2751 /* catch all failure paths */
2752 __set_errno (ENOMEM);
2753 return 0;
2754}
2755
2756
2757/*
2758 systrim is an inverse of sorts to sysmalloc. It gives memory back
2759 to the system (via negative arguments to sbrk) if there is unused
2760 memory at the `high' end of the malloc pool. It is called
2761 automatically by free() when top space exceeds the trim
2762 threshold. It is also called by the public malloc_trim routine. It
2763 returns 1 if it actually released any memory, else 0.
2764 */
2765
2766static int
2767systrim (size_t pad, mstate av)
2768{
2769 long top_size; /* Amount of top-most memory */
2770 long extra; /* Amount to release */
2771 long released; /* Amount actually released */
2772 char *current_brk; /* address returned by pre-check sbrk call */
2773 char *new_brk; /* address returned by post-check sbrk call */
2774 size_t pagesize;
2775 long top_area;
2776
2777 pagesize = GLRO (dl_pagesize);
2778 top_size = chunksize (av->top);
2779
2780 top_area = top_size - MINSIZE - 1;
2781 if (top_area <= pad)
2782 return 0;
2783
2784 /* Release in pagesize units and round down to the nearest page. */
2785 extra = ALIGN_DOWN(top_area - pad, pagesize);
2786
2787 if (extra == 0)
2788 return 0;
2789
2790 /*
2791 Only proceed if end of memory is where we last set it.
2792 This avoids problems if there were foreign sbrk calls.
2793 */
2794 current_brk = (char *) (MORECORE (0));
2795 if (current_brk == (char *) (av->top) + top_size)
2796 {
2797 /*
2798 Attempt to release memory. We ignore MORECORE return value,
2799 and instead call again to find out where new end of memory is.
2800 This avoids problems if first call releases less than we asked,
2801 of if failure somehow altered brk value. (We could still
2802 encounter problems if it altered brk in some very bad way,
2803 but the only thing we can do is adjust anyway, which will cause
2804 some downstream failure.)
2805 */
2806
2807 MORECORE (-extra);
2808 /* Call the `morecore' hook if necessary. */
2809 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2810 if (__builtin_expect (hook != NULL, 0))
2811 (*hook)();
2812 new_brk = (char *) (MORECORE (0));
2813
2814 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2815
2816 if (new_brk != (char *) MORECORE_FAILURE)
2817 {
2818 released = (long) (current_brk - new_brk);
2819
2820 if (released != 0)
2821 {
2822 /* Success. Adjust top. */
2823 av->system_mem -= released;
2824 set_head (av->top, (top_size - released) | PREV_INUSE);
2825 check_malloc_state (av);
2826 return 1;
2827 }
2828 }
2829 }
2830 return 0;
2831}
2832
2833static void
2834internal_function
2835munmap_chunk (mchunkptr p)
2836{
2837 INTERNAL_SIZE_T size = chunksize (p);
2838
2839 assert (chunk_is_mmapped (p));
2840
2841 uintptr_t block = (uintptr_t) p - p->prev_size;
2842 size_t total_size = p->prev_size + size;
2843 /* Unfortunately we have to do the compilers job by hand here. Normally
2844 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2845 page size. But gcc does not recognize the optimization possibility
2846 (in the moment at least) so we combine the two values into one before
2847 the bit test. */
2848 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
2849 {
2850 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
2851 chunk2mem (p), NULL);
2852 return;
2853 }
2854
2855 atomic_decrement (&mp_.n_mmaps);
2856 atomic_add (&mp_.mmapped_mem, -total_size);
2857
2858 /* If munmap failed the process virtual memory address space is in a
2859 bad shape. Just leave the block hanging around, the process will
2860 terminate shortly anyway since not much can be done. */
2861 __munmap ((char *) block, total_size);
2862}
2863
2864#if HAVE_MREMAP
2865
2866static mchunkptr
2867internal_function
2868mremap_chunk (mchunkptr p, size_t new_size)
2869{
2870 size_t pagesize = GLRO (dl_pagesize);
2871 INTERNAL_SIZE_T offset = p->prev_size;
2872 INTERNAL_SIZE_T size = chunksize (p);
2873 char *cp;
2874
2875 assert (chunk_is_mmapped (p));
2876 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
2877
2878 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2879 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
2880
2881 /* No need to remap if the number of pages does not change. */
2882 if (size + offset == new_size)
2883 return p;
2884
2885 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2886 MREMAP_MAYMOVE);
2887
2888 if (cp == MAP_FAILED)
2889 return 0;
2890
2891 p = (mchunkptr) (cp + offset);
2892
2893 assert (aligned_OK (chunk2mem (p)));
2894
2895 assert ((p->prev_size == offset));
2896 set_head (p, (new_size - offset) | IS_MMAPPED);
2897
2898 INTERNAL_SIZE_T new;
2899 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
2900 + new_size - size - offset;
2901 atomic_max (&mp_.max_mmapped_mem, new);
2902 return p;
2903}
2904#endif /* HAVE_MREMAP */
2905
2906/*------------------------ Public wrappers. --------------------------------*/
2907
2908void *
2909__libc_malloc (size_t bytes)
2910{
2911 mstate ar_ptr;
2912 void *victim;
2913
2914 void *(*hook) (size_t, const void *)
2915 = atomic_forced_read (__malloc_hook);
2916 if (__builtin_expect (hook != NULL, 0))
2917 return (*hook)(bytes, RETURN_ADDRESS (0));
2918
2919 arena_get (ar_ptr, bytes);
2920
2921 victim = _int_malloc (ar_ptr, bytes);
2922 /* Retry with another arena only if we were able to find a usable arena
2923 before. */
2924 if (!victim && ar_ptr != NULL)
2925 {
2926 LIBC_PROBE (memory_malloc_retry, 1, bytes);
2927 ar_ptr = arena_get_retry (ar_ptr, bytes);
2928 victim = _int_malloc (ar_ptr, bytes);
2929 }
2930
2931 if (ar_ptr != NULL)
2932 (void) mutex_unlock (&ar_ptr->mutex);
2933
2934 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
2935 ar_ptr == arena_for_chunk (mem2chunk (victim)));
2936 return victim;
2937}
2938libc_hidden_def (__libc_malloc)
2939
2940void
2941__libc_free (void *mem)
2942{
2943 mstate ar_ptr;
2944 mchunkptr p; /* chunk corresponding to mem */
2945
2946 void (*hook) (void *, const void *)
2947 = atomic_forced_read (__free_hook);
2948 if (__builtin_expect (hook != NULL, 0))
2949 {
2950 (*hook)(mem, RETURN_ADDRESS (0));
2951 return;
2952 }
2953
2954 if (mem == 0) /* free(0) has no effect */
2955 return;
2956
2957 p = mem2chunk (mem);
2958
2959 if (chunk_is_mmapped (p)) /* release mmapped memory. */
2960 {
2961 /* see if the dynamic brk/mmap threshold needs adjusting */
2962 if (!mp_.no_dyn_threshold
2963 && p->size > mp_.mmap_threshold
2964 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2965 {
2966 mp_.mmap_threshold = chunksize (p);
2967 mp_.trim_threshold = 2 * mp_.mmap_threshold;
2968 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
2969 mp_.mmap_threshold, mp_.trim_threshold);
2970 }
2971 munmap_chunk (p);
2972 return;
2973 }
2974
2975 ar_ptr = arena_for_chunk (p);
2976 _int_free (ar_ptr, p, 0);
2977}
2978libc_hidden_def (__libc_free)
2979
2980void *
2981__libc_realloc (void *oldmem, size_t bytes)
2982{
2983 mstate ar_ptr;
2984 INTERNAL_SIZE_T nb; /* padded request size */
2985
2986 void *newp; /* chunk to return */
2987
2988 void *(*hook) (void *, size_t, const void *) =
2989 atomic_forced_read (__realloc_hook);
2990 if (__builtin_expect (hook != NULL, 0))
2991 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
2992
2993#if REALLOC_ZERO_BYTES_FREES
2994 if (bytes == 0 && oldmem != NULL)
2995 {
2996 __libc_free (oldmem); return 0;
2997 }
2998#endif
2999
3000 /* realloc of null is supposed to be same as malloc */
3001 if (oldmem == 0)
3002 return __libc_malloc (bytes);
3003
3004 /* chunk corresponding to oldmem */
3005 const mchunkptr oldp = mem2chunk (oldmem);
3006 /* its size */
3007 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3008
3009 if (chunk_is_mmapped (oldp))
3010 ar_ptr = NULL;
3011 else
3012 ar_ptr = arena_for_chunk (oldp);
3013
3014 /* Little security check which won't hurt performance: the
3015 allocator never wrapps around at the end of the address space.
3016 Therefore we can exclude some size values which might appear
3017 here by accident or by "design" from some intruder. */
3018 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3019 || __builtin_expect (misaligned_chunk (oldp), 0))
3020 {
3021 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem,
3022 ar_ptr);
3023 return NULL;
3024 }
3025
3026 checked_request2size (bytes, nb);
3027
3028 if (chunk_is_mmapped (oldp))
3029 {
3030 void *newmem;
3031
3032#if HAVE_MREMAP
3033 newp = mremap_chunk (oldp, nb);
3034 if (newp)
3035 return chunk2mem (newp);
3036#endif
3037 /* Note the extra SIZE_SZ overhead. */
3038 if (oldsize - SIZE_SZ >= nb)
3039 return oldmem; /* do nothing */
3040
3041 /* Must alloc, copy, free. */
3042 newmem = __libc_malloc (bytes);
3043 if (newmem == 0)
3044 return 0; /* propagate failure */
3045
3046 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3047 munmap_chunk (oldp);
3048 return newmem;
3049 }
3050
3051 (void) mutex_lock (&ar_ptr->mutex);
3052
3053 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3054
3055 (void) mutex_unlock (&ar_ptr->mutex);
3056 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3057 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3058
3059 if (newp == NULL)
3060 {
3061 /* Try harder to allocate memory in other arenas. */
3062 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3063 newp = __libc_malloc (bytes);
3064 if (newp != NULL)
3065 {
3066 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3067 _int_free (ar_ptr, oldp, 0);
3068 }
3069 }
3070
3071 return newp;
3072}
3073libc_hidden_def (__libc_realloc)
3074
3075void *
3076__libc_memalign (size_t alignment, size_t bytes)
3077{
3078 void *address = RETURN_ADDRESS (0);
3079 return _mid_memalign (alignment, bytes, address);
3080}
3081
3082static void *
3083_mid_memalign (size_t alignment, size_t bytes, void *address)
3084{
3085 mstate ar_ptr;
3086 void *p;
3087
3088 void *(*hook) (size_t, size_t, const void *) =
3089 atomic_forced_read (__memalign_hook);
3090 if (__builtin_expect (hook != NULL, 0))
3091 return (*hook)(alignment, bytes, address);
3092
3093 /* If we need less alignment than we give anyway, just relay to malloc. */
3094 if (alignment <= MALLOC_ALIGNMENT)
3095 return __libc_malloc (bytes);
3096
3097 /* Otherwise, ensure that it is at least a minimum chunk size */
3098 if (alignment < MINSIZE)
3099 alignment = MINSIZE;
3100
3101 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3102 power of 2 and will cause overflow in the check below. */
3103 if (alignment > SIZE_MAX / 2 + 1)
3104 {
3105 __set_errno (EINVAL);
3106 return 0;
3107 }
3108
3109 /* Check for overflow. */
3110 if (bytes > SIZE_MAX - alignment - MINSIZE)
3111 {
3112 __set_errno (ENOMEM);
3113 return 0;
3114 }
3115
3116
3117 /* Make sure alignment is power of 2. */
3118 if (!powerof2 (alignment))
3119 {
3120 size_t a = MALLOC_ALIGNMENT * 2;
3121 while (a < alignment)
3122 a <<= 1;
3123 alignment = a;
3124 }
3125
3126 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3127
3128 p = _int_memalign (ar_ptr, alignment, bytes);
3129 if (!p && ar_ptr != NULL)
3130 {
3131 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3132 ar_ptr = arena_get_retry (ar_ptr, bytes);
3133 p = _int_memalign (ar_ptr, alignment, bytes);
3134 }
3135
3136 if (ar_ptr != NULL)
3137 (void) mutex_unlock (&ar_ptr->mutex);
3138
3139 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3140 ar_ptr == arena_for_chunk (mem2chunk (p)));
3141 return p;
3142}
3143/* For ISO C11. */
3144weak_alias (__libc_memalign, aligned_alloc)
3145libc_hidden_def (__libc_memalign)
3146
3147void *
3148__libc_valloc (size_t bytes)
3149{
3150 if (__malloc_initialized < 0)
3151 ptmalloc_init ();
3152
3153 void *address = RETURN_ADDRESS (0);
3154 size_t pagesize = GLRO (dl_pagesize);
3155 return _mid_memalign (pagesize, bytes, address);
3156}
3157
3158void *
3159__libc_pvalloc (size_t bytes)
3160{
3161 if (__malloc_initialized < 0)
3162 ptmalloc_init ();
3163
3164 void *address = RETURN_ADDRESS (0);
3165 size_t pagesize = GLRO (dl_pagesize);
3166 size_t rounded_bytes = ALIGN_UP (bytes, pagesize);
3167
3168 /* Check for overflow. */
3169 if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE)
3170 {
3171 __set_errno (ENOMEM);
3172 return 0;
3173 }
3174
3175 return _mid_memalign (pagesize, rounded_bytes, address);
3176}
3177
3178void *
3179__libc_calloc (size_t n, size_t elem_size)
3180{
3181 mstate av;
3182 mchunkptr oldtop, p;
3183 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3184 void *mem;
3185 unsigned long clearsize;
3186 unsigned long nclears;
3187 INTERNAL_SIZE_T *d;
3188
3189 /* size_t is unsigned so the behavior on overflow is defined. */
3190 bytes = n * elem_size;
3191#define HALF_INTERNAL_SIZE_T \
3192 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3193 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3194 {
3195 if (elem_size != 0 && bytes / elem_size != n)
3196 {
3197 __set_errno (ENOMEM);
3198 return 0;
3199 }
3200 }
3201
3202 void *(*hook) (size_t, const void *) =
3203 atomic_forced_read (__malloc_hook);
3204 if (__builtin_expect (hook != NULL, 0))
3205 {
3206 sz = bytes;
3207 mem = (*hook)(sz, RETURN_ADDRESS (0));
3208 if (mem == 0)
3209 return 0;
3210
3211 return memset (mem, 0, sz);
3212 }
3213
3214 sz = bytes;
3215
3216 arena_get (av, sz);
3217 if (av)
3218 {
3219 /* Check if we hand out the top chunk, in which case there may be no
3220 need to clear. */
3221#if MORECORE_CLEARS
3222 oldtop = top (av);
3223 oldtopsize = chunksize (top (av));
3224# if MORECORE_CLEARS < 2
3225 /* Only newly allocated memory is guaranteed to be cleared. */
3226 if (av == &main_arena &&
3227 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3228 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3229# endif
3230 if (av != &main_arena)
3231 {
3232 heap_info *heap = heap_for_ptr (oldtop);
3233 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3234 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3235 }
3236#endif
3237 }
3238 else
3239 {
3240 /* No usable arenas. */
3241 oldtop = 0;
3242 oldtopsize = 0;
3243 }
3244 mem = _int_malloc (av, sz);
3245
3246
3247 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3248 av == arena_for_chunk (mem2chunk (mem)));
3249
3250 if (mem == 0 && av != NULL)
3251 {
3252 LIBC_PROBE (memory_calloc_retry, 1, sz);
3253 av = arena_get_retry (av, sz);
3254 mem = _int_malloc (av, sz);
3255 }
3256
3257 if (av != NULL)
3258 (void) mutex_unlock (&av->mutex);
3259
3260 /* Allocation failed even after a retry. */
3261 if (mem == 0)
3262 return 0;
3263
3264 p = mem2chunk (mem);
3265
3266 /* Two optional cases in which clearing not necessary */
3267 if (chunk_is_mmapped (p))
3268 {
3269 if (__builtin_expect (perturb_byte, 0))
3270 return memset (mem, 0, sz);
3271
3272 return mem;
3273 }
3274
3275 csz = chunksize (p);
3276
3277#if MORECORE_CLEARS
3278 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3279 {
3280 /* clear only the bytes from non-freshly-sbrked memory */
3281 csz = oldtopsize;
3282 }
3283#endif
3284
3285 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3286 contents have an odd number of INTERNAL_SIZE_T-sized words;
3287 minimally 3. */
3288 d = (INTERNAL_SIZE_T *) mem;
3289 clearsize = csz - SIZE_SZ;
3290 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3291 assert (nclears >= 3);
3292
3293 if (nclears > 9)
3294 return memset (d, 0, clearsize);
3295
3296 else
3297 {
3298 *(d + 0) = 0;
3299 *(d + 1) = 0;
3300 *(d + 2) = 0;
3301 if (nclears > 4)
3302 {
3303 *(d + 3) = 0;
3304 *(d + 4) = 0;
3305 if (nclears > 6)
3306 {
3307 *(d + 5) = 0;
3308 *(d + 6) = 0;
3309 if (nclears > 8)
3310 {
3311 *(d + 7) = 0;
3312 *(d + 8) = 0;
3313 }
3314 }
3315 }
3316 }
3317
3318 return mem;
3319}
3320
3321/*
3322 ------------------------------ malloc ------------------------------
3323 */
3324
3325static void *
3326_int_malloc (mstate av, size_t bytes)
3327{
3328 INTERNAL_SIZE_T nb; /* normalized request size */
3329 unsigned int idx; /* associated bin index */
3330 mbinptr bin; /* associated bin */
3331
3332 mchunkptr victim; /* inspected/selected chunk */
3333 INTERNAL_SIZE_T size; /* its size */
3334 int victim_index; /* its bin index */
3335
3336 mchunkptr remainder; /* remainder from a split */
3337 unsigned long remainder_size; /* its size */
3338
3339 unsigned int block; /* bit map traverser */
3340 unsigned int bit; /* bit map traverser */
3341 unsigned int map; /* current word of binmap */
3342
3343 mchunkptr fwd; /* misc temp for linking */
3344 mchunkptr bck; /* misc temp for linking */
3345
3346 const char *errstr = NULL;
3347
3348 /*
3349 Convert request size to internal form by adding SIZE_SZ bytes
3350 overhead plus possibly more to obtain necessary alignment and/or
3351 to obtain a size of at least MINSIZE, the smallest allocatable
3352 size. Also, checked_request2size traps (returning 0) request sizes
3353 that are so large that they wrap around zero when padded and
3354 aligned.
3355 */
3356
3357 checked_request2size (bytes, nb);
3358
3359 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3360 mmap. */
3361 if (__glibc_unlikely (av == NULL))
3362 {
3363 void *p = sysmalloc (nb, av);
3364 if (p != NULL)
3365 alloc_perturb (p, bytes);
3366 return p;
3367 }
3368
3369 /*
3370 If the size qualifies as a fastbin, first check corresponding bin.
3371 This code is safe to execute even if av is not yet initialized, so we
3372 can try it without checking, which saves some time on this fast path.
3373 */
3374
3375 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3376 {
3377 idx = fastbin_index (nb);
3378 mfastbinptr *fb = &fastbin (av, idx);
3379 mchunkptr pp = *fb;
3380 do
3381 {
3382 victim = pp;
3383 if (victim == NULL)
3384 break;
3385 }
3386 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
3387 != victim);
3388 if (victim != 0)
3389 {
3390 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3391 {
3392 errstr = "malloc(): memory corruption (fast)";
3393 errout:
3394 malloc_printerr (check_action, errstr, chunk2mem (victim), av);
3395 return NULL;
3396 }
3397 check_remalloced_chunk (av, victim, nb);
3398 void *p = chunk2mem (victim);
3399 alloc_perturb (p, bytes);
3400 return p;
3401 }
3402 }
3403
3404 /*
3405 If a small request, check regular bin. Since these "smallbins"
3406 hold one size each, no searching within bins is necessary.
3407 (For a large request, we need to wait until unsorted chunks are
3408 processed to find best fit. But for small ones, fits are exact
3409 anyway, so we can check now, which is faster.)
3410 */
3411
3412 if (in_smallbin_range (nb))
3413 {
3414 idx = smallbin_index (nb);
3415 bin = bin_at (av, idx);
3416
3417 if ((victim = last (bin)) != bin)
3418 {
3419 if (victim == 0) /* initialization check */
3420 malloc_consolidate (av);
3421 else
3422 {
3423 bck = victim->bk;
3424 if (__glibc_unlikely (bck->fd != victim))
3425 {
3426 errstr = "malloc(): smallbin double linked list corrupted";
3427 goto errout;
3428 }
3429 set_inuse_bit_at_offset (victim, nb);
3430 bin->bk = bck;
3431 bck->fd = bin;
3432
3433 if (av != &main_arena)
3434 victim->size |= NON_MAIN_ARENA;
3435 check_malloced_chunk (av, victim, nb);
3436 void *p = chunk2mem (victim);
3437 alloc_perturb (p, bytes);
3438 return p;
3439 }
3440 }
3441 }
3442
3443 /*
3444 If this is a large request, consolidate fastbins before continuing.
3445 While it might look excessive to kill all fastbins before
3446 even seeing if there is space available, this avoids
3447 fragmentation problems normally associated with fastbins.
3448 Also, in practice, programs tend to have runs of either small or
3449 large requests, but less often mixtures, so consolidation is not
3450 invoked all that often in most programs. And the programs that
3451 it is called frequently in otherwise tend to fragment.
3452 */
3453
3454 else
3455 {
3456 idx = largebin_index (nb);
3457 if (have_fastchunks (av))
3458 malloc_consolidate (av);
3459 }
3460
3461 /*
3462 Process recently freed or remaindered chunks, taking one only if
3463 it is exact fit, or, if this a small request, the chunk is remainder from
3464 the most recent non-exact fit. Place other traversed chunks in
3465 bins. Note that this step is the only place in any routine where
3466 chunks are placed in bins.
3467
3468 The outer loop here is needed because we might not realize until
3469 near the end of malloc that we should have consolidated, so must
3470 do so and retry. This happens at most once, and only when we would
3471 otherwise need to expand memory to service a "small" request.
3472 */
3473
3474 for (;; )
3475 {
3476 int iters = 0;
3477 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3478 {
3479 bck = victim->bk;
3480 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
3481 || __builtin_expect (victim->size > av->system_mem, 0))
3482 malloc_printerr (check_action, "malloc(): memory corruption",
3483 chunk2mem (victim), av);
3484 size = chunksize (victim);
3485
3486 /*
3487 If a small request, try to use last remainder if it is the
3488 only chunk in unsorted bin. This helps promote locality for
3489 runs of consecutive small requests. This is the only
3490 exception to best-fit, and applies only when there is
3491 no exact fit for a small chunk.
3492 */
3493
3494 if (in_smallbin_range (nb) &&
3495 bck == unsorted_chunks (av) &&
3496 victim == av->last_remainder &&
3497 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3498 {
3499 /* split and reattach remainder */
3500 remainder_size = size - nb;
3501 remainder = chunk_at_offset (victim, nb);
3502 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3503 av->last_remainder = remainder;
3504 remainder->bk = remainder->fd = unsorted_chunks (av);
3505 if (!in_smallbin_range (remainder_size))
3506 {
3507 remainder->fd_nextsize = NULL;
3508 remainder->bk_nextsize = NULL;
3509 }
3510
3511 set_head (victim, nb | PREV_INUSE |
3512 (av != &main_arena ? NON_MAIN_ARENA : 0));
3513 set_head (remainder, remainder_size | PREV_INUSE);
3514 set_foot (remainder, remainder_size);
3515
3516 check_malloced_chunk (av, victim, nb);
3517 void *p = chunk2mem (victim);
3518 alloc_perturb (p, bytes);
3519 return p;
3520 }
3521
3522 /* remove from unsorted list */
3523 unsorted_chunks (av)->bk = bck;
3524 bck->fd = unsorted_chunks (av);
3525
3526 /* Take now instead of binning if exact fit */
3527
3528 if (size == nb)
3529 {
3530 set_inuse_bit_at_offset (victim, size);
3531 if (av != &main_arena)
3532 victim->size |= NON_MAIN_ARENA;
3533 check_malloced_chunk (av, victim, nb);
3534 void *p = chunk2mem (victim);
3535 alloc_perturb (p, bytes);
3536 return p;
3537 }
3538
3539 /* place chunk in bin */
3540
3541 if (in_smallbin_range (size))
3542 {
3543 victim_index = smallbin_index (size);
3544 bck = bin_at (av, victim_index);
3545 fwd = bck->fd;
3546 }
3547 else
3548 {
3549 victim_index = largebin_index (size);
3550 bck = bin_at (av, victim_index);
3551 fwd = bck->fd;
3552
3553 /* maintain large bins in sorted order */
3554 if (fwd != bck)
3555 {
3556 /* Or with inuse bit to speed comparisons */
3557 size |= PREV_INUSE;
3558 /* if smaller than smallest, bypass loop below */
3559 assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
3560 if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
3561 {
3562 fwd = bck;
3563 bck = bck->bk;
3564
3565 victim->fd_nextsize = fwd->fd;
3566 victim->bk_nextsize = fwd->fd->bk_nextsize;
3567 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3568 }
3569 else
3570 {
3571 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3572 while ((unsigned long) size < fwd->size)
3573 {
3574 fwd = fwd->fd_nextsize;
3575 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3576 }
3577
3578 if ((unsigned long) size == (unsigned long) fwd->size)
3579 /* Always insert in the second position. */
3580 fwd = fwd->fd;
3581 else
3582 {
3583 victim->fd_nextsize = fwd;
3584 victim->bk_nextsize = fwd->bk_nextsize;
3585 fwd->bk_nextsize = victim;
3586 victim->bk_nextsize->fd_nextsize = victim;
3587 }
3588 bck = fwd->bk;
3589 }
3590 }
3591 else
3592 victim->fd_nextsize = victim->bk_nextsize = victim;
3593 }
3594
3595 mark_bin (av, victim_index);
3596 victim->bk = bck;
3597 victim->fd = fwd;
3598 fwd->bk = victim;
3599 bck->fd = victim;
3600
3601#define MAX_ITERS 10000
3602 if (++iters >= MAX_ITERS)
3603 break;
3604 }
3605
3606 /*
3607 If a large request, scan through the chunks of current bin in
3608 sorted order to find smallest that fits. Use the skip list for this.
3609 */
3610
3611 if (!in_smallbin_range (nb))
3612 {
3613 bin = bin_at (av, idx);
3614
3615 /* skip scan if empty or largest chunk is too small */
3616 if ((victim = first (bin)) != bin &&
3617 (unsigned long) (victim->size) >= (unsigned long) (nb))
3618 {
3619 victim = victim->bk_nextsize;
3620 while (((unsigned long) (size = chunksize (victim)) <
3621 (unsigned long) (nb)))
3622 victim = victim->bk_nextsize;
3623
3624 /* Avoid removing the first entry for a size so that the skip
3625 list does not have to be rerouted. */
3626 if (victim != last (bin) && victim->size == victim->fd->size)
3627 victim = victim->fd;
3628
3629 remainder_size = size - nb;
3630 unlink (av, victim, bck, fwd);
3631
3632 /* Exhaust */
3633 if (remainder_size < MINSIZE)
3634 {
3635 set_inuse_bit_at_offset (victim, size);
3636 if (av != &main_arena)
3637 victim->size |= NON_MAIN_ARENA;
3638 }
3639 /* Split */
3640 else
3641 {
3642 remainder = chunk_at_offset (victim, nb);
3643 /* We cannot assume the unsorted list is empty and therefore
3644 have to perform a complete insert here. */
3645 bck = unsorted_chunks (av);
3646 fwd = bck->fd;
3647 if (__glibc_unlikely (fwd->bk != bck))
3648 {
3649 errstr = "malloc(): corrupted unsorted chunks";
3650 goto errout;
3651 }
3652 remainder->bk = bck;
3653 remainder->fd = fwd;
3654 bck->fd = remainder;
3655 fwd->bk = remainder;
3656 if (!in_smallbin_range (remainder_size))
3657 {
3658 remainder->fd_nextsize = NULL;
3659 remainder->bk_nextsize = NULL;
3660 }
3661 set_head (victim, nb | PREV_INUSE |
3662 (av != &main_arena ? NON_MAIN_ARENA : 0));
3663 set_head (remainder, remainder_size | PREV_INUSE);
3664 set_foot (remainder, remainder_size);
3665 }
3666 check_malloced_chunk (av, victim, nb);
3667 void *p = chunk2mem (victim);
3668 alloc_perturb (p, bytes);
3669 return p;
3670 }
3671 }
3672
3673 /*
3674 Search for a chunk by scanning bins, starting with next largest
3675 bin. This search is strictly by best-fit; i.e., the smallest
3676 (with ties going to approximately the least recently used) chunk
3677 that fits is selected.
3678
3679 The bitmap avoids needing to check that most blocks are nonempty.
3680 The particular case of skipping all bins during warm-up phases
3681 when no chunks have been returned yet is faster than it might look.
3682 */
3683
3684 ++idx;
3685 bin = bin_at (av, idx);
3686 block = idx2block (idx);
3687 map = av->binmap[block];
3688 bit = idx2bit (idx);
3689
3690 for (;; )
3691 {
3692 /* Skip rest of block if there are no more set bits in this block. */
3693 if (bit > map || bit == 0)
3694 {
3695 do
3696 {
3697 if (++block >= BINMAPSIZE) /* out of bins */
3698 goto use_top;
3699 }
3700 while ((map = av->binmap[block]) == 0);
3701
3702 bin = bin_at (av, (block << BINMAPSHIFT));
3703 bit = 1;
3704 }
3705
3706 /* Advance to bin with set bit. There must be one. */
3707 while ((bit & map) == 0)
3708 {
3709 bin = next_bin (bin);
3710 bit <<= 1;
3711 assert (bit != 0);
3712 }
3713
3714 /* Inspect the bin. It is likely to be non-empty */
3715 victim = last (bin);
3716
3717 /* If a false alarm (empty bin), clear the bit. */
3718 if (victim == bin)
3719 {
3720 av->binmap[block] = map &= ~bit; /* Write through */
3721 bin = next_bin (bin);
3722 bit <<= 1;
3723 }
3724
3725 else
3726 {
3727 size = chunksize (victim);
3728
3729 /* We know the first chunk in this bin is big enough to use. */
3730 assert ((unsigned long) (size) >= (unsigned long) (nb));
3731
3732 remainder_size = size - nb;
3733
3734 /* unlink */
3735 unlink (av, victim, bck, fwd);
3736
3737 /* Exhaust */
3738 if (remainder_size < MINSIZE)
3739 {
3740 set_inuse_bit_at_offset (victim, size);
3741 if (av != &main_arena)
3742 victim->size |= NON_MAIN_ARENA;
3743 }
3744
3745 /* Split */
3746 else
3747 {
3748 remainder = chunk_at_offset (victim, nb);
3749
3750 /* We cannot assume the unsorted list is empty and therefore
3751 have to perform a complete insert here. */
3752 bck = unsorted_chunks (av);
3753 fwd = bck->fd;
3754 if (__glibc_unlikely (fwd->bk != bck))
3755 {
3756 errstr = "malloc(): corrupted unsorted chunks 2";
3757 goto errout;
3758 }
3759 remainder->bk = bck;
3760 remainder->fd = fwd;
3761 bck->fd = remainder;
3762 fwd->bk = remainder;
3763
3764 /* advertise as last remainder */
3765 if (in_smallbin_range (nb))
3766 av->last_remainder = remainder;
3767 if (!in_smallbin_range (remainder_size))
3768 {
3769 remainder->fd_nextsize = NULL;
3770 remainder->bk_nextsize = NULL;
3771 }
3772 set_head (victim, nb | PREV_INUSE |
3773 (av != &main_arena ? NON_MAIN_ARENA : 0));
3774 set_head (remainder, remainder_size | PREV_INUSE);
3775 set_foot (remainder, remainder_size);
3776 }
3777 check_malloced_chunk (av, victim, nb);
3778 void *p = chunk2mem (victim);
3779 alloc_perturb (p, bytes);
3780 return p;
3781 }
3782 }
3783
3784 use_top:
3785 /*
3786 If large enough, split off the chunk bordering the end of memory
3787 (held in av->top). Note that this is in accord with the best-fit
3788 search rule. In effect, av->top is treated as larger (and thus
3789 less well fitting) than any other available chunk since it can
3790 be extended to be as large as necessary (up to system
3791 limitations).
3792
3793 We require that av->top always exists (i.e., has size >=
3794 MINSIZE) after initialization, so if it would otherwise be
3795 exhausted by current request, it is replenished. (The main
3796 reason for ensuring it exists is that we may need MINSIZE space
3797 to put in fenceposts in sysmalloc.)
3798 */
3799
3800 victim = av->top;
3801 size = chunksize (victim);
3802
3803 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
3804 {
3805 remainder_size = size - nb;
3806 remainder = chunk_at_offset (victim, nb);
3807 av->top = remainder;
3808 set_head (victim, nb | PREV_INUSE |
3809 (av != &main_arena ? NON_MAIN_ARENA : 0));
3810 set_head (remainder, remainder_size | PREV_INUSE);
3811
3812 check_malloced_chunk (av, victim, nb);
3813 void *p = chunk2mem (victim);
3814 alloc_perturb (p, bytes);
3815 return p;
3816 }
3817
3818 /* When we are using atomic ops to free fast chunks we can get
3819 here for all block sizes. */
3820 else if (have_fastchunks (av))
3821 {
3822 malloc_consolidate (av);
3823 /* restore original bin index */
3824 if (in_smallbin_range (nb))
3825 idx = smallbin_index (nb);
3826 else
3827 idx = largebin_index (nb);
3828 }
3829
3830 /*
3831 Otherwise, relay to handle system-dependent cases
3832 */
3833 else
3834 {
3835 void *p = sysmalloc (nb, av);
3836 if (p != NULL)
3837 alloc_perturb (p, bytes);
3838 return p;
3839 }
3840 }
3841}
3842
3843/*
3844 ------------------------------ free ------------------------------
3845 */
3846
3847static void
3848_int_free (mstate av, mchunkptr p, int have_lock)
3849{
3850 INTERNAL_SIZE_T size; /* its size */
3851 mfastbinptr *fb; /* associated fastbin */
3852 mchunkptr nextchunk; /* next contiguous chunk */
3853 INTERNAL_SIZE_T nextsize; /* its size */
3854 int nextinuse; /* true if nextchunk is used */
3855 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
3856 mchunkptr bck; /* misc temp for linking */
3857 mchunkptr fwd; /* misc temp for linking */
3858
3859 const char *errstr = NULL;
3860 int locked = 0;
3861
3862 size = chunksize (p);
3863
3864 /* Little security check which won't hurt performance: the
3865 allocator never wrapps around at the end of the address space.
3866 Therefore we can exclude some size values which might appear
3867 here by accident or by "design" from some intruder. */
3868 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
3869 || __builtin_expect (misaligned_chunk (p), 0))
3870 {
3871 errstr = "free(): invalid pointer";
3872 errout:
3873 if (!have_lock && locked)
3874 (void) mutex_unlock (&av->mutex);
3875 malloc_printerr (check_action, errstr, chunk2mem (p), av);
3876 return;
3877 }
3878 /* We know that each chunk is at least MINSIZE bytes in size or a
3879 multiple of MALLOC_ALIGNMENT. */
3880 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
3881 {
3882 errstr = "free(): invalid size";
3883 goto errout;
3884 }
3885
3886 check_inuse_chunk(av, p);
3887
3888 /*
3889 If eligible, place chunk on a fastbin so it can be found
3890 and used quickly in malloc.
3891 */
3892
3893 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
3894
3895#if TRIM_FASTBINS
3896 /*
3897 If TRIM_FASTBINS set, don't place chunks
3898 bordering top into fastbins
3899 */
3900 && (chunk_at_offset(p, size) != av->top)
3901#endif
3902 ) {
3903
3904 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
3905 || __builtin_expect (chunksize (chunk_at_offset (p, size))
3906 >= av->system_mem, 0))
3907 {
3908 /* We might not have a lock at this point and concurrent modifications
3909 of system_mem might have let to a false positive. Redo the test
3910 after getting the lock. */
3911 if (have_lock
3912 || ({ assert (locked == 0);
3913 mutex_lock(&av->mutex);
3914 locked = 1;
3915 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
3916 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
3917 }))
3918 {
3919 errstr = "free(): invalid next size (fast)";
3920 goto errout;
3921 }
3922 if (! have_lock)
3923 {
3924 (void)mutex_unlock(&av->mutex);
3925 locked = 0;
3926 }
3927 }
3928
3929 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3930
3931 set_fastchunks(av);
3932 unsigned int idx = fastbin_index(size);
3933 fb = &fastbin (av, idx);
3934
3935 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
3936 mchunkptr old = *fb, old2;
3937 unsigned int old_idx = ~0u;
3938 do
3939 {
3940 /* Check that the top of the bin is not the record we are going to add
3941 (i.e., double free). */
3942 if (__builtin_expect (old == p, 0))
3943 {
3944 errstr = "double free or corruption (fasttop)";
3945 goto errout;
3946 }
3947 /* Check that size of fastbin chunk at the top is the same as
3948 size of the chunk that we are adding. We can dereference OLD
3949 only if we have the lock, otherwise it might have already been
3950 deallocated. See use of OLD_IDX below for the actual check. */
3951 if (have_lock && old != NULL)
3952 old_idx = fastbin_index(chunksize(old));
3953 p->fd = old2 = old;
3954 }
3955 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
3956
3957 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
3958 {
3959 errstr = "invalid fastbin entry (free)";
3960 goto errout;
3961 }
3962 }
3963
3964 /*
3965 Consolidate other non-mmapped chunks as they arrive.
3966 */
3967
3968 else if (!chunk_is_mmapped(p)) {
3969 if (! have_lock) {
3970 (void)mutex_lock(&av->mutex);
3971 locked = 1;
3972 }
3973
3974 nextchunk = chunk_at_offset(p, size);
3975
3976 /* Lightweight tests: check whether the block is already the
3977 top block. */
3978 if (__glibc_unlikely (p == av->top))
3979 {
3980 errstr = "double free or corruption (top)";
3981 goto errout;
3982 }
3983 /* Or whether the next chunk is beyond the boundaries of the arena. */
3984 if (__builtin_expect (contiguous (av)
3985 && (char *) nextchunk
3986 >= ((char *) av->top + chunksize(av->top)), 0))
3987 {
3988 errstr = "double free or corruption (out)";
3989 goto errout;
3990 }
3991 /* Or whether the block is actually not marked used. */
3992 if (__glibc_unlikely (!prev_inuse(nextchunk)))
3993 {
3994 errstr = "double free or corruption (!prev)";
3995 goto errout;
3996 }
3997
3998 nextsize = chunksize(nextchunk);
3999 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
4000 || __builtin_expect (nextsize >= av->system_mem, 0))
4001 {
4002 errstr = "free(): invalid next size (normal)";
4003 goto errout;
4004 }
4005
4006 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4007
4008 /* consolidate backward */
4009 if (!prev_inuse(p)) {
4010 prevsize = p->prev_size;
4011 size += prevsize;
4012 p = chunk_at_offset(p, -((long) prevsize));
4013 unlink(av, p, bck, fwd);
4014 }
4015
4016 if (nextchunk != av->top) {
4017 /* get and clear inuse bit */
4018 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4019
4020 /* consolidate forward */
4021 if (!nextinuse) {
4022 unlink(av, nextchunk, bck, fwd);
4023 size += nextsize;
4024 } else
4025 clear_inuse_bit_at_offset(nextchunk, 0);
4026
4027 /*
4028 Place the chunk in unsorted chunk list. Chunks are
4029 not placed into regular bins until after they have
4030 been given one chance to be used in malloc.
4031 */
4032
4033 bck = unsorted_chunks(av);
4034 fwd = bck->fd;
4035 if (__glibc_unlikely (fwd->bk != bck))
4036 {
4037 errstr = "free(): corrupted unsorted chunks";
4038 goto errout;
4039 }
4040 p->fd = fwd;
4041 p->bk = bck;
4042 if (!in_smallbin_range(size))
4043 {
4044 p->fd_nextsize = NULL;
4045 p->bk_nextsize = NULL;
4046 }
4047 bck->fd = p;
4048 fwd->bk = p;
4049
4050 set_head(p, size | PREV_INUSE);
4051 set_foot(p, size);
4052
4053 check_free_chunk(av, p);
4054 }
4055
4056 /*
4057 If the chunk borders the current high end of memory,
4058 consolidate into top
4059 */
4060
4061 else {
4062 size += nextsize;
4063 set_head(p, size | PREV_INUSE);
4064 av->top = p;
4065 check_chunk(av, p);
4066 }
4067
4068 /*
4069 If freeing a large space, consolidate possibly-surrounding
4070 chunks. Then, if the total unused topmost memory exceeds trim
4071 threshold, ask malloc_trim to reduce top.
4072
4073 Unless max_fast is 0, we don't know if there are fastbins
4074 bordering top, so we cannot tell for sure whether threshold
4075 has been reached unless fastbins are consolidated. But we
4076 don't want to consolidate on each free. As a compromise,
4077 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4078 is reached.
4079 */
4080
4081 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4082 if (have_fastchunks(av))
4083 malloc_consolidate(av);
4084
4085 if (av == &main_arena) {
4086#ifndef MORECORE_CANNOT_TRIM
4087 if ((unsigned long)(chunksize(av->top)) >=
4088 (unsigned long)(mp_.trim_threshold))
4089 systrim(mp_.top_pad, av);
4090#endif
4091 } else {
4092 /* Always try heap_trim(), even if the top chunk is not
4093 large, because the corresponding heap might go away. */
4094 heap_info *heap = heap_for_ptr(top(av));
4095
4096 assert(heap->ar_ptr == av);
4097 heap_trim(heap, mp_.top_pad);
4098 }
4099 }
4100
4101 if (! have_lock) {
4102 assert (locked);
4103 (void)mutex_unlock(&av->mutex);
4104 }
4105 }
4106 /*
4107 If the chunk was allocated via mmap, release via munmap().
4108 */
4109
4110 else {
4111 munmap_chunk (p);
4112 }
4113}
4114
4115/*
4116 ------------------------- malloc_consolidate -------------------------
4117
4118 malloc_consolidate is a specialized version of free() that tears
4119 down chunks held in fastbins. Free itself cannot be used for this
4120 purpose since, among other things, it might place chunks back onto
4121 fastbins. So, instead, we need to use a minor variant of the same
4122 code.
4123
4124 Also, because this routine needs to be called the first time through
4125 malloc anyway, it turns out to be the perfect place to trigger
4126 initialization code.
4127*/
4128
4129static void malloc_consolidate(mstate av)
4130{
4131 mfastbinptr* fb; /* current fastbin being consolidated */
4132 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4133 mchunkptr p; /* current chunk being consolidated */
4134 mchunkptr nextp; /* next chunk to consolidate */
4135 mchunkptr unsorted_bin; /* bin header */
4136 mchunkptr first_unsorted; /* chunk to link to */
4137
4138 /* These have same use as in free() */
4139 mchunkptr nextchunk;
4140 INTERNAL_SIZE_T size;
4141 INTERNAL_SIZE_T nextsize;
4142 INTERNAL_SIZE_T prevsize;
4143 int nextinuse;
4144 mchunkptr bck;
4145 mchunkptr fwd;
4146
4147 /*
4148 If max_fast is 0, we know that av hasn't
4149 yet been initialized, in which case do so below
4150 */
4151
4152 if (get_max_fast () != 0) {
4153 clear_fastchunks(av);
4154
4155 unsorted_bin = unsorted_chunks(av);
4156
4157 /*
4158 Remove each chunk from fast bin and consolidate it, placing it
4159 then in unsorted bin. Among other reasons for doing this,
4160 placing in unsorted bin avoids needing to calculate actual bins
4161 until malloc is sure that chunks aren't immediately going to be
4162 reused anyway.
4163 */
4164
4165 maxfb = &fastbin (av, NFASTBINS - 1);
4166 fb = &fastbin (av, 0);
4167 do {
4168 p = atomic_exchange_acq (fb, 0);
4169 if (p != 0) {
4170 do {
4171 check_inuse_chunk(av, p);
4172 nextp = p->fd;
4173
4174 /* Slightly streamlined version of consolidation code in free() */
4175 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4176 nextchunk = chunk_at_offset(p, size);
4177 nextsize = chunksize(nextchunk);
4178
4179 if (!prev_inuse(p)) {
4180 prevsize = p->prev_size;
4181 size += prevsize;
4182 p = chunk_at_offset(p, -((long) prevsize));
4183 unlink(av, p, bck, fwd);
4184 }
4185
4186 if (nextchunk != av->top) {
4187 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4188
4189 if (!nextinuse) {
4190 size += nextsize;
4191 unlink(av, nextchunk, bck, fwd);
4192 } else
4193 clear_inuse_bit_at_offset(nextchunk, 0);
4194
4195 first_unsorted = unsorted_bin->fd;
4196 unsorted_bin->fd = p;
4197 first_unsorted->bk = p;
4198
4199 if (!in_smallbin_range (size)) {
4200 p->fd_nextsize = NULL;
4201 p->bk_nextsize = NULL;
4202 }
4203
4204 set_head(p, size | PREV_INUSE);
4205 p->bk = unsorted_bin;
4206 p->fd = first_unsorted;
4207 set_foot(p, size);
4208 }
4209
4210 else {
4211 size += nextsize;
4212 set_head(p, size | PREV_INUSE);
4213 av->top = p;
4214 }
4215
4216 } while ( (p = nextp) != 0);
4217
4218 }
4219 } while (fb++ != maxfb);
4220 }
4221 else {
4222 malloc_init_state(av);
4223 check_malloc_state(av);
4224 }
4225}
4226
4227/*
4228 ------------------------------ realloc ------------------------------
4229*/
4230
4231void*
4232_int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4233 INTERNAL_SIZE_T nb)
4234{
4235 mchunkptr newp; /* chunk to return */
4236 INTERNAL_SIZE_T newsize; /* its size */
4237 void* newmem; /* corresponding user mem */
4238
4239 mchunkptr next; /* next contiguous chunk after oldp */
4240
4241 mchunkptr remainder; /* extra space at end of newp */
4242 unsigned long remainder_size; /* its size */
4243
4244 mchunkptr bck; /* misc temp for linking */
4245 mchunkptr fwd; /* misc temp for linking */
4246
4247 unsigned long copysize; /* bytes to copy */
4248 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4249 INTERNAL_SIZE_T* s; /* copy source */
4250 INTERNAL_SIZE_T* d; /* copy destination */
4251
4252 const char *errstr = NULL;
4253
4254 /* oldmem size */
4255 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
4256 || __builtin_expect (oldsize >= av->system_mem, 0))
4257 {
4258 errstr = "realloc(): invalid old size";
4259 errout:
4260 malloc_printerr (check_action, errstr, chunk2mem (oldp), av);
4261 return NULL;
4262 }
4263
4264 check_inuse_chunk (av, oldp);
4265
4266 /* All callers already filter out mmap'ed chunks. */
4267 assert (!chunk_is_mmapped (oldp));
4268
4269 next = chunk_at_offset (oldp, oldsize);
4270 INTERNAL_SIZE_T nextsize = chunksize (next);
4271 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
4272 || __builtin_expect (nextsize >= av->system_mem, 0))
4273 {
4274 errstr = "realloc(): invalid next size";
4275 goto errout;
4276 }
4277
4278 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4279 {
4280 /* already big enough; split below */
4281 newp = oldp;
4282 newsize = oldsize;
4283 }
4284
4285 else
4286 {
4287 /* Try to expand forward into top */
4288 if (next == av->top &&
4289 (unsigned long) (newsize = oldsize + nextsize) >=
4290 (unsigned long) (nb + MINSIZE))
4291 {
4292 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4293 av->top = chunk_at_offset (oldp, nb);
4294 set_head (av->top, (newsize - nb) | PREV_INUSE);
4295 check_inuse_chunk (av, oldp);
4296 return chunk2mem (oldp);
4297 }
4298
4299 /* Try to expand forward into next chunk; split off remainder below */
4300 else if (next != av->top &&
4301 !inuse (next) &&
4302 (unsigned long) (newsize = oldsize + nextsize) >=
4303 (unsigned long) (nb))
4304 {
4305 newp = oldp;
4306 unlink (av, next, bck, fwd);
4307 }
4308
4309 /* allocate, copy, free */
4310 else
4311 {
4312 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4313 if (newmem == 0)
4314 return 0; /* propagate failure */
4315
4316 newp = mem2chunk (newmem);
4317 newsize = chunksize (newp);
4318
4319 /*
4320 Avoid copy if newp is next chunk after oldp.
4321 */
4322 if (newp == next)
4323 {
4324 newsize += oldsize;
4325 newp = oldp;
4326 }
4327 else
4328 {
4329 /*
4330 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4331 We know that contents have an odd number of
4332 INTERNAL_SIZE_T-sized words; minimally 3.
4333 */
4334
4335 copysize = oldsize - SIZE_SZ;
4336 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4337 d = (INTERNAL_SIZE_T *) (newmem);
4338 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4339 assert (ncopies >= 3);
4340
4341 if (ncopies > 9)
4342 memcpy (d, s, copysize);
4343
4344 else
4345 {
4346 *(d + 0) = *(s + 0);
4347 *(d + 1) = *(s + 1);
4348 *(d + 2) = *(s + 2);
4349 if (ncopies > 4)
4350 {
4351 *(d + 3) = *(s + 3);
4352 *(d + 4) = *(s + 4);
4353 if (ncopies > 6)
4354 {
4355 *(d + 5) = *(s + 5);
4356 *(d + 6) = *(s + 6);
4357 if (ncopies > 8)
4358 {
4359 *(d + 7) = *(s + 7);
4360 *(d + 8) = *(s + 8);
4361 }
4362 }
4363 }
4364 }
4365
4366 _int_free (av, oldp, 1);
4367 check_inuse_chunk (av, newp);
4368 return chunk2mem (newp);
4369 }
4370 }
4371 }
4372
4373 /* If possible, free extra space in old or extended chunk */
4374
4375 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4376
4377 remainder_size = newsize - nb;
4378
4379 if (remainder_size < MINSIZE) /* not enough extra to split off */
4380 {
4381 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4382 set_inuse_bit_at_offset (newp, newsize);
4383 }
4384 else /* split remainder */
4385 {
4386 remainder = chunk_at_offset (newp, nb);
4387 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4388 set_head (remainder, remainder_size | PREV_INUSE |
4389 (av != &main_arena ? NON_MAIN_ARENA : 0));
4390 /* Mark remainder as inuse so free() won't complain */
4391 set_inuse_bit_at_offset (remainder, remainder_size);
4392 _int_free (av, remainder, 1);
4393 }
4394
4395 check_inuse_chunk (av, newp);
4396 return chunk2mem (newp);
4397}
4398
4399/*
4400 ------------------------------ memalign ------------------------------
4401 */
4402
4403static void *
4404_int_memalign (mstate av, size_t alignment, size_t bytes)
4405{
4406 INTERNAL_SIZE_T nb; /* padded request size */
4407 char *m; /* memory returned by malloc call */
4408 mchunkptr p; /* corresponding chunk */
4409 char *brk; /* alignment point within p */
4410 mchunkptr newp; /* chunk to return */
4411 INTERNAL_SIZE_T newsize; /* its size */
4412 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4413 mchunkptr remainder; /* spare room at end to split off */
4414 unsigned long remainder_size; /* its size */
4415 INTERNAL_SIZE_T size;
4416
4417
4418
4419 checked_request2size (bytes, nb);
4420
4421 /*
4422 Strategy: find a spot within that chunk that meets the alignment
4423 request, and then possibly free the leading and trailing space.
4424 */
xf.lif2330622024-05-15 18:17:18 -07004425 /* Check for overflow. */
4426 if (nb > SIZE_MAX - alignment - MINSIZE)
4427 {
4428 __set_errno (ENOMEM);
4429 return 0;
4430 }
xf.libdd93d52023-05-12 07:10:14 -07004431
4432 /* Call malloc with worst case padding to hit alignment. */
4433
4434 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4435
4436 if (m == 0)
4437 return 0; /* propagate failure */
4438
4439 p = mem2chunk (m);
4440
4441 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4442
4443 { /*
4444 Find an aligned spot inside chunk. Since we need to give back
4445 leading space in a chunk of at least MINSIZE, if the first
4446 calculation places us at a spot with less than MINSIZE leader,
4447 we can move to the next aligned spot -- we've allocated enough
4448 total room so that this is always possible.
4449 */
4450 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4451 - ((signed long) alignment));
4452 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4453 brk += alignment;
4454
4455 newp = (mchunkptr) brk;
4456 leadsize = brk - (char *) (p);
4457 newsize = chunksize (p) - leadsize;
4458
4459 /* For mmapped chunks, just adjust offset */
4460 if (chunk_is_mmapped (p))
4461 {
4462 newp->prev_size = p->prev_size + leadsize;
4463 set_head (newp, newsize | IS_MMAPPED);
4464 return chunk2mem (newp);
4465 }
4466
4467 /* Otherwise, give back leader, use the rest */
4468 set_head (newp, newsize | PREV_INUSE |
4469 (av != &main_arena ? NON_MAIN_ARENA : 0));
4470 set_inuse_bit_at_offset (newp, newsize);
4471 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4472 _int_free (av, p, 1);
4473 p = newp;
4474
4475 assert (newsize >= nb &&
4476 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4477 }
4478
4479 /* Also give back spare room at the end */
4480 if (!chunk_is_mmapped (p))
4481 {
4482 size = chunksize (p);
4483 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4484 {
4485 remainder_size = size - nb;
4486 remainder = chunk_at_offset (p, nb);
4487 set_head (remainder, remainder_size | PREV_INUSE |
4488 (av != &main_arena ? NON_MAIN_ARENA : 0));
4489 set_head_size (p, nb);
4490 _int_free (av, remainder, 1);
4491 }
4492 }
4493
4494 check_inuse_chunk (av, p);
4495 return chunk2mem (p);
4496}
4497
4498
4499/*
4500 ------------------------------ malloc_trim ------------------------------
4501 */
4502
4503static int
4504mtrim (mstate av, size_t pad)
4505{
4506 /* Don't touch corrupt arenas. */
4507 if (arena_is_corrupt (av))
4508 return 0;
4509
4510 /* Ensure initialization/consolidation */
4511 malloc_consolidate (av);
4512
4513 const size_t ps = GLRO (dl_pagesize);
4514 int psindex = bin_index (ps);
4515 const size_t psm1 = ps - 1;
4516
4517 int result = 0;
4518 for (int i = 1; i < NBINS; ++i)
4519 if (i == 1 || i >= psindex)
4520 {
4521 mbinptr bin = bin_at (av, i);
4522
4523 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4524 {
4525 INTERNAL_SIZE_T size = chunksize (p);
4526
4527 if (size > psm1 + sizeof (struct malloc_chunk))
4528 {
4529 /* See whether the chunk contains at least one unused page. */
4530 char *paligned_mem = (char *) (((uintptr_t) p
4531 + sizeof (struct malloc_chunk)
4532 + psm1) & ~psm1);
4533
4534 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4535 assert ((char *) p + size > paligned_mem);
4536
4537 /* This is the size we could potentially free. */
4538 size -= paligned_mem - (char *) p;
4539
4540 if (size > psm1)
4541 {
4542#if MALLOC_DEBUG
4543 /* When debugging we simulate destroying the memory
4544 content. */
4545 memset (paligned_mem, 0x89, size & ~psm1);
4546#endif
4547 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4548
4549 result = 1;
4550 }
4551 }
4552 }
4553 }
4554
4555#ifndef MORECORE_CANNOT_TRIM
4556 return result | (av == &main_arena ? systrim (pad, av) : 0);
4557
4558#else
4559 return result;
4560#endif
4561}
4562
4563
4564int
4565__malloc_trim (size_t s)
4566{
4567 int result = 0;
4568
4569 if (__malloc_initialized < 0)
4570 ptmalloc_init ();
4571
4572 mstate ar_ptr = &main_arena;
4573 do
4574 {
4575 (void) mutex_lock (&ar_ptr->mutex);
4576 result |= mtrim (ar_ptr, s);
4577 (void) mutex_unlock (&ar_ptr->mutex);
4578
4579 ar_ptr = ar_ptr->next;
4580 }
4581 while (ar_ptr != &main_arena);
4582
4583 return result;
4584}
4585
4586
4587/*
4588 ------------------------- malloc_usable_size -------------------------
4589 */
4590
4591static size_t
4592musable (void *mem)
4593{
4594 mchunkptr p;
4595 if (mem != 0)
4596 {
4597 p = mem2chunk (mem);
4598
4599 if (__builtin_expect (using_malloc_checking == 1, 0))
4600 return malloc_check_get_size (p);
4601
4602 if (chunk_is_mmapped (p))
4603 return chunksize (p) - 2 * SIZE_SZ;
4604 else if (inuse (p))
4605 return chunksize (p) - SIZE_SZ;
4606 }
4607 return 0;
4608}
4609
4610
4611size_t
4612__malloc_usable_size (void *m)
4613{
4614 size_t result;
4615
4616 result = musable (m);
4617 return result;
4618}
4619
4620/*
4621 ------------------------------ mallinfo ------------------------------
4622 Accumulate malloc statistics for arena AV into M.
4623 */
4624
4625static void
4626int_mallinfo (mstate av, struct mallinfo *m)
4627{
4628 size_t i;
4629 mbinptr b;
4630 mchunkptr p;
4631 INTERNAL_SIZE_T avail;
4632 INTERNAL_SIZE_T fastavail;
4633 int nblocks;
4634 int nfastblocks;
4635
4636 /* Ensure initialization */
4637 if (av->top == 0)
4638 malloc_consolidate (av);
4639
4640 check_malloc_state (av);
4641
4642 /* Account for top */
4643 avail = chunksize (av->top);
4644 nblocks = 1; /* top always exists */
4645
4646 /* traverse fastbins */
4647 nfastblocks = 0;
4648 fastavail = 0;
4649
4650 for (i = 0; i < NFASTBINS; ++i)
4651 {
4652 for (p = fastbin (av, i); p != 0; p = p->fd)
4653 {
4654 ++nfastblocks;
4655 fastavail += chunksize (p);
4656 }
4657 }
4658
4659 avail += fastavail;
4660
4661 /* traverse regular bins */
4662 for (i = 1; i < NBINS; ++i)
4663 {
4664 b = bin_at (av, i);
4665 for (p = last (b); p != b; p = p->bk)
4666 {
4667 ++nblocks;
4668 avail += chunksize (p);
4669 }
4670 }
4671
4672 m->smblks += nfastblocks;
4673 m->ordblks += nblocks;
4674 m->fordblks += avail;
4675 m->uordblks += av->system_mem - avail;
4676 m->arena += av->system_mem;
4677 m->fsmblks += fastavail;
4678 if (av == &main_arena)
4679 {
4680 m->hblks = mp_.n_mmaps;
4681 m->hblkhd = mp_.mmapped_mem;
4682 m->usmblks = mp_.max_total_mem;
4683 m->keepcost = chunksize (av->top);
4684 }
4685}
4686
4687
4688struct mallinfo
4689__libc_mallinfo (void)
4690{
4691 struct mallinfo m;
4692 mstate ar_ptr;
4693
4694 if (__malloc_initialized < 0)
4695 ptmalloc_init ();
4696
4697 memset (&m, 0, sizeof (m));
4698 ar_ptr = &main_arena;
4699 do
4700 {
4701 (void) mutex_lock (&ar_ptr->mutex);
4702 int_mallinfo (ar_ptr, &m);
4703 (void) mutex_unlock (&ar_ptr->mutex);
4704
4705 ar_ptr = ar_ptr->next;
4706 }
4707 while (ar_ptr != &main_arena);
4708
4709 return m;
4710}
4711
4712/*
4713 ------------------------------ malloc_stats ------------------------------
4714 */
4715
4716void
4717__malloc_stats (void)
4718{
4719 int i;
4720 mstate ar_ptr;
4721 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4722
4723 if (__malloc_initialized < 0)
4724 ptmalloc_init ();
4725 _IO_flockfile (stderr);
4726 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4727 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4728 for (i = 0, ar_ptr = &main_arena;; i++)
4729 {
4730 struct mallinfo mi;
4731
4732 memset (&mi, 0, sizeof (mi));
4733 (void) mutex_lock (&ar_ptr->mutex);
4734 int_mallinfo (ar_ptr, &mi);
4735 fprintf (stderr, "Arena %d:\n", i);
4736 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
4737 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
4738#if MALLOC_DEBUG > 1
4739 if (i > 0)
4740 dump_heap (heap_for_ptr (top (ar_ptr)));
4741#endif
4742 system_b += mi.arena;
4743 in_use_b += mi.uordblks;
4744 (void) mutex_unlock (&ar_ptr->mutex);
4745 ar_ptr = ar_ptr->next;
4746 if (ar_ptr == &main_arena)
4747 break;
4748 }
4749 fprintf (stderr, "Total (incl. mmap):\n");
4750 fprintf (stderr, "system bytes = %10u\n", system_b);
4751 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
4752 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
4753 fprintf (stderr, "max mmap bytes = %10lu\n",
4754 (unsigned long) mp_.max_mmapped_mem);
4755 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4756 _IO_funlockfile (stderr);
4757}
4758
4759
4760/*
4761 ------------------------------ mallopt ------------------------------
4762 */
4763
4764int
4765__libc_mallopt (int param_number, int value)
4766{
4767 mstate av = &main_arena;
4768 int res = 1;
4769
4770 if (__malloc_initialized < 0)
4771 ptmalloc_init ();
4772 (void) mutex_lock (&av->mutex);
4773 /* Ensure initialization/consolidation */
4774 malloc_consolidate (av);
4775
4776 LIBC_PROBE (memory_mallopt, 2, param_number, value);
4777
4778 switch (param_number)
4779 {
4780 case M_MXFAST:
4781 if (value >= 0 && value <= MAX_FAST_SIZE)
4782 {
4783 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
4784 set_max_fast (value);
4785 }
4786 else
4787 res = 0;
4788 break;
4789
4790 case M_TRIM_THRESHOLD:
4791 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value,
4792 mp_.trim_threshold, mp_.no_dyn_threshold);
4793 mp_.trim_threshold = value;
4794 mp_.no_dyn_threshold = 1;
4795 break;
4796
4797 case M_TOP_PAD:
4798 LIBC_PROBE (memory_mallopt_top_pad, 3, value,
4799 mp_.top_pad, mp_.no_dyn_threshold);
4800 mp_.top_pad = value;
4801 mp_.no_dyn_threshold = 1;
4802 break;
4803
4804 case M_MMAP_THRESHOLD:
4805 /* Forbid setting the threshold too high. */
4806 if ((unsigned long) value > HEAP_MAX_SIZE / 2)
4807 res = 0;
4808 else
4809 {
4810 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value,
4811 mp_.mmap_threshold, mp_.no_dyn_threshold);
4812 mp_.mmap_threshold = value;
4813 mp_.no_dyn_threshold = 1;
4814 }
4815 break;
4816
4817 case M_MMAP_MAX:
4818 LIBC_PROBE (memory_mallopt_mmap_max, 3, value,
4819 mp_.n_mmaps_max, mp_.no_dyn_threshold);
4820 mp_.n_mmaps_max = value;
4821 mp_.no_dyn_threshold = 1;
4822 break;
4823
4824 case M_CHECK_ACTION:
4825 LIBC_PROBE (memory_mallopt_check_action, 2, value, check_action);
4826 check_action = value;
4827 break;
4828
4829 case M_PERTURB:
4830 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
4831 perturb_byte = value;
4832 break;
4833
4834 case M_ARENA_TEST:
4835 if (value > 0)
4836 {
4837 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
4838 mp_.arena_test = value;
4839 }
4840 break;
4841
4842 case M_ARENA_MAX:
4843 if (value > 0)
4844 {
4845 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
4846 mp_.arena_max = value;
4847 }
4848 break;
4849 }
4850 (void) mutex_unlock (&av->mutex);
4851 return res;
4852}
4853libc_hidden_def (__libc_mallopt)
4854
4855
4856/*
4857 -------------------- Alternative MORECORE functions --------------------
4858 */
4859
4860
4861/*
4862 General Requirements for MORECORE.
4863
4864 The MORECORE function must have the following properties:
4865
4866 If MORECORE_CONTIGUOUS is false:
4867
4868 * MORECORE must allocate in multiples of pagesize. It will
4869 only be called with arguments that are multiples of pagesize.
4870
4871 * MORECORE(0) must return an address that is at least
4872 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
4873
4874 else (i.e. If MORECORE_CONTIGUOUS is true):
4875
4876 * Consecutive calls to MORECORE with positive arguments
4877 return increasing addresses, indicating that space has been
4878 contiguously extended.
4879
4880 * MORECORE need not allocate in multiples of pagesize.
4881 Calls to MORECORE need not have args of multiples of pagesize.
4882
4883 * MORECORE need not page-align.
4884
4885 In either case:
4886
4887 * MORECORE may allocate more memory than requested. (Or even less,
4888 but this will generally result in a malloc failure.)
4889
4890 * MORECORE must not allocate memory when given argument zero, but
4891 instead return one past the end address of memory from previous
4892 nonzero call. This malloc does NOT call MORECORE(0)
4893 until at least one call with positive arguments is made, so
4894 the initial value returned is not important.
4895
4896 * Even though consecutive calls to MORECORE need not return contiguous
4897 addresses, it must be OK for malloc'ed chunks to span multiple
4898 regions in those cases where they do happen to be contiguous.
4899
4900 * MORECORE need not handle negative arguments -- it may instead
4901 just return MORECORE_FAILURE when given negative arguments.
4902 Negative arguments are always multiples of pagesize. MORECORE
4903 must not misinterpret negative args as large positive unsigned
4904 args. You can suppress all such calls from even occurring by defining
4905 MORECORE_CANNOT_TRIM,
4906
4907 There is some variation across systems about the type of the
4908 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
4909 actually be size_t, because sbrk supports negative args, so it is
4910 normally the signed type of the same width as size_t (sometimes
4911 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
4912 matter though. Internally, we use "long" as arguments, which should
4913 work across all reasonable possibilities.
4914
4915 Additionally, if MORECORE ever returns failure for a positive
4916 request, then mmap is used as a noncontiguous system allocator. This
4917 is a useful backup strategy for systems with holes in address spaces
4918 -- in this case sbrk cannot contiguously expand the heap, but mmap
4919 may be able to map noncontiguous space.
4920
4921 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
4922 a function that always returns MORECORE_FAILURE.
4923
4924 If you are using this malloc with something other than sbrk (or its
4925 emulation) to supply memory regions, you probably want to set
4926 MORECORE_CONTIGUOUS as false. As an example, here is a custom
4927 allocator kindly contributed for pre-OSX macOS. It uses virtually
4928 but not necessarily physically contiguous non-paged memory (locked
4929 in, present and won't get swapped out). You can use it by
4930 uncommenting this section, adding some #includes, and setting up the
4931 appropriate defines above:
4932
4933 *#define MORECORE osMoreCore
4934 *#define MORECORE_CONTIGUOUS 0
4935
4936 There is also a shutdown routine that should somehow be called for
4937 cleanup upon program exit.
4938
4939 *#define MAX_POOL_ENTRIES 100
4940 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
4941 static int next_os_pool;
4942 void *our_os_pools[MAX_POOL_ENTRIES];
4943
4944 void *osMoreCore(int size)
4945 {
4946 void *ptr = 0;
4947 static void *sbrk_top = 0;
4948
4949 if (size > 0)
4950 {
4951 if (size < MINIMUM_MORECORE_SIZE)
4952 size = MINIMUM_MORECORE_SIZE;
4953 if (CurrentExecutionLevel() == kTaskLevel)
4954 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4955 if (ptr == 0)
4956 {
4957 return (void *) MORECORE_FAILURE;
4958 }
4959 // save ptrs so they can be freed during cleanup
4960 our_os_pools[next_os_pool] = ptr;
4961 next_os_pool++;
4962 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4963 sbrk_top = (char *) ptr + size;
4964 return ptr;
4965 }
4966 else if (size < 0)
4967 {
4968 // we don't currently support shrink behavior
4969 return (void *) MORECORE_FAILURE;
4970 }
4971 else
4972 {
4973 return sbrk_top;
4974 }
4975 }
4976
4977 // cleanup any allocated memory pools
4978 // called as last thing before shutting down driver
4979
4980 void osCleanupMem(void)
4981 {
4982 void **ptr;
4983
4984 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4985 if (*ptr)
4986 {
4987 PoolDeallocate(*ptr);
4988 * ptr = 0;
4989 }
4990 }
4991
4992 */
4993
4994
4995/* Helper code. */
4996
4997extern char **__libc_argv attribute_hidden;
4998
4999static void
5000malloc_printerr (int action, const char *str, void *ptr, mstate ar_ptr)
5001{
5002 /* Avoid using this arena in future. We do not attempt to synchronize this
5003 with anything else because we minimally want to ensure that __libc_message
5004 gets its resources safely without stumbling on the current corruption. */
5005 if (ar_ptr)
5006 set_arena_corrupt (ar_ptr);
5007
5008 if ((action & 5) == 5)
5009 __libc_message (action & 2, "%s\n", str);
5010 else if (action & 1)
5011 {
5012 char buf[2 * sizeof (uintptr_t) + 1];
5013
5014 buf[sizeof (buf) - 1] = '\0';
5015 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
5016 while (cp > buf)
5017 *--cp = '0';
5018
5019 __libc_message (action & 2, "*** Error in `%s': %s: 0x%s ***\n",
5020 __libc_argv[0] ? : "<unknown>", str, cp);
5021 }
5022 else if (action & 2)
5023 abort ();
5024}
5025
5026/* We need a wrapper function for one of the additions of POSIX. */
5027int
5028__posix_memalign (void **memptr, size_t alignment, size_t size)
5029{
5030 void *mem;
5031
5032 /* Test whether the SIZE argument is valid. It must be a power of
5033 two multiple of sizeof (void *). */
5034 if (alignment % sizeof (void *) != 0
5035 || !powerof2 (alignment / sizeof (void *))
5036 || alignment == 0)
5037 return EINVAL;
5038
5039
5040 void *address = RETURN_ADDRESS (0);
5041 mem = _mid_memalign (alignment, size, address);
5042
5043 if (mem != NULL)
5044 {
5045 *memptr = mem;
5046 return 0;
5047 }
5048
5049 return ENOMEM;
5050}
5051weak_alias (__posix_memalign, posix_memalign)
5052
5053
5054int
5055__malloc_info (int options, FILE *fp)
5056{
5057 /* For now, at least. */
5058 if (options != 0)
5059 return EINVAL;
5060
5061 int n = 0;
5062 size_t total_nblocks = 0;
5063 size_t total_nfastblocks = 0;
5064 size_t total_avail = 0;
5065 size_t total_fastavail = 0;
5066 size_t total_system = 0;
5067 size_t total_max_system = 0;
5068 size_t total_aspace = 0;
5069 size_t total_aspace_mprotect = 0;
5070
5071
5072
5073 if (__malloc_initialized < 0)
5074 ptmalloc_init ();
5075
5076 fputs ("<malloc version=\"1\">\n", fp);
5077
5078 /* Iterate over all arenas currently in use. */
5079 mstate ar_ptr = &main_arena;
5080 do
5081 {
5082 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5083
5084 size_t nblocks = 0;
5085 size_t nfastblocks = 0;
5086 size_t avail = 0;
5087 size_t fastavail = 0;
5088 struct
5089 {
5090 size_t from;
5091 size_t to;
5092 size_t total;
5093 size_t count;
5094 } sizes[NFASTBINS + NBINS - 1];
5095#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5096
5097 mutex_lock (&ar_ptr->mutex);
5098
5099 for (size_t i = 0; i < NFASTBINS; ++i)
5100 {
5101 mchunkptr p = fastbin (ar_ptr, i);
5102 if (p != NULL)
5103 {
5104 size_t nthissize = 0;
5105 size_t thissize = chunksize (p);
5106
5107 while (p != NULL)
5108 {
5109 ++nthissize;
5110 p = p->fd;
5111 }
5112
5113 fastavail += nthissize * thissize;
5114 nfastblocks += nthissize;
5115 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5116 sizes[i].to = thissize;
5117 sizes[i].count = nthissize;
5118 }
5119 else
5120 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5121
5122 sizes[i].total = sizes[i].count * sizes[i].to;
5123 }
5124
5125
5126 mbinptr bin;
5127 struct malloc_chunk *r;
5128
5129 for (size_t i = 1; i < NBINS; ++i)
5130 {
5131 bin = bin_at (ar_ptr, i);
5132 r = bin->fd;
5133 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5134 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5135 = sizes[NFASTBINS - 1 + i].count = 0;
5136
5137 if (r != NULL)
5138 while (r != bin)
5139 {
5140 ++sizes[NFASTBINS - 1 + i].count;
5141 sizes[NFASTBINS - 1 + i].total += r->size;
5142 sizes[NFASTBINS - 1 + i].from
5143 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
5144 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5145 r->size);
5146
5147 r = r->fd;
5148 }
5149
5150 if (sizes[NFASTBINS - 1 + i].count == 0)
5151 sizes[NFASTBINS - 1 + i].from = 0;
5152 nblocks += sizes[NFASTBINS - 1 + i].count;
5153 avail += sizes[NFASTBINS - 1 + i].total;
5154 }
5155
5156 mutex_unlock (&ar_ptr->mutex);
5157
5158 total_nfastblocks += nfastblocks;
5159 total_fastavail += fastavail;
5160
5161 total_nblocks += nblocks;
5162 total_avail += avail;
5163
5164 for (size_t i = 0; i < nsizes; ++i)
5165 if (sizes[i].count != 0 && i != NFASTBINS)
5166 fprintf (fp, " \
5167 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5168 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5169
5170 if (sizes[NFASTBINS].count != 0)
5171 fprintf (fp, "\
5172 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5173 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5174 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5175
5176 total_system += ar_ptr->system_mem;
5177 total_max_system += ar_ptr->max_system_mem;
5178
5179 fprintf (fp,
5180 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5181 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5182 "<system type=\"current\" size=\"%zu\"/>\n"
5183 "<system type=\"max\" size=\"%zu\"/>\n",
5184 nfastblocks, fastavail, nblocks, avail,
5185 ar_ptr->system_mem, ar_ptr->max_system_mem);
5186
5187 if (ar_ptr != &main_arena)
5188 {
5189 heap_info *heap = heap_for_ptr (top (ar_ptr));
5190 fprintf (fp,
5191 "<aspace type=\"total\" size=\"%zu\"/>\n"
5192 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5193 heap->size, heap->mprotect_size);
5194 total_aspace += heap->size;
5195 total_aspace_mprotect += heap->mprotect_size;
5196 }
5197 else
5198 {
5199 fprintf (fp,
5200 "<aspace type=\"total\" size=\"%zu\"/>\n"
5201 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5202 ar_ptr->system_mem, ar_ptr->system_mem);
5203 total_aspace += ar_ptr->system_mem;
5204 total_aspace_mprotect += ar_ptr->system_mem;
5205 }
5206
5207 fputs ("</heap>\n", fp);
5208 ar_ptr = ar_ptr->next;
5209 }
5210 while (ar_ptr != &main_arena);
5211
5212 fprintf (fp,
5213 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5214 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5215 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5216 "<system type=\"current\" size=\"%zu\"/>\n"
5217 "<system type=\"max\" size=\"%zu\"/>\n"
5218 "<aspace type=\"total\" size=\"%zu\"/>\n"
5219 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5220 "</malloc>\n",
5221 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5222 mp_.n_mmaps, mp_.mmapped_mem,
5223 total_system, total_max_system,
5224 total_aspace, total_aspace_mprotect);
5225
5226 return 0;
5227}
5228weak_alias (__malloc_info, malloc_info)
5229
5230
5231strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5232strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5233strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5234strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5235strong_alias (__libc_memalign, __memalign)
5236weak_alias (__libc_memalign, memalign)
5237strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5238strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5239strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5240strong_alias (__libc_mallinfo, __mallinfo)
5241weak_alias (__libc_mallinfo, mallinfo)
5242strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5243
5244weak_alias (__malloc_stats, malloc_stats)
5245weak_alias (__malloc_usable_size, malloc_usable_size)
5246weak_alias (__malloc_trim, malloc_trim)
5247weak_alias (__malloc_get_state, malloc_get_state)
5248weak_alias (__malloc_set_state, malloc_set_state)
5249
5250
5251/* ------------------------------------------------------------
5252 History:
5253
5254 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5255
5256 */
5257/*
5258 * Local variables:
5259 * c-basic-offset: 2
5260 * End:
5261 */