blob: c2fbc09af2f229cb74abb61548ef7c481174b1d0 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
xf.lie31de8b2023-12-26 23:38:58 -080062#ifdef CONFIG_FLAGS_UTILS
63#include <linux/reboot.h>
64#include "pub_flags.h"
65#endif
66
lh9ed821d2023-04-07 01:36:19 -070067static void exit_mm(struct task_struct * tsk);
68
69static void __unhash_process(struct task_struct *p, bool group_dead)
70{
71 nr_threads--;
72 detach_pid(p, PIDTYPE_PID);
73 if (group_dead) {
74 detach_pid(p, PIDTYPE_PGID);
75 detach_pid(p, PIDTYPE_SID);
76
77 list_del_rcu(&p->tasks);
78 list_del_init(&p->sibling);
79 __this_cpu_dec(process_counts);
80 }
81 list_del_rcu(&p->thread_group);
82 list_del_rcu(&p->thread_node);
83}
84
85/*
86 * This function expects the tasklist_lock write-locked.
87 */
88static void __exit_signal(struct task_struct *tsk)
89{
90 struct signal_struct *sig = tsk->signal;
91 bool group_dead = thread_group_leader(tsk);
92 struct sighand_struct *sighand;
93 struct tty_struct *uninitialized_var(tty);
94
95 sighand = rcu_dereference_check(tsk->sighand,
96 lockdep_tasklist_lock_is_held());
97 spin_lock(&sighand->siglock);
98
99 posix_cpu_timers_exit(tsk);
100 if (group_dead) {
101 posix_cpu_timers_exit_group(tsk);
102 tty = sig->tty;
103 sig->tty = NULL;
104 } else {
105 /*
106 * This can only happen if the caller is de_thread().
107 * FIXME: this is the temporary hack, we should teach
108 * posix-cpu-timers to handle this case correctly.
109 */
110 if (unlikely(has_group_leader_pid(tsk)))
111 posix_cpu_timers_exit_group(tsk);
112
113 /*
114 * If there is any task waiting for the group exit
115 * then notify it:
116 */
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 /*
123 * Accumulate here the counters for all threads but the
124 * group leader as they die, so they can be added into
125 * the process-wide totals when those are taken.
126 * The group leader stays around as a zombie as long
127 * as there are other threads. When it gets reaped,
128 * the exit.c code will add its counts into these totals.
129 * We won't ever get here for the group leader, since it
130 * will have been the last reference on the signal_struct.
131 */
132 sig->utime += tsk->utime;
133 sig->stime += tsk->stime;
134 sig->gtime += tsk->gtime;
135 sig->min_flt += tsk->min_flt;
136 sig->maj_flt += tsk->maj_flt;
137 sig->nvcsw += tsk->nvcsw;
138 sig->nivcsw += tsk->nivcsw;
139 sig->inblock += task_io_get_inblock(tsk);
140 sig->oublock += task_io_get_oublock(tsk);
141 task_io_accounting_add(&sig->ioac, &tsk->ioac);
142 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
143 }
144
145 sig->nr_threads--;
146 __unhash_process(tsk, group_dead);
147
148 /*
149 * Do this under ->siglock, we can race with another thread
150 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
151 */
152 flush_task_sigqueue(tsk);
153 tsk->sighand = NULL;
154 spin_unlock(&sighand->siglock);
155
156 __cleanup_sighand(sighand);
157 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
158 if (group_dead) {
159 flush_sigqueue(&sig->shared_pending);
160 tty_kref_put(tty);
161 }
162}
163
164static void delayed_put_task_struct(struct rcu_head *rhp)
165{
166 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
167
168 perf_event_delayed_put(tsk);
169 trace_sched_process_free(tsk);
170 put_task_struct(tsk);
171}
172
173
174void release_task(struct task_struct * p)
175{
176 struct task_struct *leader;
177 int zap_leader;
178repeat:
179 /* don't need to get the RCU readlock here - the process is dead and
180 * can't be modifying its own credentials. But shut RCU-lockdep up */
181 rcu_read_lock();
182 atomic_dec(&__task_cred(p)->user->processes);
183 rcu_read_unlock();
184
185 proc_flush_task(p);
186
187 write_lock_irq(&tasklist_lock);
188 ptrace_release_task(p);
189 __exit_signal(p);
190
191 /*
192 * If we are the last non-leader member of the thread
193 * group, and the leader is zombie, then notify the
194 * group leader's parent process. (if it wants notification.)
195 */
196 zap_leader = 0;
197 leader = p->group_leader;
198 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
199 /*
200 * If we were the last child thread and the leader has
201 * exited already, and the leader's parent ignores SIGCHLD,
202 * then we are the one who should release the leader.
203 */
204 zap_leader = do_notify_parent(leader, leader->exit_signal);
205 if (zap_leader)
206 leader->exit_state = EXIT_DEAD;
207 }
208
209 write_unlock_irq(&tasklist_lock);
210 release_thread(p);
211 call_rcu(&p->rcu, delayed_put_task_struct);
212
213 p = leader;
214 if (unlikely(zap_leader))
215 goto repeat;
216}
217
218/*
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221 * without this...
222 *
223 * The caller must hold rcu lock or the tasklist lock.
224 */
225struct pid *session_of_pgrp(struct pid *pgrp)
226{
227 struct task_struct *p;
228 struct pid *sid = NULL;
229
230 p = pid_task(pgrp, PIDTYPE_PGID);
231 if (p == NULL)
232 p = pid_task(pgrp, PIDTYPE_PID);
233 if (p != NULL)
234 sid = task_session(p);
235
236 return sid;
237}
238
239/*
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
244 *
245 * "I ask you, have you ever known what it is to be an orphan?"
246 */
247static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248{
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263}
264
265int is_current_pgrp_orphaned(void)
266{
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274}
275
276static bool has_stopped_jobs(struct pid *pgrp)
277{
278 struct task_struct *p;
279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 return true;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return false;
286}
287
288/*
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */
293static void
294kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295{
296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk;
298
299 if (!parent)
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
302 */
303 parent = tsk->real_parent;
304 else
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
307 */
308 ignored_task = NULL;
309
310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 }
317}
318
319/**
320 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
321 *
322 * If a kernel thread is launched as a result of a system call, or if
323 * it ever exits, it should generally reparent itself to kthreadd so it
324 * isn't in the way of other processes and is correctly cleaned up on exit.
325 *
326 * The various task state such as scheduling policy and priority may have
327 * been inherited from a user process, so we reset them to sane values here.
328 *
329 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
330 */
331static void reparent_to_kthreadd(void)
332{
333 write_lock_irq(&tasklist_lock);
334
335 ptrace_unlink(current);
336 /* Reparent to init */
337 current->real_parent = current->parent = kthreadd_task;
338 list_move_tail(&current->sibling, &current->real_parent->children);
339
340 /* Set the exit signal to SIGCHLD so we signal init on exit */
341 current->exit_signal = SIGCHLD;
342
343 if (task_nice(current) < 0)
344 set_user_nice(current, 0);
345 /* cpus_allowed? */
346 /* rt_priority? */
347 /* signals? */
348 memcpy(current->signal->rlim, init_task.signal->rlim,
349 sizeof(current->signal->rlim));
350
351 atomic_inc(&init_cred.usage);
352 commit_creds(&init_cred);
353 write_unlock_irq(&tasklist_lock);
354}
355
356void __set_special_pids(struct pid *pid)
357{
358 struct task_struct *curr = current->group_leader;
359
360 if (task_session(curr) != pid)
361 change_pid(curr, PIDTYPE_SID, pid);
362
363 if (task_pgrp(curr) != pid)
364 change_pid(curr, PIDTYPE_PGID, pid);
365}
366
367static void set_special_pids(struct pid *pid)
368{
369 write_lock_irq(&tasklist_lock);
370 __set_special_pids(pid);
371 write_unlock_irq(&tasklist_lock);
372}
373
374/*
375 * Let kernel threads use this to say that they allow a certain signal.
376 * Must not be used if kthread was cloned with CLONE_SIGHAND.
377 */
378int allow_signal(int sig)
379{
380 if (!valid_signal(sig) || sig < 1)
381 return -EINVAL;
382
383 spin_lock_irq(&current->sighand->siglock);
384 /* This is only needed for daemonize()'ed kthreads */
385 sigdelset(&current->blocked, sig);
386 /*
387 * Kernel threads handle their own signals. Let the signal code
388 * know it'll be handled, so that they don't get converted to
389 * SIGKILL or just silently dropped.
390 */
391 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
392 recalc_sigpending();
393 spin_unlock_irq(&current->sighand->siglock);
394 return 0;
395}
396
397EXPORT_SYMBOL(allow_signal);
398
399int disallow_signal(int sig)
400{
401 if (!valid_signal(sig) || sig < 1)
402 return -EINVAL;
403
404 spin_lock_irq(&current->sighand->siglock);
405 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
406 recalc_sigpending();
407 spin_unlock_irq(&current->sighand->siglock);
408 return 0;
409}
410
411EXPORT_SYMBOL(disallow_signal);
412
413/*
414 * Put all the gunge required to become a kernel thread without
415 * attached user resources in one place where it belongs.
416 */
417
418void daemonize(const char *name, ...)
419{
420 va_list args;
421 sigset_t blocked;
422
423 va_start(args, name);
424 vsnprintf(current->comm, sizeof(current->comm), name, args);
425 va_end(args);
426
427 /*
428 * If we were started as result of loading a module, close all of the
429 * user space pages. We don't need them, and if we didn't close them
430 * they would be locked into memory.
431 */
432 exit_mm(current);
433 /*
434 * We don't want to get frozen, in case system-wide hibernation
435 * or suspend transition begins right now.
436 */
437 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
438
439 if (current->nsproxy != &init_nsproxy) {
440 get_nsproxy(&init_nsproxy);
441 switch_task_namespaces(current, &init_nsproxy);
442 }
443 set_special_pids(&init_struct_pid);
444 proc_clear_tty(current);
445
446 /* Block and flush all signals */
447 sigfillset(&blocked);
448 sigprocmask(SIG_BLOCK, &blocked, NULL);
449 flush_signals(current);
450
451 /* Become as one with the init task */
452
453 daemonize_fs_struct();
454 exit_files(current);
455 current->files = init_task.files;
456 atomic_inc(&current->files->count);
457
458 reparent_to_kthreadd();
459}
460
461EXPORT_SYMBOL(daemonize);
462
463static void close_files(struct files_struct * files)
464{
465 int i, j;
466 struct fdtable *fdt;
467
468 j = 0;
469
470 /*
471 * It is safe to dereference the fd table without RCU or
472 * ->file_lock because this is the last reference to the
473 * files structure. But use RCU to shut RCU-lockdep up.
474 */
475 rcu_read_lock();
476 fdt = files_fdtable(files);
477 rcu_read_unlock();
478 for (;;) {
479 unsigned long set;
480 i = j * BITS_PER_LONG;
481 if (i >= fdt->max_fds)
482 break;
483 set = fdt->open_fds[j++];
484 while (set) {
485 if (set & 1) {
486 struct file * file = xchg(&fdt->fd[i], NULL);
487 if (file) {
488 filp_close(file, files);
489 cond_resched();
490 }
491 }
492 i++;
493 set >>= 1;
494 }
495 }
496}
497
498struct files_struct *get_files_struct(struct task_struct *task)
499{
500 struct files_struct *files;
501
502 task_lock(task);
503 files = task->files;
504 if (files)
505 atomic_inc(&files->count);
506 task_unlock(task);
507
508 return files;
509}
510
511void put_files_struct(struct files_struct *files)
512{
513 struct fdtable *fdt;
514
515 if (atomic_dec_and_test(&files->count)) {
516 close_files(files);
517 /*
518 * Free the fd and fdset arrays if we expanded them.
519 * If the fdtable was embedded, pass files for freeing
520 * at the end of the RCU grace period. Otherwise,
521 * you can free files immediately.
522 */
523 rcu_read_lock();
524 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt);
528 rcu_read_unlock();
529 }
530}
531
532void reset_files_struct(struct files_struct *files)
533{
534 struct task_struct *tsk = current;
535 struct files_struct *old;
536
537 old = tsk->files;
538 task_lock(tsk);
539 tsk->files = files;
540 task_unlock(tsk);
541 put_files_struct(old);
542}
543
544void exit_files(struct task_struct *tsk)
545{
546 struct files_struct * files = tsk->files;
547
548 if (files) {
549 task_lock(tsk);
550 tsk->files = NULL;
551 task_unlock(tsk);
552 put_files_struct(files);
553 }
554}
555
556#ifdef CONFIG_MM_OWNER
557/*
558 * A task is exiting. If it owned this mm, find a new owner for the mm.
559 */
560void mm_update_next_owner(struct mm_struct *mm)
561{
562 struct task_struct *c, *g, *p = current;
563
564retry:
565 /*
566 * If the exiting or execing task is not the owner, it's
567 * someone else's problem.
568 */
569 if (mm->owner != p)
570 return;
571 /*
572 * The current owner is exiting/execing and there are no other
573 * candidates. Do not leave the mm pointing to a possibly
574 * freed task structure.
575 */
576 if (atomic_read(&mm->mm_users) <= 1) {
577 mm->owner = NULL;
578 return;
579 }
580
581 read_lock(&tasklist_lock);
582 /*
583 * Search in the children
584 */
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search in the siblings
592 */
593 list_for_each_entry(c, &p->real_parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search through everything else. We should not get
600 * here often
601 */
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
606
607 read_unlock(&tasklist_lock);
608 /*
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
612 */
613 mm->owner = NULL;
614 return;
615
616assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
619 /*
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
622 */
623 task_lock(c);
624 /*
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
627 */
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
633 }
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
637}
638#endif /* CONFIG_MM_OWNER */
639
640/*
641 * Turn us into a lazy TLB process if we
642 * aren't already..
643 */
644static void exit_mm(struct task_struct * tsk)
645{
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
648
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
652 sync_mm_rss(mm);
653 /*
654 * Serialize with any possible pending coredump.
655 * We must hold mmap_sem around checking core_state
656 * and clearing tsk->mm. The core-inducing thread
657 * will increment ->nr_threads for each thread in the
658 * group with ->mm != NULL.
659 */
660 down_read(&mm->mmap_sem);
661 core_state = mm->core_state;
662 if (core_state) {
663 struct core_thread self;
664 up_read(&mm->mmap_sem);
665
666 self.task = tsk;
667 self.next = xchg(&core_state->dumper.next, &self);
668 /*
669 * Implies mb(), the result of xchg() must be visible
670 * to core_state->dumper.
671 */
672 if (atomic_dec_and_test(&core_state->nr_threads))
673 complete(&core_state->startup);
674
675 for (;;) {
676 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
677 if (!self.task) /* see coredump_finish() */
678 break;
679 schedule();
680 }
681 __set_task_state(tsk, TASK_RUNNING);
682 down_read(&mm->mmap_sem);
683 }
684 atomic_inc(&mm->mm_count);
685 BUG_ON(mm != tsk->active_mm);
686 /* more a memory barrier than a real lock */
687 task_lock(tsk);
688 tsk->mm = NULL;
689 up_read(&mm->mmap_sem);
690 enter_lazy_tlb(mm, current);
691 task_unlock(tsk);
692 mm_update_next_owner(mm);
693 mmput(mm);
694}
695
696/*
697 * When we die, we re-parent all our children, and try to:
698 * 1. give them to another thread in our thread group, if such a member exists
699 * 2. give it to the first ancestor process which prctl'd itself as a
700 * child_subreaper for its children (like a service manager)
701 * 3. give it to the init process (PID 1) in our pid namespace
702 */
703static struct task_struct *find_new_reaper(struct task_struct *father)
704 __releases(&tasklist_lock)
705 __acquires(&tasklist_lock)
706{
707 struct pid_namespace *pid_ns = task_active_pid_ns(father);
708 struct task_struct *thread;
709
710 thread = father;
711 while_each_thread(father, thread) {
712 if (thread->flags & PF_EXITING)
713 continue;
714 if (unlikely(pid_ns->child_reaper == father))
715 pid_ns->child_reaper = thread;
716 return thread;
717 }
718
719 if (unlikely(pid_ns->child_reaper == father)) {
720 write_unlock_irq(&tasklist_lock);
721 if (unlikely(pid_ns == &init_pid_ns)) {
xf.lie31de8b2023-12-26 23:38:58 -0800722#ifdef CONFIG_FLAGS_UTILS
723 extern int flags_sys_switch(void);
724 printk(KERN_EMERG "Attempted to kill init! exitcode=0x%08x\n",
725 father->signal->group_exit_code ?:
726 father->exit_code);
727 if (flags_sys_switch() < 0)
728 panic("init: flags_sys_switch fail");
729 else
730 kernel_restart("init: Switch to another system, please reset machine");
731#endif
lh9ed821d2023-04-07 01:36:19 -0700732 panic("Attempted to kill init! exitcode=0x%08x\n",
733 father->signal->group_exit_code ?:
734 father->exit_code);
735 }
736
737 zap_pid_ns_processes(pid_ns);
738 write_lock_irq(&tasklist_lock);
739 /*
740 * We can not clear ->child_reaper or leave it alone.
741 * There may by stealth EXIT_DEAD tasks on ->children,
742 * forget_original_parent() must move them somewhere.
743 */
744 pid_ns->child_reaper = init_pid_ns.child_reaper;
745 } else if (father->signal->has_child_subreaper) {
746 struct task_struct *reaper;
747
748 /*
749 * Find the first ancestor marked as child_subreaper.
750 * Note that the code below checks same_thread_group(reaper,
751 * pid_ns->child_reaper). This is what we need to DTRT in a
752 * PID namespace. However we still need the check above, see
753 * http://marc.info/?l=linux-kernel&m=131385460420380
754 */
755 for (reaper = father->real_parent;
756 reaper != &init_task;
757 reaper = reaper->real_parent) {
758 if (same_thread_group(reaper, pid_ns->child_reaper))
759 break;
760 if (!reaper->signal->is_child_subreaper)
761 continue;
762 thread = reaper;
763 do {
764 if (!(thread->flags & PF_EXITING))
765 return reaper;
766 } while_each_thread(reaper, thread);
767 }
768 }
769
770 return pid_ns->child_reaper;
771}
772
773/*
774* Any that need to be release_task'd are put on the @dead list.
775 */
776static void reparent_leader(struct task_struct *father, struct task_struct *p,
777 struct list_head *dead)
778{
779 list_move_tail(&p->sibling, &p->real_parent->children);
780 /*
781 * If this is a threaded reparent there is no need to
782 * notify anyone anything has happened.
783 */
784 if (same_thread_group(p->real_parent, father))
785 return;
786
787 /*
788 * We don't want people slaying init.
789 *
790 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
791 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
792 * state, do_notify_parent() was already called and ->exit_signal
793 * doesn't matter.
794 */
795 p->exit_signal = SIGCHLD;
796
797 if (p->exit_state == EXIT_DEAD)
798 return;
799
800 /* If it has exited notify the new parent about this child's death. */
801 if (!p->ptrace &&
802 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
803 if (do_notify_parent(p, p->exit_signal)) {
804 p->exit_state = EXIT_DEAD;
805 list_move_tail(&p->sibling, dead);
806 }
807 }
808
809 kill_orphaned_pgrp(p, father);
810}
811
812static void forget_original_parent(struct task_struct *father)
813{
814 struct task_struct *p, *n, *reaper;
815 LIST_HEAD(dead_children);
816
817 write_lock_irq(&tasklist_lock);
818 /*
819 * Note that exit_ptrace() and find_new_reaper() might
820 * drop tasklist_lock and reacquire it.
821 */
822 exit_ptrace(father);
823 reaper = find_new_reaper(father);
824
825 list_for_each_entry_safe(p, n, &father->children, sibling) {
826 struct task_struct *t = p;
827 do {
828 t->real_parent = reaper;
829 if (t->parent == father) {
830 BUG_ON(t->ptrace);
831 t->parent = t->real_parent;
832 }
833 if (t->pdeath_signal)
834 group_send_sig_info(t->pdeath_signal,
835 SEND_SIG_NOINFO, t);
836 } while_each_thread(p, t);
837 reparent_leader(father, p, &dead_children);
838 }
839 write_unlock_irq(&tasklist_lock);
840
841 BUG_ON(!list_empty(&father->children));
842
843 list_for_each_entry_safe(p, n, &dead_children, sibling) {
844 list_del_init(&p->sibling);
845 release_task(p);
846 }
847}
848
849/*
850 * Send signals to all our closest relatives so that they know
851 * to properly mourn us..
852 */
853static void exit_notify(struct task_struct *tsk, int group_dead)
854{
855 bool autoreap;
856
857 /*
858 * This does two things:
859 *
860 * A. Make init inherit all the child processes
861 * B. Check to see if any process groups have become orphaned
862 * as a result of our exiting, and if they have any stopped
863 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
864 */
865 forget_original_parent(tsk);
866 exit_task_namespaces(tsk);
867
868 write_lock_irq(&tasklist_lock);
869 if (group_dead)
870 kill_orphaned_pgrp(tsk->group_leader, NULL);
871
872 if (unlikely(tsk->ptrace)) {
873 int sig = thread_group_leader(tsk) &&
874 thread_group_empty(tsk) &&
875 !ptrace_reparented(tsk) ?
876 tsk->exit_signal : SIGCHLD;
877 autoreap = do_notify_parent(tsk, sig);
878 } else if (thread_group_leader(tsk)) {
879 autoreap = thread_group_empty(tsk) &&
880 do_notify_parent(tsk, tsk->exit_signal);
881 } else {
882 autoreap = true;
883 }
884
885 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
886
887 /* mt-exec, de_thread() is waiting for group leader */
888 if (unlikely(tsk->signal->notify_count < 0))
889 wake_up_process(tsk->signal->group_exit_task);
890 write_unlock_irq(&tasklist_lock);
891
892 /* If the process is dead, release it - nobody will wait for it */
893 if (autoreap)
894 release_task(tsk);
895}
896
897#ifdef CONFIG_DEBUG_STACK_USAGE
898static void check_stack_usage(void)
899{
900 static DEFINE_SPINLOCK(low_water_lock);
901 static int lowest_to_date = THREAD_SIZE;
902 unsigned long free;
903
904 free = stack_not_used(current);
905
906 if (free >= lowest_to_date)
907 return;
908
909 spin_lock(&low_water_lock);
910 if (free < lowest_to_date) {
911 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
912 "left\n",
913 current->comm, free);
914 lowest_to_date = free;
915 }
916 spin_unlock(&low_water_lock);
917}
918#else
919static inline void check_stack_usage(void) {}
920#endif
921
922void do_exit(long code)
923{
924 struct task_struct *tsk = current;
925 int group_dead;
926
927 profile_task_exit(tsk);
928
929 WARN_ON(blk_needs_flush_plug(tsk));
930
931 if (unlikely(in_interrupt()))
932 panic("Aiee, killing interrupt handler!");
933 if (unlikely(!tsk->pid))
934 panic("Attempted to kill the idle task!");
935
936 /*
937 * If do_exit is called because this processes oopsed, it's possible
938 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
939 * continuing. Amongst other possible reasons, this is to prevent
940 * mm_release()->clear_child_tid() from writing to a user-controlled
941 * kernel address.
942 */
943 set_fs(USER_DS);
944
945 ptrace_event(PTRACE_EVENT_EXIT, code);
946
947 validate_creds_for_do_exit(tsk);
948
949 /*
950 * We're taking recursive faults here in do_exit. Safest is to just
951 * leave this task alone and wait for reboot.
952 */
953 if (unlikely(tsk->flags & PF_EXITING)) {
954 printk(KERN_ALERT
955 "Fixing recursive fault but reboot is needed!\n");
956 /*
957 * We can do this unlocked here. The futex code uses
958 * this flag just to verify whether the pi state
959 * cleanup has been done or not. In the worst case it
960 * loops once more. We pretend that the cleanup was
961 * done as there is no way to return. Either the
962 * OWNER_DIED bit is set by now or we push the blocked
963 * task into the wait for ever nirwana as well.
964 */
965 tsk->flags |= PF_EXITPIDONE;
966 set_current_state(TASK_UNINTERRUPTIBLE);
967 schedule();
968 }
969
970 exit_signals(tsk); /* sets PF_EXITING */
971 /*
972 * tsk->flags are checked in the futex code to protect against
973 * an exiting task cleaning up the robust pi futexes.
974 */
975 smp_mb();
976 raw_spin_unlock_wait(&tsk->pi_lock);
977
978 exit_irq_thread();
979
980 if (unlikely(in_atomic()))
981 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
982 current->comm, task_pid_nr(current),
983 preempt_count());
984
985 acct_update_integrals(tsk);
986 /* sync mm's RSS info before statistics gathering */
987 if (tsk->mm)
988 sync_mm_rss(tsk->mm);
989 group_dead = atomic_dec_and_test(&tsk->signal->live);
990 if (group_dead) {
991 hrtimer_cancel(&tsk->signal->real_timer);
992 exit_itimers(tsk->signal);
993 if (tsk->mm)
994 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
995 }
996 acct_collect(code, group_dead);
997 if (group_dead)
998 tty_audit_exit();
999 audit_free(tsk);
1000
1001 tsk->exit_code = code;
1002 taskstats_exit(tsk, group_dead);
1003
1004 exit_mm(tsk);
1005
1006 if (group_dead)
1007 acct_process();
1008 trace_sched_process_exit(tsk);
1009
1010 exit_sem(tsk);
1011 exit_shm(tsk);
1012 exit_files(tsk);
1013 exit_fs(tsk);
1014 check_stack_usage();
1015 exit_thread();
1016
1017 /*
1018 * Flush inherited counters to the parent - before the parent
1019 * gets woken up by child-exit notifications.
1020 *
1021 * because of cgroup mode, must be called before cgroup_exit()
1022 */
1023 perf_event_exit_task(tsk);
1024
1025 cgroup_exit(tsk, 1);
1026
1027 if (group_dead)
1028 disassociate_ctty(1);
1029
1030 module_put(task_thread_info(tsk)->exec_domain->module);
1031
1032 proc_exit_connector(tsk);
1033
1034 /*
1035 * FIXME: do that only when needed, using sched_exit tracepoint
1036 */
1037 ptrace_put_breakpoints(tsk);
1038
1039 exit_notify(tsk, group_dead);
1040#ifdef CONFIG_NUMA
1041 task_lock(tsk);
1042 mpol_put(tsk->mempolicy);
1043 tsk->mempolicy = NULL;
1044 task_unlock(tsk);
1045#endif
1046#ifdef CONFIG_FUTEX
1047 if (unlikely(current->pi_state_cache))
1048 kfree(current->pi_state_cache);
1049#endif
1050 /*
1051 * Make sure we are holding no locks:
1052 */
1053 debug_check_no_locks_held(tsk);
1054 /*
1055 * We can do this unlocked here. The futex code uses this flag
1056 * just to verify whether the pi state cleanup has been done
1057 * or not. In the worst case it loops once more.
1058 */
1059 tsk->flags |= PF_EXITPIDONE;
1060
1061 if (tsk->io_context)
1062 exit_io_context(tsk);
1063
1064 if (tsk->splice_pipe)
1065 __free_pipe_info(tsk->splice_pipe);
1066
1067 validate_creds_for_do_exit(tsk);
1068
1069 preempt_disable();
1070 if (tsk->nr_dirtied)
1071 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1072 exit_rcu();
1073
1074 /*
1075 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1076 * when the following two conditions become true.
1077 * - There is race condition of mmap_sem (It is acquired by
1078 * exit_mm()), and
1079 * - SMI occurs before setting TASK_RUNINNG.
1080 * (or hypervisor of virtual machine switches to other guest)
1081 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1082 *
1083 * To avoid it, we have to wait for releasing tsk->pi_lock which
1084 * is held by try_to_wake_up()
1085 */
1086 smp_mb();
1087 raw_spin_unlock_wait(&tsk->pi_lock);
1088
1089 /* causes final put_task_struct in finish_task_switch(). */
1090 tsk->state = TASK_DEAD;
1091 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1092 schedule();
1093 BUG();
1094 /* Avoid "noreturn function does return". */
1095 for (;;)
1096 cpu_relax(); /* For when BUG is null */
1097}
1098
1099EXPORT_SYMBOL(do_exit);
1100
1101void complete_and_exit(struct completion *comp, long code)
1102{
1103 if (comp)
1104 complete(comp);
1105
1106 do_exit(code);
1107}
1108
1109EXPORT_SYMBOL(complete_and_exit);
1110
1111SYSCALL_DEFINE1(exit, int, error_code)
1112{
1113 do_exit((error_code&0xff)<<8);
1114}
1115
1116/*
1117 * Take down every thread in the group. This is called by fatal signals
1118 * as well as by sys_exit_group (below).
1119 */
1120void
1121do_group_exit(int exit_code)
1122{
1123 struct signal_struct *sig = current->signal;
1124
1125 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1126
1127 if (signal_group_exit(sig))
1128 exit_code = sig->group_exit_code;
1129 else if (!thread_group_empty(current)) {
1130 struct sighand_struct *const sighand = current->sighand;
1131 spin_lock_irq(&sighand->siglock);
1132 if (signal_group_exit(sig))
1133 /* Another thread got here before we took the lock. */
1134 exit_code = sig->group_exit_code;
1135 else {
1136 sig->group_exit_code = exit_code;
1137 sig->flags = SIGNAL_GROUP_EXIT;
1138 zap_other_threads(current);
1139 }
1140 spin_unlock_irq(&sighand->siglock);
1141 }
1142
1143 do_exit(exit_code);
1144 /* NOTREACHED */
1145}
1146
1147/*
1148 * this kills every thread in the thread group. Note that any externally
1149 * wait4()-ing process will get the correct exit code - even if this
1150 * thread is not the thread group leader.
1151 */
1152SYSCALL_DEFINE1(exit_group, int, error_code)
1153{
1154 do_group_exit((error_code & 0xff) << 8);
1155 /* NOTREACHED */
1156 return 0;
1157}
1158
1159struct wait_opts {
1160 enum pid_type wo_type;
1161 int wo_flags;
1162 struct pid *wo_pid;
1163
1164 struct siginfo __user *wo_info;
1165 int __user *wo_stat;
1166 struct rusage __user *wo_rusage;
1167
1168 wait_queue_t child_wait;
1169 int notask_error;
1170};
1171
1172static inline
1173struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1174{
1175 if (type != PIDTYPE_PID)
1176 task = task->group_leader;
1177 return task->pids[type].pid;
1178}
1179
1180static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1181{
1182 return wo->wo_type == PIDTYPE_MAX ||
1183 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1184}
1185
1186static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1187{
1188 if (!eligible_pid(wo, p))
1189 return 0;
1190 /* Wait for all children (clone and not) if __WALL is set;
1191 * otherwise, wait for clone children *only* if __WCLONE is
1192 * set; otherwise, wait for non-clone children *only*. (Note:
1193 * A "clone" child here is one that reports to its parent
1194 * using a signal other than SIGCHLD.) */
1195 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1196 && !(wo->wo_flags & __WALL))
1197 return 0;
1198
1199 return 1;
1200}
1201
1202static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1203 pid_t pid, uid_t uid, int why, int status)
1204{
1205 struct siginfo __user *infop;
1206 int retval = wo->wo_rusage
1207 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1208
1209 put_task_struct(p);
1210 infop = wo->wo_info;
1211 if (infop) {
1212 if (!retval)
1213 retval = put_user(SIGCHLD, &infop->si_signo);
1214 if (!retval)
1215 retval = put_user(0, &infop->si_errno);
1216 if (!retval)
1217 retval = put_user((short)why, &infop->si_code);
1218 if (!retval)
1219 retval = put_user(pid, &infop->si_pid);
1220 if (!retval)
1221 retval = put_user(uid, &infop->si_uid);
1222 if (!retval)
1223 retval = put_user(status, &infop->si_status);
1224 }
1225 if (!retval)
1226 retval = pid;
1227 return retval;
1228}
1229
1230/*
1231 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1232 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1233 * the lock and this task is uninteresting. If we return nonzero, we have
1234 * released the lock and the system call should return.
1235 */
1236static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1237{
1238 unsigned long state;
1239 int retval, status, traced;
1240 pid_t pid = task_pid_vnr(p);
1241 uid_t uid = __task_cred(p)->uid;
1242 struct siginfo __user *infop;
1243
1244 if (!likely(wo->wo_flags & WEXITED))
1245 return 0;
1246
1247 if (unlikely(wo->wo_flags & WNOWAIT)) {
1248 int exit_code = p->exit_code;
1249 int why;
1250
1251 get_task_struct(p);
1252 read_unlock(&tasklist_lock);
1253 if ((exit_code & 0x7f) == 0) {
1254 why = CLD_EXITED;
1255 status = exit_code >> 8;
1256 } else {
1257 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1258 status = exit_code & 0x7f;
1259 }
1260 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1261 }
1262
1263 /*
1264 * Try to move the task's state to DEAD
1265 * only one thread is allowed to do this:
1266 */
1267 state = xchg(&p->exit_state, EXIT_DEAD);
1268 if (state != EXIT_ZOMBIE) {
1269 BUG_ON(state != EXIT_DEAD);
1270 return 0;
1271 }
1272
1273 traced = ptrace_reparented(p);
1274 /*
1275 * It can be ptraced but not reparented, check
1276 * thread_group_leader() to filter out sub-threads.
1277 */
1278 if (likely(!traced) && thread_group_leader(p)) {
1279 struct signal_struct *psig;
1280 struct signal_struct *sig;
1281 unsigned long maxrss;
1282 cputime_t tgutime, tgstime;
1283
1284 /*
1285 * The resource counters for the group leader are in its
1286 * own task_struct. Those for dead threads in the group
1287 * are in its signal_struct, as are those for the child
1288 * processes it has previously reaped. All these
1289 * accumulate in the parent's signal_struct c* fields.
1290 *
1291 * We don't bother to take a lock here to protect these
1292 * p->signal fields, because they are only touched by
1293 * __exit_signal, which runs with tasklist_lock
1294 * write-locked anyway, and so is excluded here. We do
1295 * need to protect the access to parent->signal fields,
1296 * as other threads in the parent group can be right
1297 * here reaping other children at the same time.
1298 *
1299 * We use thread_group_times() to get times for the thread
1300 * group, which consolidates times for all threads in the
1301 * group including the group leader.
1302 */
1303 thread_group_times(p, &tgutime, &tgstime);
1304 spin_lock_irq(&p->real_parent->sighand->siglock);
1305 psig = p->real_parent->signal;
1306 sig = p->signal;
1307 psig->cutime += tgutime + sig->cutime;
1308 psig->cstime += tgstime + sig->cstime;
1309 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1310 psig->cmin_flt +=
1311 p->min_flt + sig->min_flt + sig->cmin_flt;
1312 psig->cmaj_flt +=
1313 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1314 psig->cnvcsw +=
1315 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1316 psig->cnivcsw +=
1317 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1318 psig->cinblock +=
1319 task_io_get_inblock(p) +
1320 sig->inblock + sig->cinblock;
1321 psig->coublock +=
1322 task_io_get_oublock(p) +
1323 sig->oublock + sig->coublock;
1324 maxrss = max(sig->maxrss, sig->cmaxrss);
1325 if (psig->cmaxrss < maxrss)
1326 psig->cmaxrss = maxrss;
1327 task_io_accounting_add(&psig->ioac, &p->ioac);
1328 task_io_accounting_add(&psig->ioac, &sig->ioac);
1329 spin_unlock_irq(&p->real_parent->sighand->siglock);
1330 }
1331
1332 /*
1333 * Now we are sure this task is interesting, and no other
1334 * thread can reap it because we set its state to EXIT_DEAD.
1335 */
1336 read_unlock(&tasklist_lock);
1337
1338 retval = wo->wo_rusage
1339 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1340 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1341 ? p->signal->group_exit_code : p->exit_code;
1342 if (!retval && wo->wo_stat)
1343 retval = put_user(status, wo->wo_stat);
1344
1345 infop = wo->wo_info;
1346 if (!retval && infop)
1347 retval = put_user(SIGCHLD, &infop->si_signo);
1348 if (!retval && infop)
1349 retval = put_user(0, &infop->si_errno);
1350 if (!retval && infop) {
1351 int why;
1352
1353 if ((status & 0x7f) == 0) {
1354 why = CLD_EXITED;
1355 status >>= 8;
1356 } else {
1357 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1358 status &= 0x7f;
1359 }
1360 retval = put_user((short)why, &infop->si_code);
1361 if (!retval)
1362 retval = put_user(status, &infop->si_status);
1363 }
1364 if (!retval && infop)
1365 retval = put_user(pid, &infop->si_pid);
1366 if (!retval && infop)
1367 retval = put_user(uid, &infop->si_uid);
1368 if (!retval)
1369 retval = pid;
1370
1371 if (traced) {
1372 write_lock_irq(&tasklist_lock);
1373 /* We dropped tasklist, ptracer could die and untrace */
1374 ptrace_unlink(p);
1375 /*
1376 * If this is not a sub-thread, notify the parent.
1377 * If parent wants a zombie, don't release it now.
1378 */
1379 if (thread_group_leader(p) &&
1380 !do_notify_parent(p, p->exit_signal)) {
1381 p->exit_state = EXIT_ZOMBIE;
1382 p = NULL;
1383 }
1384 write_unlock_irq(&tasklist_lock);
1385 }
1386 if (p != NULL)
1387 release_task(p);
1388
1389 return retval;
1390}
1391
1392static int *task_stopped_code(struct task_struct *p, bool ptrace)
1393{
1394 if (ptrace) {
1395 if (task_is_stopped_or_traced(p) &&
1396 !(p->jobctl & JOBCTL_LISTENING))
1397 return &p->exit_code;
1398 } else {
1399 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1400 return &p->signal->group_exit_code;
1401 }
1402 return NULL;
1403}
1404
1405/**
1406 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1407 * @wo: wait options
1408 * @ptrace: is the wait for ptrace
1409 * @p: task to wait for
1410 *
1411 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1412 *
1413 * CONTEXT:
1414 * read_lock(&tasklist_lock), which is released if return value is
1415 * non-zero. Also, grabs and releases @p->sighand->siglock.
1416 *
1417 * RETURNS:
1418 * 0 if wait condition didn't exist and search for other wait conditions
1419 * should continue. Non-zero return, -errno on failure and @p's pid on
1420 * success, implies that tasklist_lock is released and wait condition
1421 * search should terminate.
1422 */
1423static int wait_task_stopped(struct wait_opts *wo,
1424 int ptrace, struct task_struct *p)
1425{
1426 struct siginfo __user *infop;
1427 int retval, exit_code, *p_code, why;
1428 uid_t uid = 0; /* unneeded, required by compiler */
1429 pid_t pid;
1430
1431 /*
1432 * Traditionally we see ptrace'd stopped tasks regardless of options.
1433 */
1434 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1435 return 0;
1436
1437 if (!task_stopped_code(p, ptrace))
1438 return 0;
1439
1440 exit_code = 0;
1441 spin_lock_irq(&p->sighand->siglock);
1442
1443 p_code = task_stopped_code(p, ptrace);
1444 if (unlikely(!p_code))
1445 goto unlock_sig;
1446
1447 exit_code = *p_code;
1448 if (!exit_code)
1449 goto unlock_sig;
1450
1451 if (!unlikely(wo->wo_flags & WNOWAIT))
1452 *p_code = 0;
1453
1454 uid = task_uid(p);
1455unlock_sig:
1456 spin_unlock_irq(&p->sighand->siglock);
1457 if (!exit_code)
1458 return 0;
1459
1460 /*
1461 * Now we are pretty sure this task is interesting.
1462 * Make sure it doesn't get reaped out from under us while we
1463 * give up the lock and then examine it below. We don't want to
1464 * keep holding onto the tasklist_lock while we call getrusage and
1465 * possibly take page faults for user memory.
1466 */
1467 get_task_struct(p);
1468 pid = task_pid_vnr(p);
1469 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1470 read_unlock(&tasklist_lock);
1471
1472 if (unlikely(wo->wo_flags & WNOWAIT))
1473 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1474
1475 retval = wo->wo_rusage
1476 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1477 if (!retval && wo->wo_stat)
1478 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1479
1480 infop = wo->wo_info;
1481 if (!retval && infop)
1482 retval = put_user(SIGCHLD, &infop->si_signo);
1483 if (!retval && infop)
1484 retval = put_user(0, &infop->si_errno);
1485 if (!retval && infop)
1486 retval = put_user((short)why, &infop->si_code);
1487 if (!retval && infop)
1488 retval = put_user(exit_code, &infop->si_status);
1489 if (!retval && infop)
1490 retval = put_user(pid, &infop->si_pid);
1491 if (!retval && infop)
1492 retval = put_user(uid, &infop->si_uid);
1493 if (!retval)
1494 retval = pid;
1495 put_task_struct(p);
1496
1497 BUG_ON(!retval);
1498 return retval;
1499}
1500
1501/*
1502 * Handle do_wait work for one task in a live, non-stopped state.
1503 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1504 * the lock and this task is uninteresting. If we return nonzero, we have
1505 * released the lock and the system call should return.
1506 */
1507static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1508{
1509 int retval;
1510 pid_t pid;
1511 uid_t uid;
1512
1513 if (!unlikely(wo->wo_flags & WCONTINUED))
1514 return 0;
1515
1516 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1517 return 0;
1518
1519 spin_lock_irq(&p->sighand->siglock);
1520 /* Re-check with the lock held. */
1521 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1522 spin_unlock_irq(&p->sighand->siglock);
1523 return 0;
1524 }
1525 if (!unlikely(wo->wo_flags & WNOWAIT))
1526 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1527 uid = task_uid(p);
1528 spin_unlock_irq(&p->sighand->siglock);
1529
1530 pid = task_pid_vnr(p);
1531 get_task_struct(p);
1532 read_unlock(&tasklist_lock);
1533
1534 if (!wo->wo_info) {
1535 retval = wo->wo_rusage
1536 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1537 put_task_struct(p);
1538 if (!retval && wo->wo_stat)
1539 retval = put_user(0xffff, wo->wo_stat);
1540 if (!retval)
1541 retval = pid;
1542 } else {
1543 retval = wait_noreap_copyout(wo, p, pid, uid,
1544 CLD_CONTINUED, SIGCONT);
1545 BUG_ON(retval == 0);
1546 }
1547
1548 return retval;
1549}
1550
1551/*
1552 * Consider @p for a wait by @parent.
1553 *
1554 * -ECHILD should be in ->notask_error before the first call.
1555 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1556 * Returns zero if the search for a child should continue;
1557 * then ->notask_error is 0 if @p is an eligible child,
1558 * or another error from security_task_wait(), or still -ECHILD.
1559 */
1560static int wait_consider_task(struct wait_opts *wo, int ptrace,
1561 struct task_struct *p)
1562{
1563 int ret = eligible_child(wo, p);
1564 if (!ret)
1565 return ret;
1566
1567 ret = security_task_wait(p);
1568 if (unlikely(ret < 0)) {
1569 /*
1570 * If we have not yet seen any eligible child,
1571 * then let this error code replace -ECHILD.
1572 * A permission error will give the user a clue
1573 * to look for security policy problems, rather
1574 * than for mysterious wait bugs.
1575 */
1576 if (wo->notask_error)
1577 wo->notask_error = ret;
1578 return 0;
1579 }
1580
1581 /* dead body doesn't have much to contribute */
1582 if (unlikely(p->exit_state == EXIT_DEAD)) {
1583 /*
1584 * But do not ignore this task until the tracer does
1585 * wait_task_zombie()->do_notify_parent().
1586 */
1587 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1588 wo->notask_error = 0;
1589 return 0;
1590 }
1591
1592 /* slay zombie? */
1593 if (p->exit_state == EXIT_ZOMBIE) {
1594 /*
1595 * A zombie ptracee is only visible to its ptracer.
1596 * Notification and reaping will be cascaded to the real
1597 * parent when the ptracer detaches.
1598 */
1599 if (likely(!ptrace) && unlikely(p->ptrace)) {
1600 /* it will become visible, clear notask_error */
1601 wo->notask_error = 0;
1602 return 0;
1603 }
1604
1605 /* we don't reap group leaders with subthreads */
1606 if (!delay_group_leader(p))
1607 return wait_task_zombie(wo, p);
1608
1609 /*
1610 * Allow access to stopped/continued state via zombie by
1611 * falling through. Clearing of notask_error is complex.
1612 *
1613 * When !@ptrace:
1614 *
1615 * If WEXITED is set, notask_error should naturally be
1616 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1617 * so, if there are live subthreads, there are events to
1618 * wait for. If all subthreads are dead, it's still safe
1619 * to clear - this function will be called again in finite
1620 * amount time once all the subthreads are released and
1621 * will then return without clearing.
1622 *
1623 * When @ptrace:
1624 *
1625 * Stopped state is per-task and thus can't change once the
1626 * target task dies. Only continued and exited can happen.
1627 * Clear notask_error if WCONTINUED | WEXITED.
1628 */
1629 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1630 wo->notask_error = 0;
1631 } else {
1632 /*
1633 * If @p is ptraced by a task in its real parent's group,
1634 * hide group stop/continued state when looking at @p as
1635 * the real parent; otherwise, a single stop can be
1636 * reported twice as group and ptrace stops.
1637 *
1638 * If a ptracer wants to distinguish the two events for its
1639 * own children, it should create a separate process which
1640 * takes the role of real parent.
1641 */
1642 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1643 return 0;
1644
1645 /*
1646 * @p is alive and it's gonna stop, continue or exit, so
1647 * there always is something to wait for.
1648 */
1649 wo->notask_error = 0;
1650 }
1651
1652 /*
1653 * Wait for stopped. Depending on @ptrace, different stopped state
1654 * is used and the two don't interact with each other.
1655 */
1656 ret = wait_task_stopped(wo, ptrace, p);
1657 if (ret)
1658 return ret;
1659
1660 /*
1661 * Wait for continued. There's only one continued state and the
1662 * ptracer can consume it which can confuse the real parent. Don't
1663 * use WCONTINUED from ptracer. You don't need or want it.
1664 */
1665 return wait_task_continued(wo, p);
1666}
1667
1668/*
1669 * Do the work of do_wait() for one thread in the group, @tsk.
1670 *
1671 * -ECHILD should be in ->notask_error before the first call.
1672 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1673 * Returns zero if the search for a child should continue; then
1674 * ->notask_error is 0 if there were any eligible children,
1675 * or another error from security_task_wait(), or still -ECHILD.
1676 */
1677static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1678{
1679 struct task_struct *p;
1680
1681 list_for_each_entry(p, &tsk->children, sibling) {
1682 int ret = wait_consider_task(wo, 0, p);
1683 if (ret)
1684 return ret;
1685 }
1686
1687 return 0;
1688}
1689
1690static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1691{
1692 struct task_struct *p;
1693
1694 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1695 int ret = wait_consider_task(wo, 1, p);
1696 if (ret)
1697 return ret;
1698 }
1699
1700 return 0;
1701}
1702
1703static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1704 int sync, void *key)
1705{
1706 struct wait_opts *wo = container_of(wait, struct wait_opts,
1707 child_wait);
1708 struct task_struct *p = key;
1709
1710 if (!eligible_pid(wo, p))
1711 return 0;
1712
1713 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1714 return 0;
1715
1716 return default_wake_function(wait, mode, sync, key);
1717}
1718
1719void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1720{
1721 __wake_up_sync_key(&parent->signal->wait_chldexit,
1722 TASK_INTERRUPTIBLE, 1, p);
1723}
1724
1725static long do_wait(struct wait_opts *wo)
1726{
1727 struct task_struct *tsk;
1728 int retval;
1729
1730 trace_sched_process_wait(wo->wo_pid);
1731
1732 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1733 wo->child_wait.private = current;
1734 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1735repeat:
1736 /*
1737 * If there is nothing that can match our critiera just get out.
1738 * We will clear ->notask_error to zero if we see any child that
1739 * might later match our criteria, even if we are not able to reap
1740 * it yet.
1741 */
1742 wo->notask_error = -ECHILD;
1743 if ((wo->wo_type < PIDTYPE_MAX) &&
1744 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1745 goto notask;
1746
1747 set_current_state(TASK_INTERRUPTIBLE);
1748 read_lock(&tasklist_lock);
1749 tsk = current;
1750 do {
1751 retval = do_wait_thread(wo, tsk);
1752 if (retval)
1753 goto end;
1754
1755 retval = ptrace_do_wait(wo, tsk);
1756 if (retval)
1757 goto end;
1758
1759 if (wo->wo_flags & __WNOTHREAD)
1760 break;
1761 } while_each_thread(current, tsk);
1762 read_unlock(&tasklist_lock);
1763
1764notask:
1765 retval = wo->notask_error;
1766 if (!retval && !(wo->wo_flags & WNOHANG)) {
1767 retval = -ERESTARTSYS;
1768 if (!signal_pending(current)) {
1769 schedule();
1770 goto repeat;
1771 }
1772 }
1773end:
1774 __set_current_state(TASK_RUNNING);
1775 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1776 return retval;
1777}
1778
1779SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1780 infop, int, options, struct rusage __user *, ru)
1781{
1782 struct wait_opts wo;
1783 struct pid *pid = NULL;
1784 enum pid_type type;
1785 long ret;
1786
1787 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1788 return -EINVAL;
1789 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1790 return -EINVAL;
1791
1792 switch (which) {
1793 case P_ALL:
1794 type = PIDTYPE_MAX;
1795 break;
1796 case P_PID:
1797 type = PIDTYPE_PID;
1798 if (upid <= 0)
1799 return -EINVAL;
1800 break;
1801 case P_PGID:
1802 type = PIDTYPE_PGID;
1803 if (upid <= 0)
1804 return -EINVAL;
1805 break;
1806 default:
1807 return -EINVAL;
1808 }
1809
1810 if (type < PIDTYPE_MAX)
1811 pid = find_get_pid(upid);
1812
1813 wo.wo_type = type;
1814 wo.wo_pid = pid;
1815 wo.wo_flags = options;
1816 wo.wo_info = infop;
1817 wo.wo_stat = NULL;
1818 wo.wo_rusage = ru;
1819 ret = do_wait(&wo);
1820
1821 if (ret > 0) {
1822 ret = 0;
1823 } else if (infop) {
1824 /*
1825 * For a WNOHANG return, clear out all the fields
1826 * we would set so the user can easily tell the
1827 * difference.
1828 */
1829 if (!ret)
1830 ret = put_user(0, &infop->si_signo);
1831 if (!ret)
1832 ret = put_user(0, &infop->si_errno);
1833 if (!ret)
1834 ret = put_user(0, &infop->si_code);
1835 if (!ret)
1836 ret = put_user(0, &infop->si_pid);
1837 if (!ret)
1838 ret = put_user(0, &infop->si_uid);
1839 if (!ret)
1840 ret = put_user(0, &infop->si_status);
1841 }
1842
1843 put_pid(pid);
1844
1845 /* avoid REGPARM breakage on x86: */
1846 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1847 return ret;
1848}
1849
1850SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1851 int, options, struct rusage __user *, ru)
1852{
1853 struct wait_opts wo;
1854 struct pid *pid = NULL;
1855 enum pid_type type;
1856 long ret;
1857
1858 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1859 __WNOTHREAD|__WCLONE|__WALL))
1860 return -EINVAL;
1861
1862 if (upid == -1)
1863 type = PIDTYPE_MAX;
1864 else if (upid < 0) {
1865 type = PIDTYPE_PGID;
1866 pid = find_get_pid(-upid);
1867 } else if (upid == 0) {
1868 type = PIDTYPE_PGID;
1869 pid = get_task_pid(current, PIDTYPE_PGID);
1870 } else /* upid > 0 */ {
1871 type = PIDTYPE_PID;
1872 pid = find_get_pid(upid);
1873 }
1874
1875 wo.wo_type = type;
1876 wo.wo_pid = pid;
1877 wo.wo_flags = options | WEXITED;
1878 wo.wo_info = NULL;
1879 wo.wo_stat = stat_addr;
1880 wo.wo_rusage = ru;
1881 ret = do_wait(&wo);
1882 put_pid(pid);
1883
1884 /* avoid REGPARM breakage on x86: */
1885 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1886 return ret;
1887}
1888
1889#ifdef __ARCH_WANT_SYS_WAITPID
1890
1891/*
1892 * sys_waitpid() remains for compatibility. waitpid() should be
1893 * implemented by calling sys_wait4() from libc.a.
1894 */
1895SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1896{
1897 return sys_wait4(pid, stat_addr, options, NULL);
1898}
1899
1900#endif