blob: f4151b7a28da01f01961c1e04c212ae6f8d265b4 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15#include <linux/init.h>
16#include <linux/types.h>
17#include <linux/input/mt.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/random.h>
21#include <linux/major.h>
22#include <linux/proc_fs.h>
23#include <linux/sched.h>
24#include <linux/seq_file.h>
25#include <linux/poll.h>
26#include <linux/device.h>
27#include <linux/mutex.h>
28#include <linux/rcupdate.h>
29#include "input-compat.h"
30
31MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32MODULE_DESCRIPTION("Input core");
33MODULE_LICENSE("GPL");
34
35#define INPUT_DEVICES 256
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static struct input_handler *input_table[8];
49
50static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52{
53 return code <= max && test_bit(code, bm);
54}
55
56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57{
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70}
71
72/*
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
76 */
77static void input_pass_event(struct input_dev *dev,
78 unsigned int type, unsigned int code, int value)
79{
80 struct input_handler *handler;
81 struct input_handle *handle;
82
83 rcu_read_lock();
84
85 handle = rcu_dereference(dev->grab);
86 if (handle)
87 handle->handler->event(handle, type, code, value);
88 else {
89 bool filtered = false;
90
91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 if (!handle->open)
93 continue;
94
95 handler = handle->handler;
96 if (!handler->filter) {
97 if (filtered)
98 break;
99
100 handler->event(handle, type, code, value);
101
102 } else if (handler->filter(handle, type, code, value))
103 filtered = true;
104 }
105 }
106
107 rcu_read_unlock();
108}
109
110/*
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
114 */
115static void input_repeat_key(unsigned long data)
116{
117 struct input_dev *dev = (void *) data;
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->event_lock, flags);
121
122 if (test_bit(dev->repeat_key, dev->key) &&
123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124
125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126
127 if (dev->sync) {
128 /*
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
133 */
134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 }
136
137 if (dev->rep[REP_PERIOD])
138 mod_timer(&dev->timer, jiffies +
139 msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 }
141
142 spin_unlock_irqrestore(&dev->event_lock, flags);
143}
144
145static void input_start_autorepeat(struct input_dev *dev, int code)
146{
147 if (test_bit(EV_REP, dev->evbit) &&
148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 dev->timer.data) {
150 dev->repeat_key = code;
151 mod_timer(&dev->timer,
152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 }
154}
155
156static void input_stop_autorepeat(struct input_dev *dev)
157{
158 del_timer(&dev->timer);
159}
160
161#define INPUT_IGNORE_EVENT 0
162#define INPUT_PASS_TO_HANDLERS 1
163#define INPUT_PASS_TO_DEVICE 2
164#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165
166static int input_handle_abs_event(struct input_dev *dev,
167 unsigned int code, int *pval)
168{
169 bool is_mt_event;
170 int *pold;
171
172 if (code == ABS_MT_SLOT) {
173 /*
174 * "Stage" the event; we'll flush it later, when we
175 * get actual touch data.
176 */
177 if (*pval >= 0 && *pval < dev->mtsize)
178 dev->slot = *pval;
179
180 return INPUT_IGNORE_EVENT;
181 }
182
183 is_mt_event = input_is_mt_value(code);
184
185 if (!is_mt_event) {
186 pold = &dev->absinfo[code].value;
187 } else if (dev->mt) {
188 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 pold = &mtslot->abs[code - ABS_MT_FIRST];
190 } else {
191 /*
192 * Bypass filtering for multi-touch events when
193 * not employing slots.
194 */
195 pold = NULL;
196 }
197
198 if (pold) {
199 *pval = input_defuzz_abs_event(*pval, *pold,
200 dev->absinfo[code].fuzz);
201 if (*pold == *pval)
202 return INPUT_IGNORE_EVENT;
203
204 *pold = *pval;
205 }
206
207 /* Flush pending "slot" event */
208 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 }
212
213 return INPUT_PASS_TO_HANDLERS;
214}
215
216static void input_handle_event(struct input_dev *dev,
217 unsigned int type, unsigned int code, int value)
218{
219 int disposition = INPUT_IGNORE_EVENT;
220
221 switch (type) {
222
223 case EV_SYN:
224 switch (code) {
225 case SYN_CONFIG:
226 disposition = INPUT_PASS_TO_ALL;
227 break;
228
229 case SYN_REPORT:
230 if (!dev->sync) {
231 dev->sync = true;
232 disposition = INPUT_PASS_TO_HANDLERS;
233 }
234 break;
235 case SYN_MT_REPORT:
236 dev->sync = false;
237 disposition = INPUT_PASS_TO_HANDLERS;
238 break;
239 }
240 break;
241
242 case EV_KEY:
243 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 !!test_bit(code, dev->key) != value) {
245
246 if (value != 2) {
247 __change_bit(code, dev->key);
248 if (value)
249 input_start_autorepeat(dev, code);
250 else
251 input_stop_autorepeat(dev);
252 }
253
254 disposition = INPUT_PASS_TO_HANDLERS;
255 }
256 break;
257
258 case EV_SW:
259 if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 !!test_bit(code, dev->sw) != value) {
261
262 __change_bit(code, dev->sw);
263 disposition = INPUT_PASS_TO_HANDLERS;
264 }
265 break;
266
267 case EV_ABS:
268 if (is_event_supported(code, dev->absbit, ABS_MAX))
269 disposition = input_handle_abs_event(dev, code, &value);
270
271 break;
272
273 case EV_REL:
274 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 disposition = INPUT_PASS_TO_HANDLERS;
276
277 break;
278
279 case EV_MSC:
280 if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 disposition = INPUT_PASS_TO_ALL;
282
283 break;
284
285 case EV_LED:
286 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 !!test_bit(code, dev->led) != value) {
288
289 __change_bit(code, dev->led);
290 disposition = INPUT_PASS_TO_ALL;
291 }
292 break;
293
294 case EV_SND:
295 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296
297 if (!!test_bit(code, dev->snd) != !!value)
298 __change_bit(code, dev->snd);
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_REP:
304 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 dev->rep[code] = value;
306 disposition = INPUT_PASS_TO_ALL;
307 }
308 break;
309
310 case EV_FF:
311 if (value >= 0)
312 disposition = INPUT_PASS_TO_ALL;
313 break;
314
315 case EV_PWR:
316 disposition = INPUT_PASS_TO_ALL;
317 break;
318 }
319
320 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 dev->sync = false;
322
323 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 dev->event(dev, type, code, value);
325
326 if (disposition & INPUT_PASS_TO_HANDLERS)
327 input_pass_event(dev, type, code, value);
328}
329
330/**
331 * input_event() - report new input event
332 * @dev: device that generated the event
333 * @type: type of the event
334 * @code: event code
335 * @value: value of the event
336 *
337 * This function should be used by drivers implementing various input
338 * devices to report input events. See also input_inject_event().
339 *
340 * NOTE: input_event() may be safely used right after input device was
341 * allocated with input_allocate_device(), even before it is registered
342 * with input_register_device(), but the event will not reach any of the
343 * input handlers. Such early invocation of input_event() may be used
344 * to 'seed' initial state of a switch or initial position of absolute
345 * axis, etc.
346 */
347void input_event(struct input_dev *dev,
348 unsigned int type, unsigned int code, int value)
349{
350 unsigned long flags;
351
352 if (is_event_supported(type, dev->evbit, EV_MAX)) {
353
354 spin_lock_irqsave(&dev->event_lock, flags);
355 add_input_randomness(type, code, value);
356 input_handle_event(dev, type, code, value);
357 spin_unlock_irqrestore(&dev->event_lock, flags);
358 }
359}
360EXPORT_SYMBOL(input_event);
361
362/**
363 * input_inject_event() - send input event from input handler
364 * @handle: input handle to send event through
365 * @type: type of the event
366 * @code: event code
367 * @value: value of the event
368 *
369 * Similar to input_event() but will ignore event if device is
370 * "grabbed" and handle injecting event is not the one that owns
371 * the device.
372 */
373void input_inject_event(struct input_handle *handle,
374 unsigned int type, unsigned int code, int value)
375{
376 struct input_dev *dev = handle->dev;
377 struct input_handle *grab;
378 unsigned long flags;
379
380 if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 spin_lock_irqsave(&dev->event_lock, flags);
382
383 rcu_read_lock();
384 grab = rcu_dereference(dev->grab);
385 if (!grab || grab == handle)
386 input_handle_event(dev, type, code, value);
387 rcu_read_unlock();
388
389 spin_unlock_irqrestore(&dev->event_lock, flags);
390 }
391}
392EXPORT_SYMBOL(input_inject_event);
393
394/**
395 * input_alloc_absinfo - allocates array of input_absinfo structs
396 * @dev: the input device emitting absolute events
397 *
398 * If the absinfo struct the caller asked for is already allocated, this
399 * functions will not do anything.
400 */
401void input_alloc_absinfo(struct input_dev *dev)
402{
403 if (!dev->absinfo)
404 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 GFP_KERNEL);
406
407 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408}
409EXPORT_SYMBOL(input_alloc_absinfo);
410
411void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 int min, int max, int fuzz, int flat)
413{
414 struct input_absinfo *absinfo;
415
416#ifdef CONFIG_KLOCWORK
417 if (axis > ABS_MAX) {
418 pr_err("[kw]wrong axis %d", axis);
419 return;
420 }
421#endif
422
423 input_alloc_absinfo(dev);
424 if (!dev->absinfo)
425 return;
426
427 absinfo = &dev->absinfo[axis];
428 absinfo->minimum = min;
429 absinfo->maximum = max;
430 absinfo->fuzz = fuzz;
431 absinfo->flat = flat;
432
433 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
434}
435EXPORT_SYMBOL(input_set_abs_params);
436
437
438/**
439 * input_grab_device - grabs device for exclusive use
440 * @handle: input handle that wants to own the device
441 *
442 * When a device is grabbed by an input handle all events generated by
443 * the device are delivered only to this handle. Also events injected
444 * by other input handles are ignored while device is grabbed.
445 */
446int input_grab_device(struct input_handle *handle)
447{
448 struct input_dev *dev = handle->dev;
449 int retval;
450
451 retval = mutex_lock_interruptible(&dev->mutex);
452 if (retval)
453 return retval;
454
455 if (dev->grab) {
456 retval = -EBUSY;
457 goto out;
458 }
459
460 rcu_assign_pointer(dev->grab, handle);
461
462 out:
463 mutex_unlock(&dev->mutex);
464 return retval;
465}
466EXPORT_SYMBOL(input_grab_device);
467
468static void __input_release_device(struct input_handle *handle)
469{
470 struct input_dev *dev = handle->dev;
471
472 if (dev->grab == handle) {
473 rcu_assign_pointer(dev->grab, NULL);
474 /* Make sure input_pass_event() notices that grab is gone */
475 synchronize_rcu();
476
477 list_for_each_entry(handle, &dev->h_list, d_node)
478 if (handle->open && handle->handler->start)
479 handle->handler->start(handle);
480 }
481}
482
483/**
484 * input_release_device - release previously grabbed device
485 * @handle: input handle that owns the device
486 *
487 * Releases previously grabbed device so that other input handles can
488 * start receiving input events. Upon release all handlers attached
489 * to the device have their start() method called so they have a change
490 * to synchronize device state with the rest of the system.
491 */
492void input_release_device(struct input_handle *handle)
493{
494 struct input_dev *dev = handle->dev;
495
496 mutex_lock(&dev->mutex);
497 __input_release_device(handle);
498 mutex_unlock(&dev->mutex);
499}
500EXPORT_SYMBOL(input_release_device);
501
502/**
503 * input_open_device - open input device
504 * @handle: handle through which device is being accessed
505 *
506 * This function should be called by input handlers when they
507 * want to start receive events from given input device.
508 */
509int input_open_device(struct input_handle *handle)
510{
511 struct input_dev *dev = handle->dev;
512 int retval;
513
514 retval = mutex_lock_interruptible(&dev->mutex);
515 if (retval)
516 return retval;
517
518 if (dev->going_away) {
519 retval = -ENODEV;
520 goto out;
521 }
522
523 handle->open++;
524
525 if (!dev->users++ && dev->open)
526 retval = dev->open(dev);
527
528 if (retval) {
529 dev->users--;
530 if (!--handle->open) {
531 /*
532 * Make sure we are not delivering any more events
533 * through this handle
534 */
535 synchronize_rcu();
536 }
537 }
538
539 out:
540 mutex_unlock(&dev->mutex);
541 return retval;
542}
543EXPORT_SYMBOL(input_open_device);
544
545int input_flush_device(struct input_handle *handle, struct file *file)
546{
547 struct input_dev *dev = handle->dev;
548 int retval;
549
550 retval = mutex_lock_interruptible(&dev->mutex);
551 if (retval)
552 return retval;
553
554 if (dev->flush)
555 retval = dev->flush(dev, file);
556
557 mutex_unlock(&dev->mutex);
558 return retval;
559}
560EXPORT_SYMBOL(input_flush_device);
561
562/**
563 * input_close_device - close input device
564 * @handle: handle through which device is being accessed
565 *
566 * This function should be called by input handlers when they
567 * want to stop receive events from given input device.
568 */
569void input_close_device(struct input_handle *handle)
570{
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574
575 __input_release_device(handle);
576
577 if (!--dev->users && dev->close)
578 dev->close(dev);
579
580 if (!--handle->open) {
581 /*
582 * synchronize_rcu() makes sure that input_pass_event()
583 * completed and that no more input events are delivered
584 * through this handle
585 */
586 synchronize_rcu();
587 }
588
589 mutex_unlock(&dev->mutex);
590}
591EXPORT_SYMBOL(input_close_device);
592
593/*
594 * Simulate keyup events for all keys that are marked as pressed.
595 * The function must be called with dev->event_lock held.
596 */
597static void input_dev_release_keys(struct input_dev *dev)
598{
599 int code;
600
601 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
602 for (code = 0; code <= KEY_MAX; code++) {
603 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
604 __test_and_clear_bit(code, dev->key)) {
605 input_pass_event(dev, EV_KEY, code, 0);
606 }
607 }
608 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
609 }
610}
611
612/*
613 * Prepare device for unregistering
614 */
615static void input_disconnect_device(struct input_dev *dev)
616{
617 struct input_handle *handle;
618
619 /*
620 * Mark device as going away. Note that we take dev->mutex here
621 * not to protect access to dev->going_away but rather to ensure
622 * that there are no threads in the middle of input_open_device()
623 */
624 mutex_lock(&dev->mutex);
625 dev->going_away = true;
626 mutex_unlock(&dev->mutex);
627
628 spin_lock_irq(&dev->event_lock);
629
630 /*
631 * Simulate keyup events for all pressed keys so that handlers
632 * are not left with "stuck" keys. The driver may continue
633 * generate events even after we done here but they will not
634 * reach any handlers.
635 */
636 input_dev_release_keys(dev);
637
638 list_for_each_entry(handle, &dev->h_list, d_node)
639 handle->open = 0;
640
641 spin_unlock_irq(&dev->event_lock);
642}
643
644/**
645 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
646 * @ke: keymap entry containing scancode to be converted.
647 * @scancode: pointer to the location where converted scancode should
648 * be stored.
649 *
650 * This function is used to convert scancode stored in &struct keymap_entry
651 * into scalar form understood by legacy keymap handling methods. These
652 * methods expect scancodes to be represented as 'unsigned int'.
653 */
654int input_scancode_to_scalar(const struct input_keymap_entry *ke,
655 unsigned int *scancode)
656{
657 switch (ke->len) {
658 case 1:
659 *scancode = *((u8 *)ke->scancode);
660 break;
661
662 case 2:
663 *scancode = *((u16 *)ke->scancode);
664 break;
665
666 case 4:
667 *scancode = *((u32 *)ke->scancode);
668 break;
669
670 default:
671 return -EINVAL;
672 }
673
674 return 0;
675}
676EXPORT_SYMBOL(input_scancode_to_scalar);
677
678/*
679 * Those routines handle the default case where no [gs]etkeycode() is
680 * defined. In this case, an array indexed by the scancode is used.
681 */
682
683static unsigned int input_fetch_keycode(struct input_dev *dev,
684 unsigned int index)
685{
686 switch (dev->keycodesize) {
687 case 1:
688 return ((u8 *)dev->keycode)[index];
689
690 case 2:
691 return ((u16 *)dev->keycode)[index];
692
693 default:
694 return ((u32 *)dev->keycode)[index];
695 }
696}
697
698static int input_default_getkeycode(struct input_dev *dev,
699 struct input_keymap_entry *ke)
700{
701 unsigned int index;
702 int error;
703
704 if (!dev->keycodesize)
705 return -EINVAL;
706
707 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
708 index = ke->index;
709 else {
710 error = input_scancode_to_scalar(ke, &index);
711 if (error)
712 return error;
713 }
714
715 if (index >= dev->keycodemax)
716 return -EINVAL;
717
718 ke->keycode = input_fetch_keycode(dev, index);
719 ke->index = index;
720 ke->len = sizeof(index);
721 memcpy(ke->scancode, &index, sizeof(index));
722
723 return 0;
724}
725
726static int input_default_setkeycode(struct input_dev *dev,
727 const struct input_keymap_entry *ke,
728 unsigned int *old_keycode)
729{
730 unsigned int index;
731 int error;
732 int i;
733
734 if (!dev->keycodesize)
735 return -EINVAL;
736
737 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
738 index = ke->index;
739 } else {
740 error = input_scancode_to_scalar(ke, &index);
741 if (error)
742 return error;
743 }
744
745 if (index >= dev->keycodemax)
746 return -EINVAL;
747
748 if (dev->keycodesize < sizeof(ke->keycode) &&
749 (ke->keycode >> (dev->keycodesize * 8)))
750 return -EINVAL;
751
752 switch (dev->keycodesize) {
753 case 1: {
754 u8 *k = (u8 *)dev->keycode;
755 *old_keycode = k[index];
756 k[index] = ke->keycode;
757 break;
758 }
759 case 2: {
760 u16 *k = (u16 *)dev->keycode;
761 *old_keycode = k[index];
762 k[index] = ke->keycode;
763 break;
764 }
765 default: {
766 u32 *k = (u32 *)dev->keycode;
767 *old_keycode = k[index];
768 k[index] = ke->keycode;
769 break;
770 }
771 }
772#if 0
773 __clear_bit(*old_keycode, dev->keybit);
774 __set_bit(ke->keycode, dev->keybit);
775
776 for (i = 0; i < dev->keycodemax; i++) {
777 if (input_fetch_keycode(dev, i) == *old_keycode) {
778 __set_bit(*old_keycode, dev->keybit);
779 break; /* Setting the bit twice is useless, so break */
780 }
781 }
782#endif
783 if(*old_keycode <= KEY_MAX){
784 __clear_bit(*old_keycode, dev->keybit);
785 for (i = 0; i < dev->keycodemax; i++) {
786 if (input_fetch_keycode(dev, i) == *old_keycode) {
787 __set_bit(*old_keycode, dev->keybit);
788 break; /* Setting the bit twice is useless, so break */
789 }
790 }
791 }
792 __set_bit(ke->keycode, dev->keybit);
793 return 0;
794}
795
796/**
797 * input_get_keycode - retrieve keycode currently mapped to a given scancode
798 * @dev: input device which keymap is being queried
799 * @ke: keymap entry
800 *
801 * This function should be called by anyone interested in retrieving current
802 * keymap. Presently evdev handlers use it.
803 */
804int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
805{
806 unsigned long flags;
807 int retval;
808
809 spin_lock_irqsave(&dev->event_lock, flags);
810 retval = dev->getkeycode(dev, ke);
811 spin_unlock_irqrestore(&dev->event_lock, flags);
812
813 return retval;
814}
815EXPORT_SYMBOL(input_get_keycode);
816
817/**
818 * input_set_keycode - attribute a keycode to a given scancode
819 * @dev: input device which keymap is being updated
820 * @ke: new keymap entry
821 *
822 * This function should be called by anyone needing to update current
823 * keymap. Presently keyboard and evdev handlers use it.
824 */
825int input_set_keycode(struct input_dev *dev,
826 const struct input_keymap_entry *ke)
827{
828 unsigned long flags;
829 unsigned int old_keycode;
830 int retval;
831
832 if (ke->keycode > KEY_MAX)
833 return -EINVAL;
834
835 spin_lock_irqsave(&dev->event_lock, flags);
836
837 retval = dev->setkeycode(dev, ke, &old_keycode);
838 if (retval)
839 goto out;
840
841 /* Make sure KEY_RESERVED did not get enabled. */
842 __clear_bit(KEY_RESERVED, dev->keybit);
843
844 /*
845 * Simulate keyup event if keycode is not present
846 * in the keymap anymore
847 */
848 if(old_keycode > KEY_MAX){
849 dev_warn(dev->dev.parent ?: &dev->dev,
850 "%s: got too big old keycode %#x\n",
851 __func__, old_keycode);
852 }
853 else if (test_bit(EV_KEY, dev->evbit) &&
854 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
855 __test_and_clear_bit(old_keycode, dev->key)) {
856
857 input_pass_event(dev, EV_KEY, old_keycode, 0);
858 if (dev->sync)
859 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
860 }
861
862 out:
863 spin_unlock_irqrestore(&dev->event_lock, flags);
864
865 return retval;
866}
867EXPORT_SYMBOL(input_set_keycode);
868
869#define MATCH_BIT(bit, max) \
870 for (i = 0; i < BITS_TO_LONGS(max); i++) \
871 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
872 break; \
873 if (i != BITS_TO_LONGS(max)) \
874 continue;
875
876static const struct input_device_id *input_match_device(struct input_handler *handler,
877 struct input_dev *dev)
878{
879 const struct input_device_id *id;
880 int i;
881
882 for (id = handler->id_table; id->flags || id->driver_info; id++) {
883
884 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
885 if (id->bustype != dev->id.bustype)
886 continue;
887
888 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
889 if (id->vendor != dev->id.vendor)
890 continue;
891
892 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
893 if (id->product != dev->id.product)
894 continue;
895
896 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
897 if (id->version != dev->id.version)
898 continue;
899
900 MATCH_BIT(evbit, EV_MAX);
901 MATCH_BIT(keybit, KEY_MAX);
902 MATCH_BIT(relbit, REL_MAX);
903 MATCH_BIT(absbit, ABS_MAX);
904 MATCH_BIT(mscbit, MSC_MAX);
905 MATCH_BIT(ledbit, LED_MAX);
906 MATCH_BIT(sndbit, SND_MAX);
907 MATCH_BIT(ffbit, FF_MAX);
908 MATCH_BIT(swbit, SW_MAX);
909
910 if (!handler->match || handler->match(handler, dev))
911 return id;
912 }
913
914 return NULL;
915}
916
917static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
918{
919 const struct input_device_id *id;
920 int error;
921
922 id = input_match_device(handler, dev);
923 if (!id)
924 return -ENODEV;
925
926 error = handler->connect(handler, dev, id);
927 if (error && error != -ENODEV)
928 pr_err("failed to attach handler %s to device %s, error: %d\n",
929 handler->name, kobject_name(&dev->dev.kobj), error);
930
931 return error;
932}
933
934#ifdef CONFIG_COMPAT
935
936static int input_bits_to_string(char *buf, int buf_size,
937 unsigned long bits, bool skip_empty)
938{
939 int len = 0;
940
941 if (INPUT_COMPAT_TEST) {
942 u32 dword = bits >> 32;
943 if (dword || !skip_empty)
944 len += snprintf(buf, buf_size, "%x ", dword);
945
946 dword = bits & 0xffffffffUL;
947 if (dword || !skip_empty || len)
948 len += snprintf(buf + len, max(buf_size - len, 0),
949 "%x", dword);
950 } else {
951 if (bits || !skip_empty)
952 len += snprintf(buf, buf_size, "%lx", bits);
953 }
954
955 return len;
956}
957
958#else /* !CONFIG_COMPAT */
959
960static int input_bits_to_string(char *buf, int buf_size,
961 unsigned long bits, bool skip_empty)
962{
963 return bits || !skip_empty ?
964 snprintf(buf, buf_size, "%lx", bits) : 0;
965}
966
967#endif
968
969#ifdef CONFIG_PROC_FS
970
971static struct proc_dir_entry *proc_bus_input_dir;
972static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
973static int input_devices_state;
974
975static inline void input_wakeup_procfs_readers(void)
976{
977 input_devices_state++;
978 wake_up(&input_devices_poll_wait);
979}
980
981static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
982{
983 poll_wait(file, &input_devices_poll_wait, wait);
984 if (file->f_version != input_devices_state) {
985 file->f_version = input_devices_state;
986 return POLLIN | POLLRDNORM;
987 }
988
989 return 0;
990}
991
992union input_seq_state {
993 struct {
994 unsigned short pos;
995 bool mutex_acquired;
996 };
997 void *p;
998};
999
1000static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1001{
1002 union input_seq_state *state = (union input_seq_state *)&seq->private;
1003 int error;
1004
1005 /* We need to fit into seq->private pointer */
1006 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1007
1008 error = mutex_lock_interruptible(&input_mutex);
1009 if (error) {
1010 state->mutex_acquired = false;
1011 return ERR_PTR(error);
1012 }
1013
1014 state->mutex_acquired = true;
1015
1016 return seq_list_start(&input_dev_list, *pos);
1017}
1018
1019static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1020{
1021 return seq_list_next(v, &input_dev_list, pos);
1022}
1023
1024static void input_seq_stop(struct seq_file *seq, void *v)
1025{
1026 union input_seq_state *state = (union input_seq_state *)&seq->private;
1027
1028 if (state->mutex_acquired)
1029 mutex_unlock(&input_mutex);
1030}
1031
1032static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1033 unsigned long *bitmap, int max)
1034{
1035 int i;
1036 bool skip_empty = true;
1037 char buf[18];
1038
1039 seq_printf(seq, "B: %s=", name);
1040
1041 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1042 if (input_bits_to_string(buf, sizeof(buf),
1043 bitmap[i], skip_empty)) {
1044 skip_empty = false;
1045 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1046 }
1047 }
1048
1049 /*
1050 * If no output was produced print a single 0.
1051 */
1052 if (skip_empty)
1053 seq_puts(seq, "0");
1054
1055 seq_putc(seq, '\n');
1056}
1057
1058static int input_devices_seq_show(struct seq_file *seq, void *v)
1059{
1060 struct input_dev *dev = container_of(v, struct input_dev, node);
1061 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1062 struct input_handle *handle;
1063
1064 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1065 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1066
1067 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1068 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1069 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1070 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1071 seq_printf(seq, "H: Handlers=");
1072
1073 list_for_each_entry(handle, &dev->h_list, d_node)
1074 seq_printf(seq, "%s ", handle->name);
1075 seq_putc(seq, '\n');
1076
1077 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1078
1079 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1080 if (test_bit(EV_KEY, dev->evbit))
1081 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1082 if (test_bit(EV_REL, dev->evbit))
1083 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1084 if (test_bit(EV_ABS, dev->evbit))
1085 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1086 if (test_bit(EV_MSC, dev->evbit))
1087 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1088 if (test_bit(EV_LED, dev->evbit))
1089 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1090 if (test_bit(EV_SND, dev->evbit))
1091 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1092 if (test_bit(EV_FF, dev->evbit))
1093 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1094 if (test_bit(EV_SW, dev->evbit))
1095 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1096
1097 seq_putc(seq, '\n');
1098
1099 kfree(path);
1100 return 0;
1101}
1102
1103static const struct seq_operations input_devices_seq_ops = {
1104 .start = input_devices_seq_start,
1105 .next = input_devices_seq_next,
1106 .stop = input_seq_stop,
1107 .show = input_devices_seq_show,
1108};
1109
1110static int input_proc_devices_open(struct inode *inode, struct file *file)
1111{
1112 return seq_open(file, &input_devices_seq_ops);
1113}
1114
1115static const struct file_operations input_devices_fileops = {
1116 .owner = THIS_MODULE,
1117 .open = input_proc_devices_open,
1118 .poll = input_proc_devices_poll,
1119 .read = seq_read,
1120 .llseek = seq_lseek,
1121 .release = seq_release,
1122};
1123
1124static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1125{
1126 union input_seq_state *state = (union input_seq_state *)&seq->private;
1127 int error;
1128
1129 /* We need to fit into seq->private pointer */
1130 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1131
1132 error = mutex_lock_interruptible(&input_mutex);
1133 if (error) {
1134 state->mutex_acquired = false;
1135 return ERR_PTR(error);
1136 }
1137
1138 state->mutex_acquired = true;
1139 state->pos = *pos;
1140
1141 return seq_list_start(&input_handler_list, *pos);
1142}
1143
1144static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1145{
1146 union input_seq_state *state = (union input_seq_state *)&seq->private;
1147
1148 state->pos = *pos + 1;
1149 return seq_list_next(v, &input_handler_list, pos);
1150}
1151
1152static int input_handlers_seq_show(struct seq_file *seq, void *v)
1153{
1154 struct input_handler *handler = container_of(v, struct input_handler, node);
1155 union input_seq_state *state = (union input_seq_state *)&seq->private;
1156
1157 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1158 if (handler->filter)
1159 seq_puts(seq, " (filter)");
1160 if (handler->fops)
1161 seq_printf(seq, " Minor=%d", handler->minor);
1162 seq_putc(seq, '\n');
1163
1164 return 0;
1165}
1166
1167static const struct seq_operations input_handlers_seq_ops = {
1168 .start = input_handlers_seq_start,
1169 .next = input_handlers_seq_next,
1170 .stop = input_seq_stop,
1171 .show = input_handlers_seq_show,
1172};
1173
1174static int input_proc_handlers_open(struct inode *inode, struct file *file)
1175{
1176 return seq_open(file, &input_handlers_seq_ops);
1177}
1178
1179static const struct file_operations input_handlers_fileops = {
1180 .owner = THIS_MODULE,
1181 .open = input_proc_handlers_open,
1182 .read = seq_read,
1183 .llseek = seq_lseek,
1184 .release = seq_release,
1185};
1186
1187static int __init input_proc_init(void)
1188{
1189 struct proc_dir_entry *entry;
1190
1191 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1192 if (!proc_bus_input_dir)
1193 return -ENOMEM;
1194
1195 entry = proc_create("devices", 0, proc_bus_input_dir,
1196 &input_devices_fileops);
1197 if (!entry)
1198 goto fail1;
1199
1200 entry = proc_create("handlers", 0, proc_bus_input_dir,
1201 &input_handlers_fileops);
1202 if (!entry)
1203 goto fail2;
1204
1205 return 0;
1206
1207 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1208 fail1: remove_proc_entry("bus/input", NULL);
1209 return -ENOMEM;
1210}
1211
1212static void input_proc_exit(void)
1213{
1214 remove_proc_entry("devices", proc_bus_input_dir);
1215 remove_proc_entry("handlers", proc_bus_input_dir);
1216 remove_proc_entry("bus/input", NULL);
1217}
1218
1219#else /* !CONFIG_PROC_FS */
1220static inline void input_wakeup_procfs_readers(void) { }
1221static inline int input_proc_init(void) { return 0; }
1222static inline void input_proc_exit(void) { }
1223#endif
1224
1225#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1226static ssize_t input_dev_show_##name(struct device *dev, \
1227 struct device_attribute *attr, \
1228 char *buf) \
1229{ \
1230 struct input_dev *input_dev = to_input_dev(dev); \
1231 \
1232 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1233 input_dev->name ? input_dev->name : ""); \
1234} \
1235static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1236
1237INPUT_DEV_STRING_ATTR_SHOW(name);
1238INPUT_DEV_STRING_ATTR_SHOW(phys);
1239INPUT_DEV_STRING_ATTR_SHOW(uniq);
1240
1241static int input_print_modalias_bits(char *buf, int size,
1242 char name, unsigned long *bm,
1243 unsigned int min_bit, unsigned int max_bit)
1244{
1245 int len = 0, i;
1246
1247 len += snprintf(buf, max(size, 0), "%c", name);
1248 for (i = min_bit; i < max_bit; i++)
1249 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1250 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1251 return len;
1252}
1253
1254static int input_print_modalias(char *buf, int size, struct input_dev *id,
1255 int add_cr)
1256{
1257 int len;
1258
1259 len = snprintf(buf, max(size, 0),
1260 "input:b%04Xv%04Xp%04Xe%04X-",
1261 id->id.bustype, id->id.vendor,
1262 id->id.product, id->id.version);
1263
1264 len += input_print_modalias_bits(buf + len, size - len,
1265 'e', id->evbit, 0, EV_MAX);
1266 len += input_print_modalias_bits(buf + len, size - len,
1267 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1268 len += input_print_modalias_bits(buf + len, size - len,
1269 'r', id->relbit, 0, REL_MAX);
1270 len += input_print_modalias_bits(buf + len, size - len,
1271 'a', id->absbit, 0, ABS_MAX);
1272 len += input_print_modalias_bits(buf + len, size - len,
1273 'm', id->mscbit, 0, MSC_MAX);
1274 len += input_print_modalias_bits(buf + len, size - len,
1275 'l', id->ledbit, 0, LED_MAX);
1276 len += input_print_modalias_bits(buf + len, size - len,
1277 's', id->sndbit, 0, SND_MAX);
1278 len += input_print_modalias_bits(buf + len, size - len,
1279 'f', id->ffbit, 0, FF_MAX);
1280 len += input_print_modalias_bits(buf + len, size - len,
1281 'w', id->swbit, 0, SW_MAX);
1282
1283 if (add_cr)
1284 len += snprintf(buf + len, max(size - len, 0), "\n");
1285
1286 return len;
1287}
1288
1289static ssize_t input_dev_show_modalias(struct device *dev,
1290 struct device_attribute *attr,
1291 char *buf)
1292{
1293 struct input_dev *id = to_input_dev(dev);
1294 ssize_t len;
1295
1296 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1297
1298 return min_t(int, len, PAGE_SIZE);
1299}
1300static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1301
1302static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1303 int max, int add_cr);
1304
1305static ssize_t input_dev_show_properties(struct device *dev,
1306 struct device_attribute *attr,
1307 char *buf)
1308{
1309 struct input_dev *input_dev = to_input_dev(dev);
1310 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1311 INPUT_PROP_MAX, true);
1312 return min_t(int, len, PAGE_SIZE);
1313}
1314static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1315
1316static struct attribute *input_dev_attrs[] = {
1317 &dev_attr_name.attr,
1318 &dev_attr_phys.attr,
1319 &dev_attr_uniq.attr,
1320 &dev_attr_modalias.attr,
1321 &dev_attr_properties.attr,
1322 NULL
1323};
1324
1325static struct attribute_group input_dev_attr_group = {
1326 .attrs = input_dev_attrs,
1327};
1328
1329#define INPUT_DEV_ID_ATTR(name) \
1330static ssize_t input_dev_show_id_##name(struct device *dev, \
1331 struct device_attribute *attr, \
1332 char *buf) \
1333{ \
1334 struct input_dev *input_dev = to_input_dev(dev); \
1335 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1336} \
1337static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1338
1339INPUT_DEV_ID_ATTR(bustype);
1340INPUT_DEV_ID_ATTR(vendor);
1341INPUT_DEV_ID_ATTR(product);
1342INPUT_DEV_ID_ATTR(version);
1343
1344static struct attribute *input_dev_id_attrs[] = {
1345 &dev_attr_bustype.attr,
1346 &dev_attr_vendor.attr,
1347 &dev_attr_product.attr,
1348 &dev_attr_version.attr,
1349 NULL
1350};
1351
1352static struct attribute_group input_dev_id_attr_group = {
1353 .name = "id",
1354 .attrs = input_dev_id_attrs,
1355};
1356
1357static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1358 int max, int add_cr)
1359{
1360 int i;
1361 int len = 0;
1362 bool skip_empty = true;
1363
1364 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1365 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1366 bitmap[i], skip_empty);
1367 if (len) {
1368 skip_empty = false;
1369 if (i > 0)
1370 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1371 }
1372 }
1373
1374 /*
1375 * If no output was produced print a single 0.
1376 */
1377 if (len == 0)
1378 len = snprintf(buf, buf_size, "%d", 0);
1379
1380 if (add_cr)
1381 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1382
1383 return len;
1384}
1385
1386#define INPUT_DEV_CAP_ATTR(ev, bm) \
1387static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1388 struct device_attribute *attr, \
1389 char *buf) \
1390{ \
1391 struct input_dev *input_dev = to_input_dev(dev); \
1392 int len = input_print_bitmap(buf, PAGE_SIZE, \
1393 input_dev->bm##bit, ev##_MAX, \
1394 true); \
1395 return min_t(int, len, PAGE_SIZE); \
1396} \
1397static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1398
1399INPUT_DEV_CAP_ATTR(EV, ev);
1400INPUT_DEV_CAP_ATTR(KEY, key);
1401INPUT_DEV_CAP_ATTR(REL, rel);
1402INPUT_DEV_CAP_ATTR(ABS, abs);
1403INPUT_DEV_CAP_ATTR(MSC, msc);
1404INPUT_DEV_CAP_ATTR(LED, led);
1405INPUT_DEV_CAP_ATTR(SND, snd);
1406INPUT_DEV_CAP_ATTR(FF, ff);
1407INPUT_DEV_CAP_ATTR(SW, sw);
1408
1409static struct attribute *input_dev_caps_attrs[] = {
1410 &dev_attr_ev.attr,
1411 &dev_attr_key.attr,
1412 &dev_attr_rel.attr,
1413 &dev_attr_abs.attr,
1414 &dev_attr_msc.attr,
1415 &dev_attr_led.attr,
1416 &dev_attr_snd.attr,
1417 &dev_attr_ff.attr,
1418 &dev_attr_sw.attr,
1419 NULL
1420};
1421
1422static struct attribute_group input_dev_caps_attr_group = {
1423 .name = "capabilities",
1424 .attrs = input_dev_caps_attrs,
1425};
1426
1427static const struct attribute_group *input_dev_attr_groups[] = {
1428 &input_dev_attr_group,
1429 &input_dev_id_attr_group,
1430 &input_dev_caps_attr_group,
1431 NULL
1432};
1433
1434static void input_dev_release(struct device *device)
1435{
1436 struct input_dev *dev = to_input_dev(device);
1437
1438 input_ff_destroy(dev);
1439 input_mt_destroy_slots(dev);
1440 kfree(dev->absinfo);
1441 kfree(dev);
1442
1443 module_put(THIS_MODULE);
1444}
1445
1446/*
1447 * Input uevent interface - loading event handlers based on
1448 * device bitfields.
1449 */
1450static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1451 const char *name, unsigned long *bitmap, int max)
1452{
1453 int len;
1454
1455 if (add_uevent_var(env, "%s", name))
1456 return -ENOMEM;
1457
1458#ifdef CONFIG_KLOCWORK
1459 if ((env->buflen <= 0) || (env->buflen > sizeof(env->buf))) {
1460 pr_err("[kw]wrong buflen %d", env->buflen);
1461 return -ENOMEM;
1462 }
1463#endif
1464
1465 len = input_print_bitmap(&env->buf[env->buflen - 1],
1466 sizeof(env->buf) - env->buflen,
1467 bitmap, max, false);
1468 if (len >= (sizeof(env->buf) - env->buflen))
1469 return -ENOMEM;
1470
1471 env->buflen += len;
1472 return 0;
1473}
1474
1475static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1476 struct input_dev *dev)
1477{
1478 int len;
1479
1480 if (add_uevent_var(env, "MODALIAS="))
1481 return -ENOMEM;
1482
1483#ifdef CONFIG_KLOCWORK
1484 if ((env->buflen <= 0) || (env->buflen > sizeof(env->buf))) {
1485 pr_err("[kw]wrong buflen %d", env->buflen);
1486 return -ENOMEM;
1487 }
1488#endif
1489
1490 len = input_print_modalias(&env->buf[env->buflen - 1],
1491 sizeof(env->buf) - env->buflen,
1492 dev, 0);
1493 if (len >= (sizeof(env->buf) - env->buflen))
1494 return -ENOMEM;
1495
1496 env->buflen += len;
1497 return 0;
1498}
1499
1500#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1501 do { \
1502 int err = add_uevent_var(env, fmt, val); \
1503 if (err) \
1504 return err; \
1505 } while (0)
1506
1507#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1508 do { \
1509 int err = input_add_uevent_bm_var(env, name, bm, max); \
1510 if (err) \
1511 return err; \
1512 } while (0)
1513
1514#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1515 do { \
1516 int err = input_add_uevent_modalias_var(env, dev); \
1517 if (err) \
1518 return err; \
1519 } while (0)
1520
1521static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1522{
1523 struct input_dev *dev = to_input_dev(device);
1524
1525 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1526 dev->id.bustype, dev->id.vendor,
1527 dev->id.product, dev->id.version);
1528 if (dev->name)
1529 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1530 if (dev->phys)
1531 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1532 if (dev->uniq)
1533 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1534
1535 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1536
1537 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1538 if (test_bit(EV_KEY, dev->evbit))
1539 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1540 if (test_bit(EV_REL, dev->evbit))
1541 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1542 if (test_bit(EV_ABS, dev->evbit))
1543 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1544 if (test_bit(EV_MSC, dev->evbit))
1545 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1546 if (test_bit(EV_LED, dev->evbit))
1547 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1548 if (test_bit(EV_SND, dev->evbit))
1549 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1550 if (test_bit(EV_FF, dev->evbit))
1551 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1552 if (test_bit(EV_SW, dev->evbit))
1553 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1554
1555 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1556
1557 return 0;
1558}
1559
1560#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1561 do { \
1562 int i; \
1563 bool active; \
1564 \
1565 if (!test_bit(EV_##type, dev->evbit)) \
1566 break; \
1567 \
1568 for (i = 0; i < type##_MAX; i++) { \
1569 if (!test_bit(i, dev->bits##bit)) \
1570 continue; \
1571 \
1572 active = test_bit(i, dev->bits); \
1573 if (!active && !on) \
1574 continue; \
1575 \
1576 dev->event(dev, EV_##type, i, on ? active : 0); \
1577 } \
1578 } while (0)
1579
1580static void input_dev_toggle(struct input_dev *dev, bool activate)
1581{
1582 if (!dev->event)
1583 return;
1584
1585 INPUT_DO_TOGGLE(dev, LED, led, activate);
1586 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1587
1588 if (activate && test_bit(EV_REP, dev->evbit)) {
1589 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1590 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1591 }
1592}
1593
1594/**
1595 * input_reset_device() - reset/restore the state of input device
1596 * @dev: input device whose state needs to be reset
1597 *
1598 * This function tries to reset the state of an opened input device and
1599 * bring internal state and state if the hardware in sync with each other.
1600 * We mark all keys as released, restore LED state, repeat rate, etc.
1601 */
1602void input_reset_device(struct input_dev *dev)
1603{
1604 mutex_lock(&dev->mutex);
1605
1606 if (dev->users) {
1607 input_dev_toggle(dev, true);
1608
1609 /*
1610 * Keys that have been pressed at suspend time are unlikely
1611 * to be still pressed when we resume.
1612 */
1613 /*
1614 spin_lock_irq(&dev->event_lock);
1615 input_dev_release_keys(dev);
1616 spin_unlock_irq(&dev->event_lock);
1617 */
1618 }
1619
1620 mutex_unlock(&dev->mutex);
1621}
1622EXPORT_SYMBOL(input_reset_device);
1623
1624#ifdef CONFIG_PM
1625static int input_dev_suspend(struct device *dev)
1626{
1627 struct input_dev *input_dev = to_input_dev(dev);
1628
1629 mutex_lock(&input_dev->mutex);
1630
1631 if (input_dev->users)
1632 input_dev_toggle(input_dev, false);
1633
1634 mutex_unlock(&input_dev->mutex);
1635
1636 return 0;
1637}
1638
1639static int input_dev_resume(struct device *dev)
1640{
1641 struct input_dev *input_dev = to_input_dev(dev);
1642
1643 input_reset_device(input_dev);
1644
1645 return 0;
1646}
1647
1648static const struct dev_pm_ops input_dev_pm_ops = {
1649/*
1650// EC: 616000453137
1651 .suspend = input_dev_suspend,
1652 .resume = input_dev_resume,
1653*/
1654 .suspend_late = input_dev_suspend,
1655 .resume_early = input_dev_resume,
1656 .poweroff = input_dev_suspend,
1657 .restore = input_dev_resume,
1658};
1659#endif /* CONFIG_PM */
1660
1661static struct device_type input_dev_type = {
1662 .groups = input_dev_attr_groups,
1663 .release = input_dev_release,
1664 .uevent = input_dev_uevent,
1665#ifdef CONFIG_PM
1666 .pm = &input_dev_pm_ops,
1667#endif
1668};
1669
1670static char *input_devnode(struct device *dev, umode_t *mode)
1671{
1672 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1673}
1674
1675struct class input_class = {
1676 .name = "input",
1677 .devnode = input_devnode,
1678};
1679EXPORT_SYMBOL_GPL(input_class);
1680
1681/**
1682 * input_allocate_device - allocate memory for new input device
1683 *
1684 * Returns prepared struct input_dev or NULL.
1685 *
1686 * NOTE: Use input_free_device() to free devices that have not been
1687 * registered; input_unregister_device() should be used for already
1688 * registered devices.
1689 */
1690struct input_dev *input_allocate_device(void)
1691{
1692 struct input_dev *dev;
1693
1694 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1695 if (dev) {
1696 dev->dev.type = &input_dev_type;
1697 dev->dev.class = &input_class;
1698 device_initialize(&dev->dev);
1699 mutex_init(&dev->mutex);
1700 spin_lock_init(&dev->event_lock);
1701 INIT_LIST_HEAD(&dev->h_list);
1702 INIT_LIST_HEAD(&dev->node);
1703
1704 __module_get(THIS_MODULE);
1705 }
1706
1707 return dev;
1708}
1709EXPORT_SYMBOL(input_allocate_device);
1710
1711/**
1712 * input_free_device - free memory occupied by input_dev structure
1713 * @dev: input device to free
1714 *
1715 * This function should only be used if input_register_device()
1716 * was not called yet or if it failed. Once device was registered
1717 * use input_unregister_device() and memory will be freed once last
1718 * reference to the device is dropped.
1719 *
1720 * Device should be allocated by input_allocate_device().
1721 *
1722 * NOTE: If there are references to the input device then memory
1723 * will not be freed until last reference is dropped.
1724 */
1725void input_free_device(struct input_dev *dev)
1726{
1727 if (dev)
1728 input_put_device(dev);
1729}
1730EXPORT_SYMBOL(input_free_device);
1731
1732/**
1733 * input_set_capability - mark device as capable of a certain event
1734 * @dev: device that is capable of emitting or accepting event
1735 * @type: type of the event (EV_KEY, EV_REL, etc...)
1736 * @code: event code
1737 *
1738 * In addition to setting up corresponding bit in appropriate capability
1739 * bitmap the function also adjusts dev->evbit.
1740 */
1741void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1742{
1743 switch (type) {
1744 case EV_KEY:
1745 __set_bit(code, dev->keybit);
1746 break;
1747
1748 case EV_REL:
1749 __set_bit(code, dev->relbit);
1750 break;
1751
1752 case EV_ABS:
1753 input_alloc_absinfo(dev);
1754 if (!dev->absinfo)
1755 return;
1756
1757 __set_bit(code, dev->absbit);
1758 break;
1759
1760 case EV_MSC:
1761 __set_bit(code, dev->mscbit);
1762 break;
1763
1764 case EV_SW:
1765 __set_bit(code, dev->swbit);
1766 break;
1767
1768 case EV_LED:
1769 __set_bit(code, dev->ledbit);
1770 break;
1771
1772 case EV_SND:
1773 __set_bit(code, dev->sndbit);
1774 break;
1775
1776 case EV_FF:
1777 __set_bit(code, dev->ffbit);
1778 break;
1779
1780 case EV_PWR:
1781 /* do nothing */
1782 break;
1783
1784 default:
1785 pr_err("input_set_capability: unknown type %u (code %u)\n",
1786 type, code);
1787 dump_stack();
1788 return;
1789 }
1790
1791 __set_bit(type, dev->evbit);
1792}
1793EXPORT_SYMBOL(input_set_capability);
1794
1795static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1796{
1797 int mt_slots;
1798 int i;
1799 unsigned int events;
1800
1801 if (dev->mtsize) {
1802 mt_slots = dev->mtsize;
1803 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1804 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1805 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1806 mt_slots = clamp(mt_slots, 2, 32);
1807 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1808 mt_slots = 2;
1809 } else {
1810 mt_slots = 0;
1811 }
1812
1813 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1814
1815 for (i = 0; i < ABS_CNT; i++) {
1816 if (test_bit(i, dev->absbit)) {
1817 if (input_is_mt_axis(i))
1818 events += mt_slots;
1819 else
1820 events++;
1821 }
1822 }
1823
1824 for (i = 0; i < REL_CNT; i++)
1825 if (test_bit(i, dev->relbit))
1826 events++;
1827
1828 return events;
1829}
1830
1831#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1832 do { \
1833 if (!test_bit(EV_##type, dev->evbit)) \
1834 memset(dev->bits##bit, 0, \
1835 sizeof(dev->bits##bit)); \
1836 } while (0)
1837
1838static void input_cleanse_bitmasks(struct input_dev *dev)
1839{
1840 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1841 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1842 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1843 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1844 INPUT_CLEANSE_BITMASK(dev, LED, led);
1845 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1846 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1847 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1848}
1849
1850/**
1851 * input_register_device - register device with input core
1852 * @dev: device to be registered
1853 *
1854 * This function registers device with input core. The device must be
1855 * allocated with input_allocate_device() and all it's capabilities
1856 * set up before registering.
1857 * If function fails the device must be freed with input_free_device().
1858 * Once device has been successfully registered it can be unregistered
1859 * with input_unregister_device(); input_free_device() should not be
1860 * called in this case.
1861 */
1862int input_register_device(struct input_dev *dev)
1863{
1864 static atomic_t input_no = ATOMIC_INIT(0);
1865 struct input_handler *handler;
1866 const char *path;
1867 int error;
1868
1869 /* Every input device generates EV_SYN/SYN_REPORT events. */
1870 __set_bit(EV_SYN, dev->evbit);
1871
1872 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1873 __clear_bit(KEY_RESERVED, dev->keybit);
1874
1875 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1876 input_cleanse_bitmasks(dev);
1877
1878 if (!dev->hint_events_per_packet)
1879 dev->hint_events_per_packet =
1880 input_estimate_events_per_packet(dev);
1881
1882 /*
1883 * If delay and period are pre-set by the driver, then autorepeating
1884 * is handled by the driver itself and we don't do it in input.c.
1885 */
1886 init_timer(&dev->timer);
1887 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1888 dev->timer.data = (long) dev;
1889 dev->timer.function = input_repeat_key;
1890 dev->rep[REP_DELAY] = 250;
1891 dev->rep[REP_PERIOD] = 33;
1892 }
1893
1894 if (!dev->getkeycode)
1895 dev->getkeycode = input_default_getkeycode;
1896
1897 if (!dev->setkeycode)
1898 dev->setkeycode = input_default_setkeycode;
1899
1900 dev_set_name(&dev->dev, "input%ld",
1901 (unsigned long) atomic_inc_return(&input_no) - 1);
1902
1903 error = device_add(&dev->dev);
1904 if (error)
1905 return error;
1906
1907 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1908 pr_info("%s as %s\n",
1909 dev->name ? dev->name : "Unspecified device",
1910 path ? path : "N/A");
1911 kfree(path);
1912
1913 error = mutex_lock_interruptible(&input_mutex);
1914 if (error) {
1915 device_del(&dev->dev);
1916 return error;
1917 }
1918
1919 list_add_tail(&dev->node, &input_dev_list);
1920
1921 list_for_each_entry(handler, &input_handler_list, node)
1922 input_attach_handler(dev, handler);
1923
1924 input_wakeup_procfs_readers();
1925
1926 mutex_unlock(&input_mutex);
1927
1928 return 0;
1929}
1930EXPORT_SYMBOL(input_register_device);
1931
1932/**
1933 * input_unregister_device - unregister previously registered device
1934 * @dev: device to be unregistered
1935 *
1936 * This function unregisters an input device. Once device is unregistered
1937 * the caller should not try to access it as it may get freed at any moment.
1938 */
1939void input_unregister_device(struct input_dev *dev)
1940{
1941 struct input_handle *handle, *next;
1942
1943 input_disconnect_device(dev);
1944
1945 mutex_lock(&input_mutex);
1946
1947 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1948 handle->handler->disconnect(handle);
1949 WARN_ON(!list_empty(&dev->h_list));
1950
1951 del_timer_sync(&dev->timer);
1952 list_del_init(&dev->node);
1953
1954 input_wakeup_procfs_readers();
1955
1956 mutex_unlock(&input_mutex);
1957
1958 device_unregister(&dev->dev);
1959}
1960EXPORT_SYMBOL(input_unregister_device);
1961
1962/**
1963 * input_register_handler - register a new input handler
1964 * @handler: handler to be registered
1965 *
1966 * This function registers a new input handler (interface) for input
1967 * devices in the system and attaches it to all input devices that
1968 * are compatible with the handler.
1969 */
1970int input_register_handler(struct input_handler *handler)
1971{
1972 struct input_dev *dev;
1973 int retval;
1974
1975 retval = mutex_lock_interruptible(&input_mutex);
1976 if (retval)
1977 return retval;
1978
1979 INIT_LIST_HEAD(&handler->h_list);
1980
1981 if (handler->fops != NULL) {
1982 if (input_table[handler->minor >> 5]) {
1983 retval = -EBUSY;
1984 goto out;
1985 }
1986 input_table[handler->minor >> 5] = handler;
1987 }
1988
1989 list_add_tail(&handler->node, &input_handler_list);
1990
1991 list_for_each_entry(dev, &input_dev_list, node)
1992 input_attach_handler(dev, handler);
1993
1994 input_wakeup_procfs_readers();
1995
1996 out:
1997 mutex_unlock(&input_mutex);
1998 return retval;
1999}
2000EXPORT_SYMBOL(input_register_handler);
2001
2002/**
2003 * input_unregister_handler - unregisters an input handler
2004 * @handler: handler to be unregistered
2005 *
2006 * This function disconnects a handler from its input devices and
2007 * removes it from lists of known handlers.
2008 */
2009void input_unregister_handler(struct input_handler *handler)
2010{
2011 struct input_handle *handle, *next;
2012
2013 mutex_lock(&input_mutex);
2014
2015 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2016 handler->disconnect(handle);
2017 WARN_ON(!list_empty(&handler->h_list));
2018
2019 list_del_init(&handler->node);
2020
2021 if (handler->fops != NULL)
2022 input_table[handler->minor >> 5] = NULL;
2023
2024 input_wakeup_procfs_readers();
2025
2026 mutex_unlock(&input_mutex);
2027}
2028EXPORT_SYMBOL(input_unregister_handler);
2029
2030/**
2031 * input_handler_for_each_handle - handle iterator
2032 * @handler: input handler to iterate
2033 * @data: data for the callback
2034 * @fn: function to be called for each handle
2035 *
2036 * Iterate over @bus's list of devices, and call @fn for each, passing
2037 * it @data and stop when @fn returns a non-zero value. The function is
2038 * using RCU to traverse the list and therefore may be usind in atonic
2039 * contexts. The @fn callback is invoked from RCU critical section and
2040 * thus must not sleep.
2041 */
2042int input_handler_for_each_handle(struct input_handler *handler, void *data,
2043 int (*fn)(struct input_handle *, void *))
2044{
2045 struct input_handle *handle;
2046 int retval = 0;
2047
2048 rcu_read_lock();
2049
2050 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2051 retval = fn(handle, data);
2052 if (retval)
2053 break;
2054 }
2055
2056 rcu_read_unlock();
2057
2058 return retval;
2059}
2060EXPORT_SYMBOL(input_handler_for_each_handle);
2061
2062/**
2063 * input_register_handle - register a new input handle
2064 * @handle: handle to register
2065 *
2066 * This function puts a new input handle onto device's
2067 * and handler's lists so that events can flow through
2068 * it once it is opened using input_open_device().
2069 *
2070 * This function is supposed to be called from handler's
2071 * connect() method.
2072 */
2073int input_register_handle(struct input_handle *handle)
2074{
2075 struct input_handler *handler = handle->handler;
2076 struct input_dev *dev = handle->dev;
2077 int error;
2078
2079 /*
2080 * We take dev->mutex here to prevent race with
2081 * input_release_device().
2082 */
2083 error = mutex_lock_interruptible(&dev->mutex);
2084 if (error)
2085 return error;
2086
2087 /*
2088 * Filters go to the head of the list, normal handlers
2089 * to the tail.
2090 */
2091 if (handler->filter)
2092 list_add_rcu(&handle->d_node, &dev->h_list);
2093 else
2094 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2095
2096 mutex_unlock(&dev->mutex);
2097
2098 /*
2099 * Since we are supposed to be called from ->connect()
2100 * which is mutually exclusive with ->disconnect()
2101 * we can't be racing with input_unregister_handle()
2102 * and so separate lock is not needed here.
2103 */
2104 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2105
2106 if (handler->start)
2107 handler->start(handle);
2108
2109 return 0;
2110}
2111EXPORT_SYMBOL(input_register_handle);
2112
2113/**
2114 * input_unregister_handle - unregister an input handle
2115 * @handle: handle to unregister
2116 *
2117 * This function removes input handle from device's
2118 * and handler's lists.
2119 *
2120 * This function is supposed to be called from handler's
2121 * disconnect() method.
2122 */
2123void input_unregister_handle(struct input_handle *handle)
2124{
2125 struct input_dev *dev = handle->dev;
2126
2127 list_del_rcu(&handle->h_node);
2128
2129 /*
2130 * Take dev->mutex to prevent race with input_release_device().
2131 */
2132 mutex_lock(&dev->mutex);
2133 list_del_rcu(&handle->d_node);
2134 mutex_unlock(&dev->mutex);
2135
2136 synchronize_rcu();
2137}
2138EXPORT_SYMBOL(input_unregister_handle);
2139
2140static int input_open_file(struct inode *inode, struct file *file)
2141{
2142 struct input_handler *handler;
2143 const struct file_operations *old_fops, *new_fops = NULL;
2144 int err;
2145#ifdef CONFIG_KLOCWORK
2146 unsigned index;
2147
2148 index = iminor(inode) >> 5;
2149 if (index >= ARRAY_SIZE(input_table)) {
2150 pr_err("[kw]wrong iminor %u", iminor(inode));
2151 return -ENODEV;
2152 }
2153#endif
2154
2155 err = mutex_lock_interruptible(&input_mutex);
2156 if (err)
2157 return err;
2158
2159 /* No load-on-demand here? */
2160#ifdef CONFIG_KLOCWORK
2161 handler = input_table[index];
2162#else
2163 handler = input_table[iminor(inode) >> 5];
2164#endif
2165 if (handler)
2166 new_fops = fops_get(handler->fops);
2167
2168 mutex_unlock(&input_mutex);
2169
2170 /*
2171 * That's _really_ odd. Usually NULL ->open means "nothing special",
2172 * not "no device". Oh, well...
2173 */
2174 if (!new_fops || !new_fops->open) {
2175 fops_put(new_fops);
2176 err = -ENODEV;
2177 goto out;
2178 }
2179
2180 old_fops = file->f_op;
2181 file->f_op = new_fops;
2182
2183 err = new_fops->open(inode, file);
2184 if (err) {
2185 fops_put(file->f_op);
2186 file->f_op = fops_get(old_fops);
2187 }
2188 fops_put(old_fops);
2189out:
2190 return err;
2191}
2192
2193static const struct file_operations input_fops = {
2194 .owner = THIS_MODULE,
2195 .open = input_open_file,
2196 .llseek = noop_llseek,
2197};
2198
2199static int __init input_init(void)
2200{
2201 int err;
2202
2203 err = class_register(&input_class);
2204 if (err) {
2205 pr_err("unable to register input_dev class\n");
2206 return err;
2207 }
2208
2209 err = input_proc_init();
2210 if (err)
2211 goto fail1;
2212
2213 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2214 if (err) {
2215 pr_err("unable to register char major %d", INPUT_MAJOR);
2216 goto fail2;
2217 }
2218
2219 return 0;
2220
2221 fail2: input_proc_exit();
2222 fail1: class_unregister(&input_class);
2223 return err;
2224}
2225
2226static void __exit input_exit(void)
2227{
2228 input_proc_exit();
2229 unregister_chrdev(INPUT_MAJOR, "input");
2230 class_unregister(&input_class);
2231}
2232
2233subsys_initcall(input_init);
2234module_exit(input_exit);