| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  fs/eventpoll.c (Efficient event retrieval implementation) | 
|  | 3 | *  Copyright (C) 2001,...,2009	 Davide Libenzi | 
|  | 4 | * | 
|  | 5 | *  This program is free software; you can redistribute it and/or modify | 
|  | 6 | *  it under the terms of the GNU General Public License as published by | 
|  | 7 | *  the Free Software Foundation; either version 2 of the License, or | 
|  | 8 | *  (at your option) any later version. | 
|  | 9 | * | 
|  | 10 | *  Davide Libenzi <davidel@xmailserver.org> | 
|  | 11 | * | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/init.h> | 
|  | 15 | #include <linux/kernel.h> | 
|  | 16 | #include <linux/sched.h> | 
|  | 17 | #include <linux/fs.h> | 
|  | 18 | #include <linux/file.h> | 
|  | 19 | #include <linux/signal.h> | 
|  | 20 | #include <linux/errno.h> | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/slab.h> | 
|  | 23 | #include <linux/poll.h> | 
|  | 24 | #include <linux/string.h> | 
|  | 25 | #include <linux/list.h> | 
|  | 26 | #include <linux/hash.h> | 
|  | 27 | #include <linux/spinlock.h> | 
|  | 28 | #include <linux/syscalls.h> | 
|  | 29 | #include <linux/rbtree.h> | 
|  | 30 | #include <linux/wait.h> | 
|  | 31 | #include <linux/eventpoll.h> | 
|  | 32 | #include <linux/mount.h> | 
|  | 33 | #include <linux/bitops.h> | 
|  | 34 | #include <linux/mutex.h> | 
|  | 35 | #include <linux/anon_inodes.h> | 
|  | 36 | #include <linux/device.h> | 
|  | 37 | #include <asm/uaccess.h> | 
|  | 38 | #include <asm/io.h> | 
|  | 39 | #include <asm/mman.h> | 
|  | 40 | #include <linux/atomic.h> | 
|  | 41 |  | 
|  | 42 | /* | 
|  | 43 | * LOCKING: | 
|  | 44 | * There are three level of locking required by epoll : | 
|  | 45 | * | 
|  | 46 | * 1) epmutex (mutex) | 
|  | 47 | * 2) ep->mtx (mutex) | 
|  | 48 | * 3) ep->lock (spinlock) | 
|  | 49 | * | 
|  | 50 | * The acquire order is the one listed above, from 1 to 3. | 
|  | 51 | * We need a spinlock (ep->lock) because we manipulate objects | 
|  | 52 | * from inside the poll callback, that might be triggered from | 
|  | 53 | * a wake_up() that in turn might be called from IRQ context. | 
|  | 54 | * So we can't sleep inside the poll callback and hence we need | 
|  | 55 | * a spinlock. During the event transfer loop (from kernel to | 
|  | 56 | * user space) we could end up sleeping due a copy_to_user(), so | 
|  | 57 | * we need a lock that will allow us to sleep. This lock is a | 
|  | 58 | * mutex (ep->mtx). It is acquired during the event transfer loop, | 
|  | 59 | * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). | 
|  | 60 | * Then we also need a global mutex to serialize eventpoll_release_file() | 
|  | 61 | * and ep_free(). | 
|  | 62 | * This mutex is acquired by ep_free() during the epoll file | 
|  | 63 | * cleanup path and it is also acquired by eventpoll_release_file() | 
|  | 64 | * if a file has been pushed inside an epoll set and it is then | 
|  | 65 | * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). | 
|  | 66 | * It is also acquired when inserting an epoll fd onto another epoll | 
|  | 67 | * fd. We do this so that we walk the epoll tree and ensure that this | 
|  | 68 | * insertion does not create a cycle of epoll file descriptors, which | 
|  | 69 | * could lead to deadlock. We need a global mutex to prevent two | 
|  | 70 | * simultaneous inserts (A into B and B into A) from racing and | 
|  | 71 | * constructing a cycle without either insert observing that it is | 
|  | 72 | * going to. | 
|  | 73 | * It is necessary to acquire multiple "ep->mtx"es at once in the | 
|  | 74 | * case when one epoll fd is added to another. In this case, we | 
|  | 75 | * always acquire the locks in the order of nesting (i.e. after | 
|  | 76 | * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired | 
|  | 77 | * before e2->mtx). Since we disallow cycles of epoll file | 
|  | 78 | * descriptors, this ensures that the mutexes are well-ordered. In | 
|  | 79 | * order to communicate this nesting to lockdep, when walking a tree | 
|  | 80 | * of epoll file descriptors, we use the current recursion depth as | 
|  | 81 | * the lockdep subkey. | 
|  | 82 | * It is possible to drop the "ep->mtx" and to use the global | 
|  | 83 | * mutex "epmutex" (together with "ep->lock") to have it working, | 
|  | 84 | * but having "ep->mtx" will make the interface more scalable. | 
|  | 85 | * Events that require holding "epmutex" are very rare, while for | 
|  | 86 | * normal operations the epoll private "ep->mtx" will guarantee | 
|  | 87 | * a better scalability. | 
|  | 88 | */ | 
|  | 89 |  | 
|  | 90 | /* Epoll private bits inside the event mask */ | 
|  | 91 | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) | 
|  | 92 |  | 
|  | 93 | /* Maximum number of nesting allowed inside epoll sets */ | 
|  | 94 | #define EP_MAX_NESTS 4 | 
|  | 95 |  | 
|  | 96 | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) | 
|  | 97 |  | 
|  | 98 | #define EP_UNACTIVE_PTR ((void *) -1L) | 
|  | 99 |  | 
|  | 100 | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) | 
|  | 101 |  | 
|  | 102 | struct epoll_filefd { | 
|  | 103 | struct file *file; | 
|  | 104 | int fd; | 
|  | 105 | }; | 
|  | 106 |  | 
|  | 107 | /* | 
|  | 108 | * Structure used to track possible nested calls, for too deep recursions | 
|  | 109 | * and loop cycles. | 
|  | 110 | */ | 
|  | 111 | struct nested_call_node { | 
|  | 112 | struct list_head llink; | 
|  | 113 | void *cookie; | 
|  | 114 | void *ctx; | 
|  | 115 | }; | 
|  | 116 |  | 
|  | 117 | /* | 
|  | 118 | * This structure is used as collector for nested calls, to check for | 
|  | 119 | * maximum recursion dept and loop cycles. | 
|  | 120 | */ | 
|  | 121 | struct nested_calls { | 
|  | 122 | struct list_head tasks_call_list; | 
|  | 123 | spinlock_t lock; | 
|  | 124 | }; | 
|  | 125 |  | 
|  | 126 | /* | 
|  | 127 | * Each file descriptor added to the eventpoll interface will | 
|  | 128 | * have an entry of this type linked to the "rbr" RB tree. | 
|  | 129 | */ | 
|  | 130 | struct epitem { | 
|  | 131 | /* RB tree node used to link this structure to the eventpoll RB tree */ | 
|  | 132 | struct rb_node rbn; | 
|  | 133 |  | 
|  | 134 | /* List header used to link this structure to the eventpoll ready list */ | 
|  | 135 | struct list_head rdllink; | 
|  | 136 |  | 
|  | 137 | /* | 
|  | 138 | * Works together "struct eventpoll"->ovflist in keeping the | 
|  | 139 | * single linked chain of items. | 
|  | 140 | */ | 
|  | 141 | struct epitem *next; | 
|  | 142 |  | 
|  | 143 | /* The file descriptor information this item refers to */ | 
|  | 144 | struct epoll_filefd ffd; | 
|  | 145 |  | 
|  | 146 | /* Number of active wait queue attached to poll operations */ | 
|  | 147 | int nwait; | 
|  | 148 |  | 
|  | 149 | /* List containing poll wait queues */ | 
|  | 150 | struct list_head pwqlist; | 
|  | 151 |  | 
|  | 152 | /* The "container" of this item */ | 
|  | 153 | struct eventpoll *ep; | 
|  | 154 |  | 
|  | 155 | /* List header used to link this item to the "struct file" items list */ | 
|  | 156 | struct list_head fllink; | 
|  | 157 |  | 
|  | 158 | /* wakeup_source used when EPOLLWAKEUP is set */ | 
|  | 159 | struct wakeup_source *ws; | 
|  | 160 |  | 
|  | 161 | /* The structure that describe the interested events and the source fd */ | 
|  | 162 | struct epoll_event event; | 
|  | 163 | }; | 
|  | 164 |  | 
|  | 165 | /* | 
|  | 166 | * This structure is stored inside the "private_data" member of the file | 
|  | 167 | * structure and represents the main data structure for the eventpoll | 
|  | 168 | * interface. | 
|  | 169 | */ | 
|  | 170 | struct eventpoll { | 
|  | 171 | /* Protect the access to this structure */ | 
|  | 172 | spinlock_t lock; | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * This mutex is used to ensure that files are not removed | 
|  | 176 | * while epoll is using them. This is held during the event | 
|  | 177 | * collection loop, the file cleanup path, the epoll file exit | 
|  | 178 | * code and the ctl operations. | 
|  | 179 | */ | 
|  | 180 | struct mutex mtx; | 
|  | 181 |  | 
|  | 182 | /* Wait queue used by sys_epoll_wait() */ | 
|  | 183 | wait_queue_head_t wq; | 
|  | 184 |  | 
|  | 185 | /* Wait queue used by file->poll() */ | 
|  | 186 | wait_queue_head_t poll_wait; | 
|  | 187 |  | 
|  | 188 | /* List of ready file descriptors */ | 
|  | 189 | struct list_head rdllist; | 
|  | 190 |  | 
|  | 191 | /* RB tree root used to store monitored fd structs */ | 
|  | 192 | struct rb_root rbr; | 
|  | 193 |  | 
|  | 194 | /* | 
|  | 195 | * This is a single linked list that chains all the "struct epitem" that | 
|  | 196 | * happened while transferring ready events to userspace w/out | 
|  | 197 | * holding ->lock. | 
|  | 198 | */ | 
|  | 199 | struct epitem *ovflist; | 
|  | 200 |  | 
|  | 201 | /* wakeup_source used when ep_scan_ready_list is running */ | 
|  | 202 | struct wakeup_source *ws; | 
|  | 203 |  | 
|  | 204 | /* The user that created the eventpoll descriptor */ | 
|  | 205 | struct user_struct *user; | 
|  | 206 |  | 
|  | 207 | struct file *file; | 
|  | 208 |  | 
|  | 209 | /* used to optimize loop detection check */ | 
|  | 210 | int visited; | 
|  | 211 | struct list_head visited_list_link; | 
|  | 212 | }; | 
|  | 213 |  | 
|  | 214 | /* Wait structure used by the poll hooks */ | 
|  | 215 | struct eppoll_entry { | 
|  | 216 | /* List header used to link this structure to the "struct epitem" */ | 
|  | 217 | struct list_head llink; | 
|  | 218 |  | 
|  | 219 | /* The "base" pointer is set to the container "struct epitem" */ | 
|  | 220 | struct epitem *base; | 
|  | 221 |  | 
|  | 222 | /* | 
|  | 223 | * Wait queue item that will be linked to the target file wait | 
|  | 224 | * queue head. | 
|  | 225 | */ | 
|  | 226 | wait_queue_t wait; | 
|  | 227 |  | 
|  | 228 | /* The wait queue head that linked the "wait" wait queue item */ | 
|  | 229 | wait_queue_head_t *whead; | 
|  | 230 | }; | 
|  | 231 |  | 
|  | 232 | /* Wrapper struct used by poll queueing */ | 
|  | 233 | struct ep_pqueue { | 
|  | 234 | poll_table pt; | 
|  | 235 | struct epitem *epi; | 
|  | 236 | }; | 
|  | 237 |  | 
|  | 238 | /* Used by the ep_send_events() function as callback private data */ | 
|  | 239 | struct ep_send_events_data { | 
|  | 240 | int maxevents; | 
|  | 241 | struct epoll_event __user *events; | 
|  | 242 | }; | 
|  | 243 |  | 
|  | 244 | /* | 
|  | 245 | * Configuration options available inside /proc/sys/fs/epoll/ | 
|  | 246 | */ | 
|  | 247 | /* Maximum number of epoll watched descriptors, per user */ | 
|  | 248 | static long max_user_watches __read_mostly; | 
|  | 249 |  | 
|  | 250 | /* | 
|  | 251 | * This mutex is used to serialize ep_free() and eventpoll_release_file(). | 
|  | 252 | */ | 
|  | 253 | static DEFINE_MUTEX(epmutex); | 
|  | 254 |  | 
|  | 255 | /* Used to check for epoll file descriptor inclusion loops */ | 
|  | 256 | static struct nested_calls poll_loop_ncalls; | 
|  | 257 |  | 
|  | 258 | /* Used for safe wake up implementation */ | 
|  | 259 | static struct nested_calls poll_safewake_ncalls; | 
|  | 260 |  | 
|  | 261 | /* Used to call file's f_op->poll() under the nested calls boundaries */ | 
|  | 262 | static struct nested_calls poll_readywalk_ncalls; | 
|  | 263 |  | 
|  | 264 | /* Slab cache used to allocate "struct epitem" */ | 
|  | 265 | static struct kmem_cache *epi_cache __read_mostly; | 
|  | 266 |  | 
|  | 267 | /* Slab cache used to allocate "struct eppoll_entry" */ | 
|  | 268 | static struct kmem_cache *pwq_cache __read_mostly; | 
|  | 269 |  | 
|  | 270 | /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ | 
|  | 271 | static LIST_HEAD(visited_list); | 
|  | 272 |  | 
|  | 273 | /* | 
|  | 274 | * List of files with newly added links, where we may need to limit the number | 
|  | 275 | * of emanating paths. Protected by the epmutex. | 
|  | 276 | */ | 
|  | 277 | static LIST_HEAD(tfile_check_list); | 
|  | 278 |  | 
|  | 279 | #ifdef CONFIG_SYSCTL | 
|  | 280 |  | 
|  | 281 | #include <linux/sysctl.h> | 
|  | 282 |  | 
|  | 283 | static long zero; | 
|  | 284 | static long long_max = LONG_MAX; | 
|  | 285 |  | 
|  | 286 | ctl_table epoll_table[] = { | 
|  | 287 | { | 
|  | 288 | .procname	= "max_user_watches", | 
|  | 289 | .data		= &max_user_watches, | 
|  | 290 | .maxlen		= sizeof(max_user_watches), | 
|  | 291 | .mode		= 0644, | 
|  | 292 | .proc_handler	= proc_doulongvec_minmax, | 
|  | 293 | .extra1		= &zero, | 
|  | 294 | .extra2		= &long_max, | 
|  | 295 | }, | 
|  | 296 | { } | 
|  | 297 | }; | 
|  | 298 | #endif /* CONFIG_SYSCTL */ | 
|  | 299 |  | 
|  | 300 | static const struct file_operations eventpoll_fops; | 
|  | 301 |  | 
|  | 302 | static inline int is_file_epoll(struct file *f) | 
|  | 303 | { | 
|  | 304 | return f->f_op == &eventpoll_fops; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | /* Setup the structure that is used as key for the RB tree */ | 
|  | 308 | static inline void ep_set_ffd(struct epoll_filefd *ffd, | 
|  | 309 | struct file *file, int fd) | 
|  | 310 | { | 
|  | 311 | ffd->file = file; | 
|  | 312 | ffd->fd = fd; | 
|  | 313 | } | 
|  | 314 |  | 
|  | 315 | /* Compare RB tree keys */ | 
|  | 316 | static inline int ep_cmp_ffd(struct epoll_filefd *p1, | 
|  | 317 | struct epoll_filefd *p2) | 
|  | 318 | { | 
|  | 319 | return (p1->file > p2->file ? +1: | 
|  | 320 | (p1->file < p2->file ? -1 : p1->fd - p2->fd)); | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /* Tells us if the item is currently linked */ | 
|  | 324 | static inline int ep_is_linked(struct list_head *p) | 
|  | 325 | { | 
|  | 326 | return !list_empty(p); | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) | 
|  | 330 | { | 
|  | 331 | return container_of(p, struct eppoll_entry, wait); | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | /* Get the "struct epitem" from a wait queue pointer */ | 
|  | 335 | static inline struct epitem *ep_item_from_wait(wait_queue_t *p) | 
|  | 336 | { | 
|  | 337 | return container_of(p, struct eppoll_entry, wait)->base; | 
|  | 338 | } | 
|  | 339 |  | 
|  | 340 | /* Get the "struct epitem" from an epoll queue wrapper */ | 
|  | 341 | static inline struct epitem *ep_item_from_epqueue(poll_table *p) | 
|  | 342 | { | 
|  | 343 | return container_of(p, struct ep_pqueue, pt)->epi; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ | 
|  | 347 | static inline int ep_op_has_event(int op) | 
|  | 348 | { | 
|  | 349 | return op != EPOLL_CTL_DEL; | 
|  | 350 | } | 
|  | 351 |  | 
|  | 352 | /* Initialize the poll safe wake up structure */ | 
|  | 353 | static void ep_nested_calls_init(struct nested_calls *ncalls) | 
|  | 354 | { | 
|  | 355 | INIT_LIST_HEAD(&ncalls->tasks_call_list); | 
|  | 356 | spin_lock_init(&ncalls->lock); | 
|  | 357 | } | 
|  | 358 |  | 
|  | 359 | /** | 
|  | 360 | * ep_events_available - Checks if ready events might be available. | 
|  | 361 | * | 
|  | 362 | * @ep: Pointer to the eventpoll context. | 
|  | 363 | * | 
|  | 364 | * Returns: Returns a value different than zero if ready events are available, | 
|  | 365 | *          or zero otherwise. | 
|  | 366 | */ | 
|  | 367 | static inline int ep_events_available(struct eventpoll *ep) | 
|  | 368 | { | 
|  | 369 | return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | /** | 
|  | 373 | * ep_call_nested - Perform a bound (possibly) nested call, by checking | 
|  | 374 | *                  that the recursion limit is not exceeded, and that | 
|  | 375 | *                  the same nested call (by the meaning of same cookie) is | 
|  | 376 | *                  no re-entered. | 
|  | 377 | * | 
|  | 378 | * @ncalls: Pointer to the nested_calls structure to be used for this call. | 
|  | 379 | * @max_nests: Maximum number of allowed nesting calls. | 
|  | 380 | * @nproc: Nested call core function pointer. | 
|  | 381 | * @priv: Opaque data to be passed to the @nproc callback. | 
|  | 382 | * @cookie: Cookie to be used to identify this nested call. | 
|  | 383 | * @ctx: This instance context. | 
|  | 384 | * | 
|  | 385 | * Returns: Returns the code returned by the @nproc callback, or -1 if | 
|  | 386 | *          the maximum recursion limit has been exceeded. | 
|  | 387 | */ | 
|  | 388 | static int ep_call_nested(struct nested_calls *ncalls, int max_nests, | 
|  | 389 | int (*nproc)(void *, void *, int), void *priv, | 
|  | 390 | void *cookie, void *ctx) | 
|  | 391 | { | 
|  | 392 | int error, call_nests = 0; | 
|  | 393 | unsigned long flags; | 
|  | 394 | struct list_head *lsthead = &ncalls->tasks_call_list; | 
|  | 395 | struct nested_call_node *tncur; | 
|  | 396 | struct nested_call_node tnode; | 
|  | 397 |  | 
|  | 398 | spin_lock_irqsave(&ncalls->lock, flags); | 
|  | 399 |  | 
|  | 400 | /* | 
|  | 401 | * Try to see if the current task is already inside this wakeup call. | 
|  | 402 | * We use a list here, since the population inside this set is always | 
|  | 403 | * very much limited. | 
|  | 404 | */ | 
|  | 405 | list_for_each_entry(tncur, lsthead, llink) { | 
|  | 406 | if (tncur->ctx == ctx && | 
|  | 407 | (tncur->cookie == cookie || ++call_nests > max_nests)) { | 
|  | 408 | /* | 
|  | 409 | * Ops ... loop detected or maximum nest level reached. | 
|  | 410 | * We abort this wake by breaking the cycle itself. | 
|  | 411 | */ | 
|  | 412 | error = -1; | 
|  | 413 | goto out_unlock; | 
|  | 414 | } | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* Add the current task and cookie to the list */ | 
|  | 418 | tnode.ctx = ctx; | 
|  | 419 | tnode.cookie = cookie; | 
|  | 420 | list_add(&tnode.llink, lsthead); | 
|  | 421 |  | 
|  | 422 | spin_unlock_irqrestore(&ncalls->lock, flags); | 
|  | 423 |  | 
|  | 424 | /* Call the nested function */ | 
|  | 425 | error = (*nproc)(priv, cookie, call_nests); | 
|  | 426 |  | 
|  | 427 | /* Remove the current task from the list */ | 
|  | 428 | spin_lock_irqsave(&ncalls->lock, flags); | 
|  | 429 | list_del(&tnode.llink); | 
|  | 430 | out_unlock: | 
|  | 431 | spin_unlock_irqrestore(&ncalls->lock, flags); | 
|  | 432 |  | 
|  | 433 | return error; | 
|  | 434 | } | 
|  | 435 |  | 
|  | 436 | /* | 
|  | 437 | * As described in commit 0ccf831cb lockdep: annotate epoll | 
|  | 438 | * the use of wait queues used by epoll is done in a very controlled | 
|  | 439 | * manner. Wake ups can nest inside each other, but are never done | 
|  | 440 | * with the same locking. For example: | 
|  | 441 | * | 
|  | 442 | *   dfd = socket(...); | 
|  | 443 | *   efd1 = epoll_create(); | 
|  | 444 | *   efd2 = epoll_create(); | 
|  | 445 | *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); | 
|  | 446 | *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); | 
|  | 447 | * | 
|  | 448 | * When a packet arrives to the device underneath "dfd", the net code will | 
|  | 449 | * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a | 
|  | 450 | * callback wakeup entry on that queue, and the wake_up() performed by the | 
|  | 451 | * "dfd" net code will end up in ep_poll_callback(). At this point epoll | 
|  | 452 | * (efd1) notices that it may have some event ready, so it needs to wake up | 
|  | 453 | * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() | 
|  | 454 | * that ends up in another wake_up(), after having checked about the | 
|  | 455 | * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to | 
|  | 456 | * avoid stack blasting. | 
|  | 457 | * | 
|  | 458 | * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle | 
|  | 459 | * this special case of epoll. | 
|  | 460 | */ | 
|  | 461 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | 462 | static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, | 
|  | 463 | unsigned long events, int subclass) | 
|  | 464 | { | 
|  | 465 | unsigned long flags; | 
|  | 466 |  | 
|  | 467 | spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); | 
|  | 468 | wake_up_locked_poll(wqueue, events); | 
|  | 469 | spin_unlock_irqrestore(&wqueue->lock, flags); | 
|  | 470 | } | 
|  | 471 | #else | 
|  | 472 | static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, | 
|  | 473 | unsigned long events, int subclass) | 
|  | 474 | { | 
|  | 475 | wake_up_poll(wqueue, events); | 
|  | 476 | } | 
|  | 477 | #endif | 
|  | 478 |  | 
|  | 479 | static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) | 
|  | 480 | { | 
|  | 481 | ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, | 
|  | 482 | 1 + call_nests); | 
|  | 483 | return 0; | 
|  | 484 | } | 
|  | 485 |  | 
|  | 486 | /* | 
|  | 487 | * Perform a safe wake up of the poll wait list. The problem is that | 
|  | 488 | * with the new callback'd wake up system, it is possible that the | 
|  | 489 | * poll callback is reentered from inside the call to wake_up() done | 
|  | 490 | * on the poll wait queue head. The rule is that we cannot reenter the | 
|  | 491 | * wake up code from the same task more than EP_MAX_NESTS times, | 
|  | 492 | * and we cannot reenter the same wait queue head at all. This will | 
|  | 493 | * enable to have a hierarchy of epoll file descriptor of no more than | 
|  | 494 | * EP_MAX_NESTS deep. | 
|  | 495 | */ | 
|  | 496 | static void ep_poll_safewake(wait_queue_head_t *wq) | 
|  | 497 | { | 
|  | 498 | int this_cpu = get_cpu_light(); | 
|  | 499 |  | 
|  | 500 | ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, | 
|  | 501 | ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); | 
|  | 502 |  | 
|  | 503 | put_cpu_light(); | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | static void ep_remove_wait_queue(struct eppoll_entry *pwq) | 
|  | 507 | { | 
|  | 508 | wait_queue_head_t *whead; | 
|  | 509 |  | 
|  | 510 | rcu_read_lock(); | 
|  | 511 | /* If it is cleared by POLLFREE, it should be rcu-safe */ | 
|  | 512 | whead = rcu_dereference(pwq->whead); | 
|  | 513 | if (whead) | 
|  | 514 | remove_wait_queue(whead, &pwq->wait); | 
|  | 515 | rcu_read_unlock(); | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | /* | 
|  | 519 | * This function unregisters poll callbacks from the associated file | 
|  | 520 | * descriptor.  Must be called with "mtx" held (or "epmutex" if called from | 
|  | 521 | * ep_free). | 
|  | 522 | */ | 
|  | 523 | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) | 
|  | 524 | { | 
|  | 525 | struct list_head *lsthead = &epi->pwqlist; | 
|  | 526 | struct eppoll_entry *pwq; | 
|  | 527 |  | 
|  | 528 | while (!list_empty(lsthead)) { | 
|  | 529 | pwq = list_first_entry(lsthead, struct eppoll_entry, llink); | 
|  | 530 |  | 
|  | 531 | list_del(&pwq->llink); | 
|  | 532 | ep_remove_wait_queue(pwq); | 
|  | 533 | kmem_cache_free(pwq_cache, pwq); | 
|  | 534 | } | 
|  | 535 | } | 
|  | 536 |  | 
|  | 537 | /** | 
|  | 538 | * ep_scan_ready_list - Scans the ready list in a way that makes possible for | 
|  | 539 | *                      the scan code, to call f_op->poll(). Also allows for | 
|  | 540 | *                      O(NumReady) performance. | 
|  | 541 | * | 
|  | 542 | * @ep: Pointer to the epoll private data structure. | 
|  | 543 | * @sproc: Pointer to the scan callback. | 
|  | 544 | * @priv: Private opaque data passed to the @sproc callback. | 
|  | 545 | * @depth: The current depth of recursive f_op->poll calls. | 
|  | 546 | * | 
|  | 547 | * Returns: The same integer error code returned by the @sproc callback. | 
|  | 548 | */ | 
|  | 549 | static int ep_scan_ready_list(struct eventpoll *ep, | 
|  | 550 | int (*sproc)(struct eventpoll *, | 
|  | 551 | struct list_head *, void *), | 
|  | 552 | void *priv, | 
|  | 553 | int depth) | 
|  | 554 | { | 
|  | 555 | int error, pwake = 0; | 
|  | 556 | unsigned long flags; | 
|  | 557 | struct epitem *epi, *nepi; | 
|  | 558 | LIST_HEAD(txlist); | 
|  | 559 |  | 
|  | 560 | /* | 
|  | 561 | * We need to lock this because we could be hit by | 
|  | 562 | * eventpoll_release_file() and epoll_ctl(). | 
|  | 563 | */ | 
|  | 564 | mutex_lock_nested(&ep->mtx, depth); | 
|  | 565 |  | 
|  | 566 | /* | 
|  | 567 | * Steal the ready list, and re-init the original one to the | 
|  | 568 | * empty list. Also, set ep->ovflist to NULL so that events | 
|  | 569 | * happening while looping w/out locks, are not lost. We cannot | 
|  | 570 | * have the poll callback to queue directly on ep->rdllist, | 
|  | 571 | * because we want the "sproc" callback to be able to do it | 
|  | 572 | * in a lockless way. | 
|  | 573 | */ | 
|  | 574 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 575 | list_splice_init(&ep->rdllist, &txlist); | 
|  | 576 | ep->ovflist = NULL; | 
|  | 577 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 578 |  | 
|  | 579 | /* | 
|  | 580 | * Now call the callback function. | 
|  | 581 | */ | 
|  | 582 | error = (*sproc)(ep, &txlist, priv); | 
|  | 583 |  | 
|  | 584 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 585 | /* | 
|  | 586 | * During the time we spent inside the "sproc" callback, some | 
|  | 587 | * other events might have been queued by the poll callback. | 
|  | 588 | * We re-insert them inside the main ready-list here. | 
|  | 589 | */ | 
|  | 590 | for (nepi = ep->ovflist; (epi = nepi) != NULL; | 
|  | 591 | nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { | 
|  | 592 | /* | 
|  | 593 | * We need to check if the item is already in the list. | 
|  | 594 | * During the "sproc" callback execution time, items are | 
|  | 595 | * queued into ->ovflist but the "txlist" might already | 
|  | 596 | * contain them, and the list_splice() below takes care of them. | 
|  | 597 | */ | 
|  | 598 | if (!ep_is_linked(&epi->rdllink)) { | 
|  | 599 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 600 | __pm_stay_awake(epi->ws); | 
|  | 601 | } | 
|  | 602 | } | 
|  | 603 | /* | 
|  | 604 | * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after | 
|  | 605 | * releasing the lock, events will be queued in the normal way inside | 
|  | 606 | * ep->rdllist. | 
|  | 607 | */ | 
|  | 608 | ep->ovflist = EP_UNACTIVE_PTR; | 
|  | 609 |  | 
|  | 610 | /* | 
|  | 611 | * Quickly re-inject items left on "txlist". | 
|  | 612 | */ | 
|  | 613 | list_splice(&txlist, &ep->rdllist); | 
|  | 614 | __pm_relax(ep->ws); | 
|  | 615 |  | 
|  | 616 | if (!list_empty(&ep->rdllist)) { | 
|  | 617 | /* | 
|  | 618 | * Wake up (if active) both the eventpoll wait list and | 
|  | 619 | * the ->poll() wait list (delayed after we release the lock). | 
|  | 620 | */ | 
|  | 621 | if (waitqueue_active(&ep->wq)) | 
|  | 622 | wake_up_locked(&ep->wq); | 
|  | 623 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 624 | pwake++; | 
|  | 625 | } | 
|  | 626 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 627 |  | 
|  | 628 | mutex_unlock(&ep->mtx); | 
|  | 629 |  | 
|  | 630 | /* We have to call this outside the lock */ | 
|  | 631 | if (pwake) | 
|  | 632 | ep_poll_safewake(&ep->poll_wait); | 
|  | 633 |  | 
|  | 634 | return error; | 
|  | 635 | } | 
|  | 636 |  | 
|  | 637 | /* | 
|  | 638 | * Removes a "struct epitem" from the eventpoll RB tree and deallocates | 
|  | 639 | * all the associated resources. Must be called with "mtx" held. | 
|  | 640 | */ | 
|  | 641 | static int ep_remove(struct eventpoll *ep, struct epitem *epi) | 
|  | 642 | { | 
|  | 643 | unsigned long flags; | 
|  | 644 | struct file *file = epi->ffd.file; | 
|  | 645 |  | 
|  | 646 | /* | 
|  | 647 | * Removes poll wait queue hooks. We _have_ to do this without holding | 
|  | 648 | * the "ep->lock" otherwise a deadlock might occur. This because of the | 
|  | 649 | * sequence of the lock acquisition. Here we do "ep->lock" then the wait | 
|  | 650 | * queue head lock when unregistering the wait queue. The wakeup callback | 
|  | 651 | * will run by holding the wait queue head lock and will call our callback | 
|  | 652 | * that will try to get "ep->lock". | 
|  | 653 | */ | 
|  | 654 | ep_unregister_pollwait(ep, epi); | 
|  | 655 |  | 
|  | 656 | /* Remove the current item from the list of epoll hooks */ | 
|  | 657 | spin_lock(&file->f_lock); | 
|  | 658 | if (ep_is_linked(&epi->fllink)) | 
|  | 659 | list_del_init(&epi->fllink); | 
|  | 660 | spin_unlock(&file->f_lock); | 
|  | 661 |  | 
|  | 662 | rb_erase(&epi->rbn, &ep->rbr); | 
|  | 663 |  | 
|  | 664 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 665 | if (ep_is_linked(&epi->rdllink)) | 
|  | 666 | list_del_init(&epi->rdllink); | 
|  | 667 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 668 |  | 
|  | 669 | wakeup_source_unregister(epi->ws); | 
|  | 670 |  | 
|  | 671 | /* At this point it is safe to free the eventpoll item */ | 
|  | 672 | kmem_cache_free(epi_cache, epi); | 
|  | 673 |  | 
|  | 674 | atomic_long_dec(&ep->user->epoll_watches); | 
|  | 675 |  | 
|  | 676 | return 0; | 
|  | 677 | } | 
|  | 678 |  | 
|  | 679 | static void ep_free(struct eventpoll *ep) | 
|  | 680 | { | 
|  | 681 | struct rb_node *rbp; | 
|  | 682 | struct epitem *epi; | 
|  | 683 |  | 
|  | 684 | /* We need to release all tasks waiting for these file */ | 
|  | 685 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 686 | ep_poll_safewake(&ep->poll_wait); | 
|  | 687 |  | 
|  | 688 | /* | 
|  | 689 | * We need to lock this because we could be hit by | 
|  | 690 | * eventpoll_release_file() while we're freeing the "struct eventpoll". | 
|  | 691 | * We do not need to hold "ep->mtx" here because the epoll file | 
|  | 692 | * is on the way to be removed and no one has references to it | 
|  | 693 | * anymore. The only hit might come from eventpoll_release_file() but | 
|  | 694 | * holding "epmutex" is sufficient here. | 
|  | 695 | */ | 
|  | 696 | mutex_lock(&epmutex); | 
|  | 697 |  | 
|  | 698 | /* | 
|  | 699 | * Walks through the whole tree by unregistering poll callbacks. | 
|  | 700 | */ | 
|  | 701 | for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 702 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 703 |  | 
|  | 704 | ep_unregister_pollwait(ep, epi); | 
|  | 705 | } | 
|  | 706 |  | 
|  | 707 | /* | 
|  | 708 | * Walks through the whole tree by freeing each "struct epitem". At this | 
|  | 709 | * point we are sure no poll callbacks will be lingering around, and also by | 
|  | 710 | * holding "epmutex" we can be sure that no file cleanup code will hit | 
|  | 711 | * us during this operation. So we can avoid the lock on "ep->lock". | 
|  | 712 | */ | 
|  | 713 | while ((rbp = rb_first(&ep->rbr)) != NULL) { | 
|  | 714 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 715 | ep_remove(ep, epi); | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | mutex_unlock(&epmutex); | 
|  | 719 | mutex_destroy(&ep->mtx); | 
|  | 720 | free_uid(ep->user); | 
|  | 721 | wakeup_source_unregister(ep->ws); | 
|  | 722 | kfree(ep); | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | static int ep_eventpoll_release(struct inode *inode, struct file *file) | 
|  | 726 | { | 
|  | 727 | struct eventpoll *ep = file->private_data; | 
|  | 728 |  | 
|  | 729 | if (ep) | 
|  | 730 | ep_free(ep); | 
|  | 731 |  | 
|  | 732 | return 0; | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, | 
|  | 736 | void *priv) | 
|  | 737 | { | 
|  | 738 | struct epitem *epi, *tmp; | 
|  | 739 | poll_table pt; | 
|  | 740 |  | 
|  | 741 | init_poll_funcptr(&pt, NULL); | 
|  | 742 | list_for_each_entry_safe(epi, tmp, head, rdllink) { | 
|  | 743 | pt._key = epi->event.events; | 
|  | 744 | if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & | 
|  | 745 | epi->event.events) | 
|  | 746 | return POLLIN | POLLRDNORM; | 
|  | 747 | else { | 
|  | 748 | /* | 
|  | 749 | * Item has been dropped into the ready list by the poll | 
|  | 750 | * callback, but it's not actually ready, as far as | 
|  | 751 | * caller requested events goes. We can remove it here. | 
|  | 752 | */ | 
|  | 753 | __pm_relax(epi->ws); | 
|  | 754 | list_del_init(&epi->rdllink); | 
|  | 755 | } | 
|  | 756 | } | 
|  | 757 |  | 
|  | 758 | return 0; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) | 
|  | 762 | { | 
|  | 763 | return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); | 
|  | 764 | } | 
|  | 765 |  | 
|  | 766 | static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) | 
|  | 767 | { | 
|  | 768 | int pollflags; | 
|  | 769 | struct eventpoll *ep = file->private_data; | 
|  | 770 |  | 
|  | 771 | /* Insert inside our poll wait queue */ | 
|  | 772 | poll_wait(file, &ep->poll_wait, wait); | 
|  | 773 |  | 
|  | 774 | /* | 
|  | 775 | * Proceed to find out if wanted events are really available inside | 
|  | 776 | * the ready list. This need to be done under ep_call_nested() | 
|  | 777 | * supervision, since the call to f_op->poll() done on listed files | 
|  | 778 | * could re-enter here. | 
|  | 779 | */ | 
|  | 780 | pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, | 
|  | 781 | ep_poll_readyevents_proc, ep, ep, current); | 
|  | 782 |  | 
|  | 783 | return pollflags != -1 ? pollflags : 0; | 
|  | 784 | } | 
|  | 785 |  | 
|  | 786 | /* File callbacks that implement the eventpoll file behaviour */ | 
|  | 787 | static const struct file_operations eventpoll_fops = { | 
|  | 788 | .release	= ep_eventpoll_release, | 
|  | 789 | .poll		= ep_eventpoll_poll, | 
|  | 790 | .llseek		= noop_llseek, | 
|  | 791 | }; | 
|  | 792 |  | 
|  | 793 | /* | 
|  | 794 | * This is called from eventpoll_release() to unlink files from the eventpoll | 
|  | 795 | * interface. We need to have this facility to cleanup correctly files that are | 
|  | 796 | * closed without being removed from the eventpoll interface. | 
|  | 797 | */ | 
|  | 798 | void eventpoll_release_file(struct file *file) | 
|  | 799 | { | 
|  | 800 | struct list_head *lsthead = &file->f_ep_links; | 
|  | 801 | struct eventpoll *ep; | 
|  | 802 | struct epitem *epi; | 
|  | 803 |  | 
|  | 804 | /* | 
|  | 805 | * We don't want to get "file->f_lock" because it is not | 
|  | 806 | * necessary. It is not necessary because we're in the "struct file" | 
|  | 807 | * cleanup path, and this means that no one is using this file anymore. | 
|  | 808 | * So, for example, epoll_ctl() cannot hit here since if we reach this | 
|  | 809 | * point, the file counter already went to zero and fget() would fail. | 
|  | 810 | * The only hit might come from ep_free() but by holding the mutex | 
|  | 811 | * will correctly serialize the operation. We do need to acquire | 
|  | 812 | * "ep->mtx" after "epmutex" because ep_remove() requires it when called | 
|  | 813 | * from anywhere but ep_free(). | 
|  | 814 | * | 
|  | 815 | * Besides, ep_remove() acquires the lock, so we can't hold it here. | 
|  | 816 | */ | 
|  | 817 | mutex_lock(&epmutex); | 
|  | 818 |  | 
|  | 819 | while (!list_empty(lsthead)) { | 
|  | 820 | epi = list_first_entry(lsthead, struct epitem, fllink); | 
|  | 821 |  | 
|  | 822 | ep = epi->ep; | 
|  | 823 | list_del_init(&epi->fllink); | 
|  | 824 | mutex_lock_nested(&ep->mtx, 0); | 
|  | 825 | ep_remove(ep, epi); | 
|  | 826 | mutex_unlock(&ep->mtx); | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | mutex_unlock(&epmutex); | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | static int ep_alloc(struct eventpoll **pep) | 
|  | 833 | { | 
|  | 834 | int error; | 
|  | 835 | struct user_struct *user; | 
|  | 836 | struct eventpoll *ep; | 
|  | 837 |  | 
|  | 838 | user = get_current_user(); | 
|  | 839 | error = -ENOMEM; | 
|  | 840 | ep = kzalloc(sizeof(*ep), GFP_KERNEL); | 
|  | 841 | if (unlikely(!ep)) | 
|  | 842 | goto free_uid; | 
|  | 843 |  | 
|  | 844 | spin_lock_init(&ep->lock); | 
|  | 845 | mutex_init(&ep->mtx); | 
|  | 846 | init_waitqueue_head(&ep->wq); | 
|  | 847 | init_waitqueue_head(&ep->poll_wait); | 
|  | 848 | INIT_LIST_HEAD(&ep->rdllist); | 
|  | 849 | ep->rbr = RB_ROOT; | 
|  | 850 | ep->ovflist = EP_UNACTIVE_PTR; | 
|  | 851 | ep->user = user; | 
|  | 852 |  | 
|  | 853 | *pep = ep; | 
|  | 854 |  | 
|  | 855 | return 0; | 
|  | 856 |  | 
|  | 857 | free_uid: | 
|  | 858 | free_uid(user); | 
|  | 859 | return error; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | /* | 
|  | 863 | * Search the file inside the eventpoll tree. The RB tree operations | 
|  | 864 | * are protected by the "mtx" mutex, and ep_find() must be called with | 
|  | 865 | * "mtx" held. | 
|  | 866 | */ | 
|  | 867 | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) | 
|  | 868 | { | 
|  | 869 | int kcmp; | 
|  | 870 | struct rb_node *rbp; | 
|  | 871 | struct epitem *epi, *epir = NULL; | 
|  | 872 | struct epoll_filefd ffd; | 
|  | 873 |  | 
|  | 874 | ep_set_ffd(&ffd, file, fd); | 
|  | 875 | for (rbp = ep->rbr.rb_node; rbp; ) { | 
|  | 876 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 877 | kcmp = ep_cmp_ffd(&ffd, &epi->ffd); | 
|  | 878 | if (kcmp > 0) | 
|  | 879 | rbp = rbp->rb_right; | 
|  | 880 | else if (kcmp < 0) | 
|  | 881 | rbp = rbp->rb_left; | 
|  | 882 | else { | 
|  | 883 | epir = epi; | 
|  | 884 | break; | 
|  | 885 | } | 
|  | 886 | } | 
|  | 887 |  | 
|  | 888 | return epir; | 
|  | 889 | } | 
|  | 890 |  | 
|  | 891 | /* | 
|  | 892 | * This is the callback that is passed to the wait queue wakeup | 
|  | 893 | * mechanism. It is called by the stored file descriptors when they | 
|  | 894 | * have events to report. | 
|  | 895 | */ | 
|  | 896 | static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
|  | 897 | { | 
|  | 898 | int pwake = 0; | 
|  | 899 | unsigned long flags; | 
|  | 900 | struct epitem *epi = ep_item_from_wait(wait); | 
|  | 901 | struct eventpoll *ep = epi->ep; | 
|  | 902 |  | 
|  | 903 | if ((unsigned long)key & POLLFREE) { | 
|  | 904 | ep_pwq_from_wait(wait)->whead = NULL; | 
|  | 905 | /* | 
|  | 906 | * whead = NULL above can race with ep_remove_wait_queue() | 
|  | 907 | * which can do another remove_wait_queue() after us, so we | 
|  | 908 | * can't use __remove_wait_queue(). whead->lock is held by | 
|  | 909 | * the caller. | 
|  | 910 | */ | 
|  | 911 | list_del_init(&wait->task_list); | 
|  | 912 | } | 
|  | 913 |  | 
|  | 914 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 915 |  | 
|  | 916 | /* | 
|  | 917 | * If the event mask does not contain any poll(2) event, we consider the | 
|  | 918 | * descriptor to be disabled. This condition is likely the effect of the | 
|  | 919 | * EPOLLONESHOT bit that disables the descriptor when an event is received, | 
|  | 920 | * until the next EPOLL_CTL_MOD will be issued. | 
|  | 921 | */ | 
|  | 922 | if (!(epi->event.events & ~EP_PRIVATE_BITS)) | 
|  | 923 | goto out_unlock; | 
|  | 924 |  | 
|  | 925 | /* | 
|  | 926 | * Check the events coming with the callback. At this stage, not | 
|  | 927 | * every device reports the events in the "key" parameter of the | 
|  | 928 | * callback. We need to be able to handle both cases here, hence the | 
|  | 929 | * test for "key" != NULL before the event match test. | 
|  | 930 | */ | 
|  | 931 | if (key && !((unsigned long) key & epi->event.events)) | 
|  | 932 | goto out_unlock; | 
|  | 933 |  | 
|  | 934 | /* | 
|  | 935 | * If we are transferring events to userspace, we can hold no locks | 
|  | 936 | * (because we're accessing user memory, and because of linux f_op->poll() | 
|  | 937 | * semantics). All the events that happen during that period of time are | 
|  | 938 | * chained in ep->ovflist and requeued later on. | 
|  | 939 | */ | 
|  | 940 | if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { | 
|  | 941 | if (epi->next == EP_UNACTIVE_PTR) { | 
|  | 942 | epi->next = ep->ovflist; | 
|  | 943 | ep->ovflist = epi; | 
|  | 944 | if (epi->ws) { | 
|  | 945 | /* | 
|  | 946 | * Activate ep->ws since epi->ws may get | 
|  | 947 | * deactivated at any time. | 
|  | 948 | */ | 
|  | 949 | __pm_stay_awake(ep->ws); | 
|  | 950 | } | 
|  | 951 |  | 
|  | 952 | } | 
|  | 953 | goto out_unlock; | 
|  | 954 | } | 
|  | 955 |  | 
|  | 956 | /* If this file is already in the ready list we exit soon */ | 
|  | 957 | if (!ep_is_linked(&epi->rdllink)) { | 
|  | 958 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 959 | __pm_stay_awake(epi->ws); | 
|  | 960 | } | 
|  | 961 |  | 
|  | 962 | /* | 
|  | 963 | * Wake up ( if active ) both the eventpoll wait list and the ->poll() | 
|  | 964 | * wait list. | 
|  | 965 | */ | 
|  | 966 | if (waitqueue_active(&ep->wq)) | 
|  | 967 | wake_up_locked(&ep->wq); | 
|  | 968 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 969 | pwake++; | 
|  | 970 |  | 
|  | 971 | out_unlock: | 
|  | 972 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 973 |  | 
|  | 974 | /* We have to call this outside the lock */ | 
|  | 975 | if (pwake) | 
|  | 976 | ep_poll_safewake(&ep->poll_wait); | 
|  | 977 |  | 
|  | 978 | return 1; | 
|  | 979 | } | 
|  | 980 |  | 
|  | 981 | /* | 
|  | 982 | * This is the callback that is used to add our wait queue to the | 
|  | 983 | * target file wakeup lists. | 
|  | 984 | */ | 
|  | 985 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, | 
|  | 986 | poll_table *pt) | 
|  | 987 | { | 
|  | 988 | struct epitem *epi = ep_item_from_epqueue(pt); | 
|  | 989 | struct eppoll_entry *pwq; | 
|  | 990 |  | 
|  | 991 | if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { | 
|  | 992 | init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); | 
|  | 993 | pwq->whead = whead; | 
|  | 994 | pwq->base = epi; | 
|  | 995 | add_wait_queue(whead, &pwq->wait); | 
|  | 996 | list_add_tail(&pwq->llink, &epi->pwqlist); | 
|  | 997 | epi->nwait++; | 
|  | 998 | } else { | 
|  | 999 | /* We have to signal that an error occurred */ | 
|  | 1000 | epi->nwait = -1; | 
|  | 1001 | } | 
|  | 1002 | } | 
|  | 1003 |  | 
|  | 1004 | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) | 
|  | 1005 | { | 
|  | 1006 | int kcmp; | 
|  | 1007 | struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; | 
|  | 1008 | struct epitem *epic; | 
|  | 1009 |  | 
|  | 1010 | while (*p) { | 
|  | 1011 | parent = *p; | 
|  | 1012 | epic = rb_entry(parent, struct epitem, rbn); | 
|  | 1013 | kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); | 
|  | 1014 | if (kcmp > 0) | 
|  | 1015 | p = &parent->rb_right; | 
|  | 1016 | else | 
|  | 1017 | p = &parent->rb_left; | 
|  | 1018 | } | 
|  | 1019 | rb_link_node(&epi->rbn, parent, p); | 
|  | 1020 | rb_insert_color(&epi->rbn, &ep->rbr); | 
|  | 1021 | } | 
|  | 1022 |  | 
|  | 1023 |  | 
|  | 1024 |  | 
|  | 1025 | #define PATH_ARR_SIZE 5 | 
|  | 1026 | /* | 
|  | 1027 | * These are the number paths of length 1 to 5, that we are allowing to emanate | 
|  | 1028 | * from a single file of interest. For example, we allow 1000 paths of length | 
|  | 1029 | * 1, to emanate from each file of interest. This essentially represents the | 
|  | 1030 | * potential wakeup paths, which need to be limited in order to avoid massive | 
|  | 1031 | * uncontrolled wakeup storms. The common use case should be a single ep which | 
|  | 1032 | * is connected to n file sources. In this case each file source has 1 path | 
|  | 1033 | * of length 1. Thus, the numbers below should be more than sufficient. These | 
|  | 1034 | * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify | 
|  | 1035 | * and delete can't add additional paths. Protected by the epmutex. | 
|  | 1036 | */ | 
|  | 1037 | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; | 
|  | 1038 | static int path_count[PATH_ARR_SIZE]; | 
|  | 1039 |  | 
|  | 1040 | static int path_count_inc(int nests) | 
|  | 1041 | { | 
|  | 1042 | /* Allow an arbitrary number of depth 1 paths */ | 
|  | 1043 | if (nests == 0) | 
|  | 1044 | return 0; | 
|  | 1045 |  | 
|  | 1046 | if (++path_count[nests] > path_limits[nests]) | 
|  | 1047 | return -1; | 
|  | 1048 | return 0; | 
|  | 1049 | } | 
|  | 1050 |  | 
|  | 1051 | static void path_count_init(void) | 
|  | 1052 | { | 
|  | 1053 | int i; | 
|  | 1054 |  | 
|  | 1055 | for (i = 0; i < PATH_ARR_SIZE; i++) | 
|  | 1056 | path_count[i] = 0; | 
|  | 1057 | } | 
|  | 1058 |  | 
|  | 1059 | static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) | 
|  | 1060 | { | 
|  | 1061 | int error = 0; | 
|  | 1062 | struct file *file = priv; | 
|  | 1063 | struct file *child_file; | 
|  | 1064 | struct epitem *epi; | 
|  | 1065 |  | 
|  | 1066 | list_for_each_entry(epi, &file->f_ep_links, fllink) { | 
|  | 1067 | child_file = epi->ep->file; | 
|  | 1068 | if (is_file_epoll(child_file)) { | 
|  | 1069 | if (list_empty(&child_file->f_ep_links)) { | 
|  | 1070 | if (path_count_inc(call_nests)) { | 
|  | 1071 | error = -1; | 
|  | 1072 | break; | 
|  | 1073 | } | 
|  | 1074 | } else { | 
|  | 1075 | error = ep_call_nested(&poll_loop_ncalls, | 
|  | 1076 | EP_MAX_NESTS, | 
|  | 1077 | reverse_path_check_proc, | 
|  | 1078 | child_file, child_file, | 
|  | 1079 | current); | 
|  | 1080 | } | 
|  | 1081 | if (error != 0) | 
|  | 1082 | break; | 
|  | 1083 | } else { | 
|  | 1084 | printk(KERN_ERR "reverse_path_check_proc: " | 
|  | 1085 | "file is not an ep!\n"); | 
|  | 1086 | } | 
|  | 1087 | } | 
|  | 1088 | return error; | 
|  | 1089 | } | 
|  | 1090 |  | 
|  | 1091 | /** | 
|  | 1092 | * reverse_path_check - The tfile_check_list is list of file *, which have | 
|  | 1093 | *                      links that are proposed to be newly added. We need to | 
|  | 1094 | *                      make sure that those added links don't add too many | 
|  | 1095 | *                      paths such that we will spend all our time waking up | 
|  | 1096 | *                      eventpoll objects. | 
|  | 1097 | * | 
|  | 1098 | * Returns: Returns zero if the proposed links don't create too many paths, | 
|  | 1099 | *	    -1 otherwise. | 
|  | 1100 | */ | 
|  | 1101 | static int reverse_path_check(void) | 
|  | 1102 | { | 
|  | 1103 | int error = 0; | 
|  | 1104 | struct file *current_file; | 
|  | 1105 |  | 
|  | 1106 | /* let's call this for all tfiles */ | 
|  | 1107 | list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { | 
|  | 1108 | path_count_init(); | 
|  | 1109 | error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1110 | reverse_path_check_proc, current_file, | 
|  | 1111 | current_file, current); | 
|  | 1112 | if (error) | 
|  | 1113 | break; | 
|  | 1114 | } | 
|  | 1115 | return error; | 
|  | 1116 | } | 
|  | 1117 |  | 
|  | 1118 | static int ep_create_wakeup_source(struct epitem *epi) | 
|  | 1119 | { | 
|  | 1120 | const char *name; | 
|  | 1121 |  | 
|  | 1122 | if (!epi->ep->ws) { | 
|  | 1123 | epi->ep->ws = wakeup_source_register("eventpoll"); | 
|  | 1124 | if (!epi->ep->ws) | 
|  | 1125 | return -ENOMEM; | 
|  | 1126 | } | 
|  | 1127 |  | 
|  | 1128 | name = epi->ffd.file->f_path.dentry->d_name.name; | 
|  | 1129 | epi->ws = wakeup_source_register(name); | 
|  | 1130 | if (!epi->ws) | 
|  | 1131 | return -ENOMEM; | 
|  | 1132 |  | 
|  | 1133 | return 0; | 
|  | 1134 | } | 
|  | 1135 |  | 
|  | 1136 | static void ep_destroy_wakeup_source(struct epitem *epi) | 
|  | 1137 | { | 
|  | 1138 | wakeup_source_unregister(epi->ws); | 
|  | 1139 | epi->ws = NULL; | 
|  | 1140 | } | 
|  | 1141 |  | 
|  | 1142 | /* | 
|  | 1143 | * Must be called with "mtx" held. | 
|  | 1144 | */ | 
|  | 1145 | static int ep_insert(struct eventpoll *ep, struct epoll_event *event, | 
|  | 1146 | struct file *tfile, int fd) | 
|  | 1147 | { | 
|  | 1148 | int error, revents, pwake = 0; | 
|  | 1149 | unsigned long flags; | 
|  | 1150 | long user_watches; | 
|  | 1151 | struct epitem *epi; | 
|  | 1152 | struct ep_pqueue epq; | 
|  | 1153 |  | 
|  | 1154 | user_watches = atomic_long_read(&ep->user->epoll_watches); | 
|  | 1155 | if (unlikely(user_watches >= max_user_watches)) | 
|  | 1156 | return -ENOSPC; | 
|  | 1157 | if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) | 
|  | 1158 | return -ENOMEM; | 
|  | 1159 |  | 
|  | 1160 | /* Item initialization follow here ... */ | 
|  | 1161 | INIT_LIST_HEAD(&epi->rdllink); | 
|  | 1162 | INIT_LIST_HEAD(&epi->fllink); | 
|  | 1163 | INIT_LIST_HEAD(&epi->pwqlist); | 
|  | 1164 | epi->ep = ep; | 
|  | 1165 | ep_set_ffd(&epi->ffd, tfile, fd); | 
|  | 1166 | epi->event = *event; | 
|  | 1167 | epi->nwait = 0; | 
|  | 1168 | epi->next = EP_UNACTIVE_PTR; | 
|  | 1169 | if (epi->event.events & EPOLLWAKEUP) { | 
|  | 1170 | error = ep_create_wakeup_source(epi); | 
|  | 1171 | if (error) | 
|  | 1172 | goto error_create_wakeup_source; | 
|  | 1173 | } else { | 
|  | 1174 | epi->ws = NULL; | 
|  | 1175 | } | 
|  | 1176 |  | 
|  | 1177 | /* Initialize the poll table using the queue callback */ | 
|  | 1178 | epq.epi = epi; | 
|  | 1179 | init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); | 
|  | 1180 | epq.pt._key = event->events; | 
|  | 1181 |  | 
|  | 1182 | /* | 
|  | 1183 | * Attach the item to the poll hooks and get current event bits. | 
|  | 1184 | * We can safely use the file* here because its usage count has | 
|  | 1185 | * been increased by the caller of this function. Note that after | 
|  | 1186 | * this operation completes, the poll callback can start hitting | 
|  | 1187 | * the new item. | 
|  | 1188 | */ | 
|  | 1189 | revents = tfile->f_op->poll(tfile, &epq.pt); | 
|  | 1190 |  | 
|  | 1191 | /* | 
|  | 1192 | * We have to check if something went wrong during the poll wait queue | 
|  | 1193 | * install process. Namely an allocation for a wait queue failed due | 
|  | 1194 | * high memory pressure. | 
|  | 1195 | */ | 
|  | 1196 | error = -ENOMEM; | 
|  | 1197 | if (epi->nwait < 0) | 
|  | 1198 | goto error_unregister; | 
|  | 1199 |  | 
|  | 1200 | /* Add the current item to the list of active epoll hook for this file */ | 
|  | 1201 | spin_lock(&tfile->f_lock); | 
|  | 1202 | list_add_tail(&epi->fllink, &tfile->f_ep_links); | 
|  | 1203 | spin_unlock(&tfile->f_lock); | 
|  | 1204 |  | 
|  | 1205 | /* | 
|  | 1206 | * Add the current item to the RB tree. All RB tree operations are | 
|  | 1207 | * protected by "mtx", and ep_insert() is called with "mtx" held. | 
|  | 1208 | */ | 
|  | 1209 | ep_rbtree_insert(ep, epi); | 
|  | 1210 |  | 
|  | 1211 | /* now check if we've created too many backpaths */ | 
|  | 1212 | error = -EINVAL; | 
|  | 1213 | if (reverse_path_check()) | 
|  | 1214 | goto error_remove_epi; | 
|  | 1215 |  | 
|  | 1216 | /* We have to drop the new item inside our item list to keep track of it */ | 
|  | 1217 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 1218 |  | 
|  | 1219 | /* If the file is already "ready" we drop it inside the ready list */ | 
|  | 1220 | if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { | 
|  | 1221 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1222 | __pm_stay_awake(epi->ws); | 
|  | 1223 |  | 
|  | 1224 | /* Notify waiting tasks that events are available */ | 
|  | 1225 | if (waitqueue_active(&ep->wq)) | 
|  | 1226 | wake_up_locked(&ep->wq); | 
|  | 1227 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 1228 | pwake++; | 
|  | 1229 | } | 
|  | 1230 |  | 
|  | 1231 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 1232 |  | 
|  | 1233 | atomic_long_inc(&ep->user->epoll_watches); | 
|  | 1234 |  | 
|  | 1235 | /* We have to call this outside the lock */ | 
|  | 1236 | if (pwake) | 
|  | 1237 | ep_poll_safewake(&ep->poll_wait); | 
|  | 1238 |  | 
|  | 1239 | return 0; | 
|  | 1240 |  | 
|  | 1241 | error_remove_epi: | 
|  | 1242 | spin_lock(&tfile->f_lock); | 
|  | 1243 | if (ep_is_linked(&epi->fllink)) | 
|  | 1244 | list_del_init(&epi->fllink); | 
|  | 1245 | spin_unlock(&tfile->f_lock); | 
|  | 1246 |  | 
|  | 1247 | rb_erase(&epi->rbn, &ep->rbr); | 
|  | 1248 |  | 
|  | 1249 | error_unregister: | 
|  | 1250 | ep_unregister_pollwait(ep, epi); | 
|  | 1251 |  | 
|  | 1252 | /* | 
|  | 1253 | * We need to do this because an event could have been arrived on some | 
|  | 1254 | * allocated wait queue. Note that we don't care about the ep->ovflist | 
|  | 1255 | * list, since that is used/cleaned only inside a section bound by "mtx". | 
|  | 1256 | * And ep_insert() is called with "mtx" held. | 
|  | 1257 | */ | 
|  | 1258 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 1259 | if (ep_is_linked(&epi->rdllink)) | 
|  | 1260 | list_del_init(&epi->rdllink); | 
|  | 1261 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 1262 |  | 
|  | 1263 | wakeup_source_unregister(epi->ws); | 
|  | 1264 |  | 
|  | 1265 | error_create_wakeup_source: | 
|  | 1266 | kmem_cache_free(epi_cache, epi); | 
|  | 1267 |  | 
|  | 1268 | return error; | 
|  | 1269 | } | 
|  | 1270 |  | 
|  | 1271 | /* | 
|  | 1272 | * Modify the interest event mask by dropping an event if the new mask | 
|  | 1273 | * has a match in the current file status. Must be called with "mtx" held. | 
|  | 1274 | */ | 
|  | 1275 | static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) | 
|  | 1276 | { | 
|  | 1277 | int pwake = 0; | 
|  | 1278 | unsigned int revents; | 
|  | 1279 | poll_table pt; | 
|  | 1280 |  | 
|  | 1281 | init_poll_funcptr(&pt, NULL); | 
|  | 1282 |  | 
|  | 1283 | /* | 
|  | 1284 | * Set the new event interest mask before calling f_op->poll(); | 
|  | 1285 | * otherwise we might miss an event that happens between the | 
|  | 1286 | * f_op->poll() call and the new event set registering. | 
|  | 1287 | */ | 
|  | 1288 | epi->event.events = event->events; /* need barrier below */ | 
|  | 1289 | pt._key = event->events; | 
|  | 1290 | epi->event.data = event->data; /* protected by mtx */ | 
|  | 1291 |  | 
|  | 1292 | /* | 
|  | 1293 | * The following barrier has two effects: | 
|  | 1294 | * | 
|  | 1295 | * 1) Flush epi changes above to other CPUs.  This ensures | 
|  | 1296 | *    we do not miss events from ep_poll_callback if an | 
|  | 1297 | *    event occurs immediately after we call f_op->poll(). | 
|  | 1298 | *    We need this because we did not take ep->lock while | 
|  | 1299 | *    changing epi above (but ep_poll_callback does take | 
|  | 1300 | *    ep->lock). | 
|  | 1301 | * | 
|  | 1302 | * 2) We also need to ensure we do not miss _past_ events | 
|  | 1303 | *    when calling f_op->poll().  This barrier also | 
|  | 1304 | *    pairs with the barrier in wq_has_sleeper (see | 
|  | 1305 | *    comments for wq_has_sleeper). | 
|  | 1306 | * | 
|  | 1307 | * This barrier will now guarantee ep_poll_callback or f_op->poll | 
|  | 1308 | * (or both) will notice the readiness of an item. | 
|  | 1309 | */ | 
|  | 1310 | smp_mb(); | 
|  | 1311 |  | 
|  | 1312 | if (epi->event.events & EPOLLWAKEUP) { | 
|  | 1313 | if (!epi->ws) | 
|  | 1314 | ep_create_wakeup_source(epi); | 
|  | 1315 | } else if (epi->ws) { | 
|  | 1316 | ep_destroy_wakeup_source(epi); | 
|  | 1317 | } | 
|  | 1318 |  | 
|  | 1319 | /* | 
|  | 1320 | * Get current event bits. We can safely use the file* here because | 
|  | 1321 | * its usage count has been increased by the caller of this function. | 
|  | 1322 | */ | 
|  | 1323 | revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); | 
|  | 1324 |  | 
|  | 1325 | /* | 
|  | 1326 | * If the item is "hot" and it is not registered inside the ready | 
|  | 1327 | * list, push it inside. | 
|  | 1328 | */ | 
|  | 1329 | if (revents & event->events) { | 
|  | 1330 | spin_lock_irq(&ep->lock); | 
|  | 1331 | if (!ep_is_linked(&epi->rdllink)) { | 
|  | 1332 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1333 | __pm_stay_awake(epi->ws); | 
|  | 1334 |  | 
|  | 1335 | /* Notify waiting tasks that events are available */ | 
|  | 1336 | if (waitqueue_active(&ep->wq)) | 
|  | 1337 | wake_up_locked(&ep->wq); | 
|  | 1338 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 1339 | pwake++; | 
|  | 1340 | } | 
|  | 1341 | spin_unlock_irq(&ep->lock); | 
|  | 1342 | } | 
|  | 1343 |  | 
|  | 1344 | /* We have to call this outside the lock */ | 
|  | 1345 | if (pwake) | 
|  | 1346 | ep_poll_safewake(&ep->poll_wait); | 
|  | 1347 |  | 
|  | 1348 | return 0; | 
|  | 1349 | } | 
|  | 1350 |  | 
|  | 1351 | static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, | 
|  | 1352 | void *priv) | 
|  | 1353 | { | 
|  | 1354 | struct ep_send_events_data *esed = priv; | 
|  | 1355 | int eventcnt; | 
|  | 1356 | unsigned int revents; | 
|  | 1357 | struct epitem *epi; | 
|  | 1358 | struct epoll_event __user *uevent; | 
|  | 1359 | poll_table pt; | 
|  | 1360 |  | 
|  | 1361 | init_poll_funcptr(&pt, NULL); | 
|  | 1362 |  | 
|  | 1363 | /* | 
|  | 1364 | * We can loop without lock because we are passed a task private list. | 
|  | 1365 | * Items cannot vanish during the loop because ep_scan_ready_list() is | 
|  | 1366 | * holding "mtx" during this call. | 
|  | 1367 | */ | 
|  | 1368 | for (eventcnt = 0, uevent = esed->events; | 
|  | 1369 | !list_empty(head) && eventcnt < esed->maxevents;) { | 
|  | 1370 | epi = list_first_entry(head, struct epitem, rdllink); | 
|  | 1371 |  | 
|  | 1372 | /* | 
|  | 1373 | * Activate ep->ws before deactivating epi->ws to prevent | 
|  | 1374 | * triggering auto-suspend here (in case we reactive epi->ws | 
|  | 1375 | * below). | 
|  | 1376 | * | 
|  | 1377 | * This could be rearranged to delay the deactivation of epi->ws | 
|  | 1378 | * instead, but then epi->ws would temporarily be out of sync | 
|  | 1379 | * with ep_is_linked(). | 
|  | 1380 | */ | 
|  | 1381 | if (epi->ws && epi->ws->active) | 
|  | 1382 | __pm_stay_awake(ep->ws); | 
|  | 1383 | __pm_relax(epi->ws); | 
|  | 1384 | list_del_init(&epi->rdllink); | 
|  | 1385 |  | 
|  | 1386 | pt._key = epi->event.events; | 
|  | 1387 | revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & | 
|  | 1388 | epi->event.events; | 
|  | 1389 |  | 
|  | 1390 | /* | 
|  | 1391 | * If the event mask intersect the caller-requested one, | 
|  | 1392 | * deliver the event to userspace. Again, ep_scan_ready_list() | 
|  | 1393 | * is holding "mtx", so no operations coming from userspace | 
|  | 1394 | * can change the item. | 
|  | 1395 | */ | 
|  | 1396 | if (revents) { | 
|  | 1397 | if (__put_user(revents, &uevent->events) || | 
|  | 1398 | __put_user(epi->event.data, &uevent->data)) { | 
|  | 1399 | list_add(&epi->rdllink, head); | 
|  | 1400 | __pm_stay_awake(epi->ws); | 
|  | 1401 | return eventcnt ? eventcnt : -EFAULT; | 
|  | 1402 | } | 
|  | 1403 | eventcnt++; | 
|  | 1404 | uevent++; | 
|  | 1405 | if (epi->event.events & EPOLLONESHOT) | 
|  | 1406 | epi->event.events &= EP_PRIVATE_BITS; | 
|  | 1407 | else if (!(epi->event.events & EPOLLET)) { | 
|  | 1408 | /* | 
|  | 1409 | * If this file has been added with Level | 
|  | 1410 | * Trigger mode, we need to insert back inside | 
|  | 1411 | * the ready list, so that the next call to | 
|  | 1412 | * epoll_wait() will check again the events | 
|  | 1413 | * availability. At this point, no one can insert | 
|  | 1414 | * into ep->rdllist besides us. The epoll_ctl() | 
|  | 1415 | * callers are locked out by | 
|  | 1416 | * ep_scan_ready_list() holding "mtx" and the | 
|  | 1417 | * poll callback will queue them in ep->ovflist. | 
|  | 1418 | */ | 
|  | 1419 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1420 | __pm_stay_awake(epi->ws); | 
|  | 1421 | } | 
|  | 1422 | } | 
|  | 1423 | } | 
|  | 1424 |  | 
|  | 1425 | return eventcnt; | 
|  | 1426 | } | 
|  | 1427 |  | 
|  | 1428 | static int ep_send_events(struct eventpoll *ep, | 
|  | 1429 | struct epoll_event __user *events, int maxevents) | 
|  | 1430 | { | 
|  | 1431 | struct ep_send_events_data esed; | 
|  | 1432 |  | 
|  | 1433 | esed.maxevents = maxevents; | 
|  | 1434 | esed.events = events; | 
|  | 1435 |  | 
|  | 1436 | return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); | 
|  | 1437 | } | 
|  | 1438 |  | 
|  | 1439 | static inline struct timespec ep_set_mstimeout(long ms) | 
|  | 1440 | { | 
|  | 1441 | struct timespec now, ts = { | 
|  | 1442 | .tv_sec = ms / MSEC_PER_SEC, | 
|  | 1443 | .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), | 
|  | 1444 | }; | 
|  | 1445 |  | 
|  | 1446 | ktime_get_ts(&now); | 
|  | 1447 | return timespec_add_safe(now, ts); | 
|  | 1448 | } | 
|  | 1449 |  | 
|  | 1450 | /** | 
|  | 1451 | * ep_poll - Retrieves ready events, and delivers them to the caller supplied | 
|  | 1452 | *           event buffer. | 
|  | 1453 | * | 
|  | 1454 | * @ep: Pointer to the eventpoll context. | 
|  | 1455 | * @events: Pointer to the userspace buffer where the ready events should be | 
|  | 1456 | *          stored. | 
|  | 1457 | * @maxevents: Size (in terms of number of events) of the caller event buffer. | 
|  | 1458 | * @timeout: Maximum timeout for the ready events fetch operation, in | 
|  | 1459 | *           milliseconds. If the @timeout is zero, the function will not block, | 
|  | 1460 | *           while if the @timeout is less than zero, the function will block | 
|  | 1461 | *           until at least one event has been retrieved (or an error | 
|  | 1462 | *           occurred). | 
|  | 1463 | * | 
|  | 1464 | * Returns: Returns the number of ready events which have been fetched, or an | 
|  | 1465 | *          error code, in case of error. | 
|  | 1466 | */ | 
|  | 1467 | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, | 
|  | 1468 | int maxevents, long timeout) | 
|  | 1469 | { | 
|  | 1470 | int res = 0, eavail, timed_out = 0; | 
|  | 1471 | unsigned long flags; | 
|  | 1472 | long slack = 0; | 
|  | 1473 | wait_queue_t wait; | 
|  | 1474 | ktime_t expires, *to = NULL; | 
|  | 1475 |  | 
|  | 1476 | if (timeout > 0) { | 
|  | 1477 | struct timespec end_time = ep_set_mstimeout(timeout); | 
|  | 1478 |  | 
|  | 1479 | slack = select_estimate_accuracy(&end_time); | 
|  | 1480 | to = &expires; | 
|  | 1481 | *to = timespec_to_ktime(end_time); | 
|  | 1482 | } else if (timeout == 0) { | 
|  | 1483 | /* | 
|  | 1484 | * Avoid the unnecessary trip to the wait queue loop, if the | 
|  | 1485 | * caller specified a non blocking operation. | 
|  | 1486 | */ | 
|  | 1487 | timed_out = 1; | 
|  | 1488 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 1489 | goto check_events; | 
|  | 1490 | } | 
|  | 1491 |  | 
|  | 1492 | fetch_events: | 
|  | 1493 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 1494 |  | 
|  | 1495 | if (!ep_events_available(ep)) { | 
|  | 1496 | /* | 
|  | 1497 | * We don't have any available event to return to the caller. | 
|  | 1498 | * We need to sleep here, and we will be wake up by | 
|  | 1499 | * ep_poll_callback() when events will become available. | 
|  | 1500 | */ | 
|  | 1501 | init_waitqueue_entry(&wait, current); | 
|  | 1502 | __add_wait_queue_exclusive(&ep->wq, &wait); | 
|  | 1503 |  | 
|  | 1504 | for (;;) { | 
|  | 1505 | /* | 
|  | 1506 | * We don't want to sleep if the ep_poll_callback() sends us | 
|  | 1507 | * a wakeup in between. That's why we set the task state | 
|  | 1508 | * to TASK_INTERRUPTIBLE before doing the checks. | 
|  | 1509 | */ | 
|  | 1510 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1511 | if (ep_events_available(ep) || timed_out) | 
|  | 1512 | break; | 
|  | 1513 | if (signal_pending(current)) { | 
|  | 1514 | res = -EINTR; | 
|  | 1515 | break; | 
|  | 1516 | } | 
|  | 1517 |  | 
|  | 1518 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 1519 | if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) | 
|  | 1520 | timed_out = 1; | 
|  | 1521 |  | 
|  | 1522 | spin_lock_irqsave(&ep->lock, flags); | 
|  | 1523 | } | 
|  | 1524 | __remove_wait_queue(&ep->wq, &wait); | 
|  | 1525 |  | 
|  | 1526 | set_current_state(TASK_RUNNING); | 
|  | 1527 | } | 
|  | 1528 | check_events: | 
|  | 1529 | /* Is it worth to try to dig for events ? */ | 
|  | 1530 | eavail = ep_events_available(ep); | 
|  | 1531 |  | 
|  | 1532 | spin_unlock_irqrestore(&ep->lock, flags); | 
|  | 1533 |  | 
|  | 1534 | /* | 
|  | 1535 | * Try to transfer events to user space. In case we get 0 events and | 
|  | 1536 | * there's still timeout left over, we go trying again in search of | 
|  | 1537 | * more luck. | 
|  | 1538 | */ | 
|  | 1539 | if (!res && eavail && | 
|  | 1540 | !(res = ep_send_events(ep, events, maxevents)) && !timed_out) | 
|  | 1541 | goto fetch_events; | 
|  | 1542 |  | 
|  | 1543 | return res; | 
|  | 1544 | } | 
|  | 1545 |  | 
|  | 1546 | /** | 
|  | 1547 | * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() | 
|  | 1548 | *                      API, to verify that adding an epoll file inside another | 
|  | 1549 | *                      epoll structure, does not violate the constraints, in | 
|  | 1550 | *                      terms of closed loops, or too deep chains (which can | 
|  | 1551 | *                      result in excessive stack usage). | 
|  | 1552 | * | 
|  | 1553 | * @priv: Pointer to the epoll file to be currently checked. | 
|  | 1554 | * @cookie: Original cookie for this call. This is the top-of-the-chain epoll | 
|  | 1555 | *          data structure pointer. | 
|  | 1556 | * @call_nests: Current dept of the @ep_call_nested() call stack. | 
|  | 1557 | * | 
|  | 1558 | * Returns: Returns zero if adding the epoll @file inside current epoll | 
|  | 1559 | *          structure @ep does not violate the constraints, or -1 otherwise. | 
|  | 1560 | */ | 
|  | 1561 | static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) | 
|  | 1562 | { | 
|  | 1563 | int error = 0; | 
|  | 1564 | struct file *file = priv; | 
|  | 1565 | struct eventpoll *ep = file->private_data; | 
|  | 1566 | struct eventpoll *ep_tovisit; | 
|  | 1567 | struct rb_node *rbp; | 
|  | 1568 | struct epitem *epi; | 
|  | 1569 |  | 
|  | 1570 | mutex_lock_nested(&ep->mtx, call_nests + 1); | 
|  | 1571 | ep->visited = 1; | 
|  | 1572 | list_add(&ep->visited_list_link, &visited_list); | 
|  | 1573 | for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 1574 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 1575 | if (unlikely(is_file_epoll(epi->ffd.file))) { | 
|  | 1576 | ep_tovisit = epi->ffd.file->private_data; | 
|  | 1577 | if (ep_tovisit->visited) | 
|  | 1578 | continue; | 
|  | 1579 | error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1580 | ep_loop_check_proc, epi->ffd.file, | 
|  | 1581 | ep_tovisit, current); | 
|  | 1582 | if (error != 0) | 
|  | 1583 | break; | 
|  | 1584 | } else { | 
|  | 1585 | /* | 
|  | 1586 | * If we've reached a file that is not associated with | 
|  | 1587 | * an ep, then we need to check if the newly added | 
|  | 1588 | * links are going to add too many wakeup paths. We do | 
|  | 1589 | * this by adding it to the tfile_check_list, if it's | 
|  | 1590 | * not already there, and calling reverse_path_check() | 
|  | 1591 | * during ep_insert(). | 
|  | 1592 | */ | 
|  | 1593 | if (list_empty(&epi->ffd.file->f_tfile_llink)) | 
|  | 1594 | list_add(&epi->ffd.file->f_tfile_llink, | 
|  | 1595 | &tfile_check_list); | 
|  | 1596 | } | 
|  | 1597 | } | 
|  | 1598 | mutex_unlock(&ep->mtx); | 
|  | 1599 |  | 
|  | 1600 | return error; | 
|  | 1601 | } | 
|  | 1602 |  | 
|  | 1603 | /** | 
|  | 1604 | * ep_loop_check - Performs a check to verify that adding an epoll file (@file) | 
|  | 1605 | *                 another epoll file (represented by @ep) does not create | 
|  | 1606 | *                 closed loops or too deep chains. | 
|  | 1607 | * | 
|  | 1608 | * @ep: Pointer to the epoll private data structure. | 
|  | 1609 | * @file: Pointer to the epoll file to be checked. | 
|  | 1610 | * | 
|  | 1611 | * Returns: Returns zero if adding the epoll @file inside current epoll | 
|  | 1612 | *          structure @ep does not violate the constraints, or -1 otherwise. | 
|  | 1613 | */ | 
|  | 1614 | static int ep_loop_check(struct eventpoll *ep, struct file *file) | 
|  | 1615 | { | 
|  | 1616 | int ret; | 
|  | 1617 | struct eventpoll *ep_cur, *ep_next; | 
|  | 1618 |  | 
|  | 1619 | ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1620 | ep_loop_check_proc, file, ep, current); | 
|  | 1621 | /* clear visited list */ | 
|  | 1622 | list_for_each_entry_safe(ep_cur, ep_next, &visited_list, | 
|  | 1623 | visited_list_link) { | 
|  | 1624 | ep_cur->visited = 0; | 
|  | 1625 | list_del(&ep_cur->visited_list_link); | 
|  | 1626 | } | 
|  | 1627 | return ret; | 
|  | 1628 | } | 
|  | 1629 |  | 
|  | 1630 | static void clear_tfile_check_list(void) | 
|  | 1631 | { | 
|  | 1632 | struct file *file; | 
|  | 1633 |  | 
|  | 1634 | /* first clear the tfile_check_list */ | 
|  | 1635 | while (!list_empty(&tfile_check_list)) { | 
|  | 1636 | file = list_first_entry(&tfile_check_list, struct file, | 
|  | 1637 | f_tfile_llink); | 
|  | 1638 | list_del_init(&file->f_tfile_llink); | 
|  | 1639 | } | 
|  | 1640 | INIT_LIST_HEAD(&tfile_check_list); | 
|  | 1641 | } | 
|  | 1642 |  | 
|  | 1643 | /* | 
|  | 1644 | * Open an eventpoll file descriptor. | 
|  | 1645 | */ | 
|  | 1646 | SYSCALL_DEFINE1(epoll_create1, int, flags) | 
|  | 1647 | { | 
|  | 1648 | int error, fd; | 
|  | 1649 | struct eventpoll *ep = NULL; | 
|  | 1650 | struct file *file; | 
|  | 1651 |  | 
|  | 1652 | /* Check the EPOLL_* constant for consistency.  */ | 
|  | 1653 | BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); | 
|  | 1654 |  | 
|  | 1655 | if (flags & ~EPOLL_CLOEXEC) | 
|  | 1656 | return -EINVAL; | 
|  | 1657 | /* | 
|  | 1658 | * Create the internal data structure ("struct eventpoll"). | 
|  | 1659 | */ | 
|  | 1660 | error = ep_alloc(&ep); | 
|  | 1661 | if (error < 0) | 
|  | 1662 | return error; | 
|  | 1663 | /* | 
|  | 1664 | * Creates all the items needed to setup an eventpoll file. That is, | 
|  | 1665 | * a file structure and a free file descriptor. | 
|  | 1666 | */ | 
|  | 1667 | fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); | 
|  | 1668 | if (fd < 0) { | 
|  | 1669 | error = fd; | 
|  | 1670 | goto out_free_ep; | 
|  | 1671 | } | 
|  | 1672 | file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, | 
|  | 1673 | O_RDWR | (flags & O_CLOEXEC)); | 
|  | 1674 | if (IS_ERR(file)) { | 
|  | 1675 | error = PTR_ERR(file); | 
|  | 1676 | goto out_free_fd; | 
|  | 1677 | } | 
|  | 1678 | fd_install(fd, file); | 
|  | 1679 | ep->file = file; | 
|  | 1680 | return fd; | 
|  | 1681 |  | 
|  | 1682 | out_free_fd: | 
|  | 1683 | put_unused_fd(fd); | 
|  | 1684 | out_free_ep: | 
|  | 1685 | ep_free(ep); | 
|  | 1686 | return error; | 
|  | 1687 | } | 
|  | 1688 |  | 
|  | 1689 | SYSCALL_DEFINE1(epoll_create, int, size) | 
|  | 1690 | { | 
|  | 1691 | if (size <= 0) | 
|  | 1692 | return -EINVAL; | 
|  | 1693 |  | 
|  | 1694 | return sys_epoll_create1(0); | 
|  | 1695 | } | 
|  | 1696 |  | 
|  | 1697 | /* | 
|  | 1698 | * The following function implements the controller interface for | 
|  | 1699 | * the eventpoll file that enables the insertion/removal/change of | 
|  | 1700 | * file descriptors inside the interest set. | 
|  | 1701 | */ | 
|  | 1702 | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, | 
|  | 1703 | struct epoll_event __user *, event) | 
|  | 1704 | { | 
|  | 1705 | int error; | 
|  | 1706 | int did_lock_epmutex = 0; | 
|  | 1707 | struct file *file, *tfile; | 
|  | 1708 | struct eventpoll *ep; | 
|  | 1709 | struct epitem *epi; | 
|  | 1710 | struct epoll_event epds; | 
|  | 1711 |  | 
|  | 1712 | error = -EFAULT; | 
|  | 1713 | if (ep_op_has_event(op) && | 
|  | 1714 | copy_from_user(&epds, event, sizeof(struct epoll_event))) | 
|  | 1715 | goto error_return; | 
|  | 1716 |  | 
|  | 1717 | /* Get the "struct file *" for the eventpoll file */ | 
|  | 1718 | error = -EBADF; | 
|  | 1719 | file = fget(epfd); | 
|  | 1720 | if (!file) | 
|  | 1721 | goto error_return; | 
|  | 1722 |  | 
|  | 1723 | /* Get the "struct file *" for the target file */ | 
|  | 1724 | tfile = fget(fd); | 
|  | 1725 | if (!tfile) | 
|  | 1726 | goto error_fput; | 
|  | 1727 |  | 
|  | 1728 | /* The target file descriptor must support poll */ | 
|  | 1729 | error = -EPERM; | 
|  | 1730 | if (!tfile->f_op || !tfile->f_op->poll) | 
|  | 1731 | goto error_tgt_fput; | 
|  | 1732 |  | 
|  | 1733 | /* Check if EPOLLWAKEUP is allowed */ | 
|  | 1734 | if ((epds.events & EPOLLWAKEUP) && !capable(CAP_EPOLLWAKEUP)) | 
|  | 1735 | epds.events &= ~EPOLLWAKEUP; | 
|  | 1736 |  | 
|  | 1737 | /* | 
|  | 1738 | * We have to check that the file structure underneath the file descriptor | 
|  | 1739 | * the user passed to us _is_ an eventpoll file. And also we do not permit | 
|  | 1740 | * adding an epoll file descriptor inside itself. | 
|  | 1741 | */ | 
|  | 1742 | error = -EINVAL; | 
|  | 1743 | if (file == tfile || !is_file_epoll(file)) | 
|  | 1744 | goto error_tgt_fput; | 
|  | 1745 |  | 
|  | 1746 | /* | 
|  | 1747 | * At this point it is safe to assume that the "private_data" contains | 
|  | 1748 | * our own data structure. | 
|  | 1749 | */ | 
|  | 1750 | ep = file->private_data; | 
|  | 1751 |  | 
|  | 1752 | /* | 
|  | 1753 | * When we insert an epoll file descriptor, inside another epoll file | 
|  | 1754 | * descriptor, there is the change of creating closed loops, which are | 
|  | 1755 | * better be handled here, than in more critical paths. While we are | 
|  | 1756 | * checking for loops we also determine the list of files reachable | 
|  | 1757 | * and hang them on the tfile_check_list, so we can check that we | 
|  | 1758 | * haven't created too many possible wakeup paths. | 
|  | 1759 | * | 
|  | 1760 | * We need to hold the epmutex across both ep_insert and ep_remove | 
|  | 1761 | * b/c we want to make sure we are looking at a coherent view of | 
|  | 1762 | * epoll network. | 
|  | 1763 | */ | 
|  | 1764 | if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { | 
|  | 1765 | mutex_lock(&epmutex); | 
|  | 1766 | did_lock_epmutex = 1; | 
|  | 1767 | } | 
|  | 1768 | if (op == EPOLL_CTL_ADD) { | 
|  | 1769 | if (is_file_epoll(tfile)) { | 
|  | 1770 | error = -ELOOP; | 
|  | 1771 | if (ep_loop_check(ep, tfile) != 0) { | 
|  | 1772 | clear_tfile_check_list(); | 
|  | 1773 | goto error_tgt_fput; | 
|  | 1774 | } | 
|  | 1775 | } else | 
|  | 1776 | list_add(&tfile->f_tfile_llink, &tfile_check_list); | 
|  | 1777 | } | 
|  | 1778 |  | 
|  | 1779 | mutex_lock_nested(&ep->mtx, 0); | 
|  | 1780 |  | 
|  | 1781 | /* | 
|  | 1782 | * Try to lookup the file inside our RB tree, Since we grabbed "mtx" | 
|  | 1783 | * above, we can be sure to be able to use the item looked up by | 
|  | 1784 | * ep_find() till we release the mutex. | 
|  | 1785 | */ | 
|  | 1786 | epi = ep_find(ep, tfile, fd); | 
|  | 1787 |  | 
|  | 1788 | error = -EINVAL; | 
|  | 1789 | switch (op) { | 
|  | 1790 | case EPOLL_CTL_ADD: | 
|  | 1791 | if (!epi) { | 
|  | 1792 | epds.events |= POLLERR | POLLHUP; | 
|  | 1793 | error = ep_insert(ep, &epds, tfile, fd); | 
|  | 1794 | } else | 
|  | 1795 | error = -EEXIST; | 
|  | 1796 | clear_tfile_check_list(); | 
|  | 1797 | break; | 
|  | 1798 | case EPOLL_CTL_DEL: | 
|  | 1799 | if (epi) | 
|  | 1800 | error = ep_remove(ep, epi); | 
|  | 1801 | else | 
|  | 1802 | error = -ENOENT; | 
|  | 1803 | break; | 
|  | 1804 | case EPOLL_CTL_MOD: | 
|  | 1805 | if (epi) { | 
|  | 1806 | epds.events |= POLLERR | POLLHUP; | 
|  | 1807 | error = ep_modify(ep, epi, &epds); | 
|  | 1808 | } else | 
|  | 1809 | error = -ENOENT; | 
|  | 1810 | break; | 
|  | 1811 | } | 
|  | 1812 | mutex_unlock(&ep->mtx); | 
|  | 1813 |  | 
|  | 1814 | error_tgt_fput: | 
|  | 1815 | if (did_lock_epmutex) | 
|  | 1816 | mutex_unlock(&epmutex); | 
|  | 1817 |  | 
|  | 1818 | fput(tfile); | 
|  | 1819 | error_fput: | 
|  | 1820 | fput(file); | 
|  | 1821 | error_return: | 
|  | 1822 |  | 
|  | 1823 | return error; | 
|  | 1824 | } | 
|  | 1825 |  | 
|  | 1826 | /* | 
|  | 1827 | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | 1828 | * part of the user space epoll_wait(2). | 
|  | 1829 | */ | 
|  | 1830 | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, | 
|  | 1831 | int, maxevents, int, timeout) | 
|  | 1832 | { | 
|  | 1833 | int error; | 
|  | 1834 | struct file *file; | 
|  | 1835 | struct eventpoll *ep; | 
|  | 1836 |  | 
|  | 1837 | /* The maximum number of event must be greater than zero */ | 
|  | 1838 | if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) | 
|  | 1839 | return -EINVAL; | 
|  | 1840 |  | 
|  | 1841 | /* Verify that the area passed by the user is writeable */ | 
|  | 1842 | if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { | 
|  | 1843 | error = -EFAULT; | 
|  | 1844 | goto error_return; | 
|  | 1845 | } | 
|  | 1846 |  | 
|  | 1847 | /* Get the "struct file *" for the eventpoll file */ | 
|  | 1848 | error = -EBADF; | 
|  | 1849 | file = fget(epfd); | 
|  | 1850 | if (!file) | 
|  | 1851 | goto error_return; | 
|  | 1852 |  | 
|  | 1853 | /* | 
|  | 1854 | * We have to check that the file structure underneath the fd | 
|  | 1855 | * the user passed to us _is_ an eventpoll file. | 
|  | 1856 | */ | 
|  | 1857 | error = -EINVAL; | 
|  | 1858 | if (!is_file_epoll(file)) | 
|  | 1859 | goto error_fput; | 
|  | 1860 |  | 
|  | 1861 | /* | 
|  | 1862 | * At this point it is safe to assume that the "private_data" contains | 
|  | 1863 | * our own data structure. | 
|  | 1864 | */ | 
|  | 1865 | ep = file->private_data; | 
|  | 1866 |  | 
|  | 1867 | /* Time to fish for events ... */ | 
|  | 1868 | error = ep_poll(ep, events, maxevents, timeout); | 
|  | 1869 |  | 
|  | 1870 | error_fput: | 
|  | 1871 | fput(file); | 
|  | 1872 | error_return: | 
|  | 1873 |  | 
|  | 1874 | return error; | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | #ifdef HAVE_SET_RESTORE_SIGMASK | 
|  | 1878 |  | 
|  | 1879 | /* | 
|  | 1880 | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | 1881 | * part of the user space epoll_pwait(2). | 
|  | 1882 | */ | 
|  | 1883 | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, | 
|  | 1884 | int, maxevents, int, timeout, const sigset_t __user *, sigmask, | 
|  | 1885 | size_t, sigsetsize) | 
|  | 1886 | { | 
|  | 1887 | int error; | 
|  | 1888 | sigset_t ksigmask, sigsaved; | 
|  | 1889 |  | 
|  | 1890 | /* | 
|  | 1891 | * If the caller wants a certain signal mask to be set during the wait, | 
|  | 1892 | * we apply it here. | 
|  | 1893 | */ | 
|  | 1894 | if (sigmask) { | 
|  | 1895 | if (sigsetsize != sizeof(sigset_t)) | 
|  | 1896 | return -EINVAL; | 
|  | 1897 | if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) | 
|  | 1898 | return -EFAULT; | 
|  | 1899 | sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | 1900 | sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); | 
|  | 1901 | } | 
|  | 1902 |  | 
|  | 1903 | error = sys_epoll_wait(epfd, events, maxevents, timeout); | 
|  | 1904 |  | 
|  | 1905 | /* | 
|  | 1906 | * If we changed the signal mask, we need to restore the original one. | 
|  | 1907 | * In case we've got a signal while waiting, we do not restore the | 
|  | 1908 | * signal mask yet, and we allow do_signal() to deliver the signal on | 
|  | 1909 | * the way back to userspace, before the signal mask is restored. | 
|  | 1910 | */ | 
|  | 1911 | if (sigmask) { | 
|  | 1912 | if (error == -EINTR) { | 
|  | 1913 | memcpy(¤t->saved_sigmask, &sigsaved, | 
|  | 1914 | sizeof(sigsaved)); | 
|  | 1915 | set_restore_sigmask(); | 
|  | 1916 | } else | 
|  | 1917 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 
|  | 1918 | } | 
|  | 1919 |  | 
|  | 1920 | return error; | 
|  | 1921 | } | 
|  | 1922 |  | 
|  | 1923 | #endif /* HAVE_SET_RESTORE_SIGMASK */ | 
|  | 1924 |  | 
|  | 1925 | static int __init eventpoll_init(void) | 
|  | 1926 | { | 
|  | 1927 | struct sysinfo si; | 
|  | 1928 |  | 
|  | 1929 | si_meminfo(&si); | 
|  | 1930 | /* | 
|  | 1931 | * Allows top 4% of lomem to be allocated for epoll watches (per user). | 
|  | 1932 | */ | 
|  | 1933 | max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / | 
|  | 1934 | EP_ITEM_COST; | 
|  | 1935 | BUG_ON(max_user_watches < 0); | 
|  | 1936 |  | 
|  | 1937 | /* | 
|  | 1938 | * Initialize the structure used to perform epoll file descriptor | 
|  | 1939 | * inclusion loops checks. | 
|  | 1940 | */ | 
|  | 1941 | ep_nested_calls_init(&poll_loop_ncalls); | 
|  | 1942 |  | 
|  | 1943 | /* Initialize the structure used to perform safe poll wait head wake ups */ | 
|  | 1944 | ep_nested_calls_init(&poll_safewake_ncalls); | 
|  | 1945 |  | 
|  | 1946 | /* Initialize the structure used to perform file's f_op->poll() calls */ | 
|  | 1947 | ep_nested_calls_init(&poll_readywalk_ncalls); | 
|  | 1948 |  | 
|  | 1949 | /* Allocates slab cache used to allocate "struct epitem" items */ | 
|  | 1950 | epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), | 
|  | 1951 | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
|  | 1952 |  | 
|  | 1953 | /* Allocates slab cache used to allocate "struct eppoll_entry" */ | 
|  | 1954 | pwq_cache = kmem_cache_create("eventpoll_pwq", | 
|  | 1955 | sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); | 
|  | 1956 |  | 
|  | 1957 | return 0; | 
|  | 1958 | } | 
|  | 1959 | fs_initcall(eventpoll_init); |