| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <string.h> | 
|  | 11 |  | 
|  | 12 | #include <openssl/bio.h> | 
|  | 13 | #include <openssl/x509_vfy.h> | 
|  | 14 | #include <openssl/ssl.h> | 
|  | 15 | #ifndef OPENSSL_NO_SRP | 
|  | 16 | #include <openssl/srp.h> | 
|  | 17 | #endif | 
|  | 18 |  | 
|  | 19 | #include "../ssl/ssl_local.h" | 
|  | 20 | #include "internal/sockets.h" | 
|  | 21 | #include "internal/nelem.h" | 
|  | 22 | #include "handshake_helper.h" | 
|  | 23 | #include "testutil.h" | 
|  | 24 |  | 
|  | 25 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | 26 | #include <netinet/sctp.h> | 
|  | 27 | #endif | 
|  | 28 |  | 
|  | 29 | HANDSHAKE_RESULT *HANDSHAKE_RESULT_new(void) | 
|  | 30 | { | 
|  | 31 | HANDSHAKE_RESULT *ret; | 
|  | 32 |  | 
|  | 33 | TEST_ptr(ret = OPENSSL_zalloc(sizeof(*ret))); | 
|  | 34 | return ret; | 
|  | 35 | } | 
|  | 36 |  | 
|  | 37 | void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result) | 
|  | 38 | { | 
|  | 39 | if (result == NULL) | 
|  | 40 | return; | 
|  | 41 | OPENSSL_free(result->client_npn_negotiated); | 
|  | 42 | OPENSSL_free(result->server_npn_negotiated); | 
|  | 43 | OPENSSL_free(result->client_alpn_negotiated); | 
|  | 44 | OPENSSL_free(result->server_alpn_negotiated); | 
|  | 45 | OPENSSL_free(result->result_session_ticket_app_data); | 
|  | 46 | sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free); | 
|  | 47 | sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free); | 
|  | 48 | OPENSSL_free(result->cipher); | 
|  | 49 | OPENSSL_free(result); | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | /* | 
|  | 53 | * Since there appears to be no way to extract the sent/received alert | 
|  | 54 | * from the SSL object directly, we use the info callback and stash | 
|  | 55 | * the result in ex_data. | 
|  | 56 | */ | 
|  | 57 | typedef struct handshake_ex_data_st { | 
|  | 58 | int alert_sent; | 
|  | 59 | int num_fatal_alerts_sent; | 
|  | 60 | int alert_received; | 
|  | 61 | int session_ticket_do_not_call; | 
|  | 62 | ssl_servername_t servername; | 
|  | 63 | } HANDSHAKE_EX_DATA; | 
|  | 64 |  | 
|  | 65 | typedef struct ctx_data_st { | 
|  | 66 | unsigned char *npn_protocols; | 
|  | 67 | size_t npn_protocols_len; | 
|  | 68 | unsigned char *alpn_protocols; | 
|  | 69 | size_t alpn_protocols_len; | 
|  | 70 | char *srp_user; | 
|  | 71 | char *srp_password; | 
|  | 72 | char *session_ticket_app_data; | 
|  | 73 | } CTX_DATA; | 
|  | 74 |  | 
|  | 75 | /* |ctx_data| itself is stack-allocated. */ | 
|  | 76 | static void ctx_data_free_data(CTX_DATA *ctx_data) | 
|  | 77 | { | 
|  | 78 | OPENSSL_free(ctx_data->npn_protocols); | 
|  | 79 | ctx_data->npn_protocols = NULL; | 
|  | 80 | OPENSSL_free(ctx_data->alpn_protocols); | 
|  | 81 | ctx_data->alpn_protocols = NULL; | 
|  | 82 | OPENSSL_free(ctx_data->srp_user); | 
|  | 83 | ctx_data->srp_user = NULL; | 
|  | 84 | OPENSSL_free(ctx_data->srp_password); | 
|  | 85 | ctx_data->srp_password = NULL; | 
|  | 86 | OPENSSL_free(ctx_data->session_ticket_app_data); | 
|  | 87 | ctx_data->session_ticket_app_data = NULL; | 
|  | 88 | } | 
|  | 89 |  | 
|  | 90 | static int ex_data_idx; | 
|  | 91 |  | 
|  | 92 | static void info_cb(const SSL *s, int where, int ret) | 
|  | 93 | { | 
|  | 94 | if (where & SSL_CB_ALERT) { | 
|  | 95 | HANDSHAKE_EX_DATA *ex_data = | 
|  | 96 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | 97 | if (where & SSL_CB_WRITE) { | 
|  | 98 | ex_data->alert_sent = ret; | 
|  | 99 | if (strcmp(SSL_alert_type_string(ret), "F") == 0 | 
|  | 100 | || strcmp(SSL_alert_desc_string(ret), "CN") == 0) | 
|  | 101 | ex_data->num_fatal_alerts_sent++; | 
|  | 102 | } else { | 
|  | 103 | ex_data->alert_received = ret; | 
|  | 104 | } | 
|  | 105 | } | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* Select the appropriate server CTX. | 
|  | 109 | * Returns SSL_TLSEXT_ERR_OK if a match was found. | 
|  | 110 | * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch. | 
|  | 111 | * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch. | 
|  | 112 | * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK. | 
|  | 113 | */ | 
|  | 114 | static int select_server_ctx(SSL *s, void *arg, int ignore) | 
|  | 115 | { | 
|  | 116 | const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); | 
|  | 117 | HANDSHAKE_EX_DATA *ex_data = | 
|  | 118 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | 119 |  | 
|  | 120 | if (servername == NULL) { | 
|  | 121 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | 122 | return SSL_TLSEXT_ERR_NOACK; | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | if (strcmp(servername, "server2") == 0) { | 
|  | 126 | SSL_CTX *new_ctx = (SSL_CTX*)arg; | 
|  | 127 | SSL_set_SSL_CTX(s, new_ctx); | 
|  | 128 | /* | 
|  | 129 | * Copy over all the SSL_CTX options - reasonable behavior | 
|  | 130 | * allows testing of cases where the options between two | 
|  | 131 | * contexts differ/conflict | 
|  | 132 | */ | 
|  | 133 | SSL_clear_options(s, 0xFFFFFFFFL); | 
|  | 134 | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); | 
|  | 135 |  | 
|  | 136 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; | 
|  | 137 | return SSL_TLSEXT_ERR_OK; | 
|  | 138 | } else if (strcmp(servername, "server1") == 0) { | 
|  | 139 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | 140 | return SSL_TLSEXT_ERR_OK; | 
|  | 141 | } else if (ignore) { | 
|  | 142 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | 143 | return SSL_TLSEXT_ERR_NOACK; | 
|  | 144 | } else { | 
|  | 145 | /* Don't set an explicit alert, to test library defaults. */ | 
|  | 146 | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | 147 | } | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | static int client_hello_select_server_ctx(SSL *s, void *arg, int ignore) | 
|  | 151 | { | 
|  | 152 | const char *servername; | 
|  | 153 | const unsigned char *p; | 
|  | 154 | size_t len, remaining; | 
|  | 155 | HANDSHAKE_EX_DATA *ex_data = | 
|  | 156 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * The server_name extension was given too much extensibility when it | 
|  | 160 | * was written, so parsing the normal case is a bit complex. | 
|  | 161 | */ | 
|  | 162 | if (!SSL_client_hello_get0_ext(s, TLSEXT_TYPE_server_name, &p, | 
|  | 163 | &remaining) || | 
|  | 164 | remaining <= 2) | 
|  | 165 | return 0; | 
|  | 166 | /* Extract the length of the supplied list of names. */ | 
|  | 167 | len = (*(p++) << 8); | 
|  | 168 | len += *(p++); | 
|  | 169 | if (len + 2 != remaining) | 
|  | 170 | return 0; | 
|  | 171 | remaining = len; | 
|  | 172 | /* | 
|  | 173 | * The list in practice only has a single element, so we only consider | 
|  | 174 | * the first one. | 
|  | 175 | */ | 
|  | 176 | if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name) | 
|  | 177 | return 0; | 
|  | 178 | remaining--; | 
|  | 179 | /* Now we can finally pull out the byte array with the actual hostname. */ | 
|  | 180 | if (remaining <= 2) | 
|  | 181 | return 0; | 
|  | 182 | len = (*(p++) << 8); | 
|  | 183 | len += *(p++); | 
|  | 184 | if (len + 2 > remaining) | 
|  | 185 | return 0; | 
|  | 186 | remaining = len; | 
|  | 187 | servername = (const char *)p; | 
|  | 188 |  | 
|  | 189 | if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) { | 
|  | 190 | SSL_CTX *new_ctx = arg; | 
|  | 191 | SSL_set_SSL_CTX(s, new_ctx); | 
|  | 192 | /* | 
|  | 193 | * Copy over all the SSL_CTX options - reasonable behavior | 
|  | 194 | * allows testing of cases where the options between two | 
|  | 195 | * contexts differ/conflict | 
|  | 196 | */ | 
|  | 197 | SSL_clear_options(s, 0xFFFFFFFFL); | 
|  | 198 | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); | 
|  | 199 |  | 
|  | 200 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; | 
|  | 201 | return 1; | 
|  | 202 | } else if (len == strlen("server1") && | 
|  | 203 | strncmp(servername, "server1", len) == 0) { | 
|  | 204 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | 205 | return 1; | 
|  | 206 | } else if (ignore) { | 
|  | 207 | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | 208 | return 1; | 
|  | 209 | } | 
|  | 210 | return 0; | 
|  | 211 | } | 
|  | 212 | /* | 
|  | 213 | * (RFC 6066): | 
|  | 214 | *  If the server understood the ClientHello extension but | 
|  | 215 | *  does not recognize the server name, the server SHOULD take one of two | 
|  | 216 | *  actions: either abort the handshake by sending a fatal-level | 
|  | 217 | *  unrecognized_name(112) alert or continue the handshake. | 
|  | 218 | * | 
|  | 219 | * This behaviour is up to the application to configure; we test both | 
|  | 220 | * configurations to ensure the state machine propagates the result | 
|  | 221 | * correctly. | 
|  | 222 | */ | 
|  | 223 | static int servername_ignore_cb(SSL *s, int *ad, void *arg) | 
|  | 224 | { | 
|  | 225 | return select_server_ctx(s, arg, 1); | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 | static int servername_reject_cb(SSL *s, int *ad, void *arg) | 
|  | 229 | { | 
|  | 230 | return select_server_ctx(s, arg, 0); | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | static int client_hello_ignore_cb(SSL *s, int *al, void *arg) | 
|  | 234 | { | 
|  | 235 | if (!client_hello_select_server_ctx(s, arg, 1)) { | 
|  | 236 | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | 237 | return SSL_CLIENT_HELLO_ERROR; | 
|  | 238 | } | 
|  | 239 | return SSL_CLIENT_HELLO_SUCCESS; | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | static int client_hello_reject_cb(SSL *s, int *al, void *arg) | 
|  | 243 | { | 
|  | 244 | if (!client_hello_select_server_ctx(s, arg, 0)) { | 
|  | 245 | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | 246 | return SSL_CLIENT_HELLO_ERROR; | 
|  | 247 | } | 
|  | 248 | return SSL_CLIENT_HELLO_SUCCESS; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | static int client_hello_nov12_cb(SSL *s, int *al, void *arg) | 
|  | 252 | { | 
|  | 253 | int ret; | 
|  | 254 | unsigned int v; | 
|  | 255 | const unsigned char *p; | 
|  | 256 |  | 
|  | 257 | v = SSL_client_hello_get0_legacy_version(s); | 
|  | 258 | if (v > TLS1_2_VERSION || v < SSL3_VERSION) { | 
|  | 259 | *al = SSL_AD_PROTOCOL_VERSION; | 
|  | 260 | return SSL_CLIENT_HELLO_ERROR; | 
|  | 261 | } | 
|  | 262 | (void)SSL_client_hello_get0_session_id(s, &p); | 
|  | 263 | if (p == NULL || | 
|  | 264 | SSL_client_hello_get0_random(s, &p) == 0 || | 
|  | 265 | SSL_client_hello_get0_ciphers(s, &p) == 0 || | 
|  | 266 | SSL_client_hello_get0_compression_methods(s, &p) == 0) { | 
|  | 267 | *al = SSL_AD_INTERNAL_ERROR; | 
|  | 268 | return SSL_CLIENT_HELLO_ERROR; | 
|  | 269 | } | 
|  | 270 | ret = client_hello_select_server_ctx(s, arg, 0); | 
|  | 271 | SSL_set_max_proto_version(s, TLS1_1_VERSION); | 
|  | 272 | if (!ret) { | 
|  | 273 | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | 274 | return SSL_CLIENT_HELLO_ERROR; | 
|  | 275 | } | 
|  | 276 | return SSL_CLIENT_HELLO_SUCCESS; | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | static unsigned char dummy_ocsp_resp_good_val = 0xff; | 
|  | 280 | static unsigned char dummy_ocsp_resp_bad_val = 0xfe; | 
|  | 281 |  | 
|  | 282 | static int server_ocsp_cb(SSL *s, void *arg) | 
|  | 283 | { | 
|  | 284 | unsigned char *resp; | 
|  | 285 |  | 
|  | 286 | resp = OPENSSL_malloc(1); | 
|  | 287 | if (resp == NULL) | 
|  | 288 | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | 289 | /* | 
|  | 290 | * For the purposes of testing we just send back a dummy OCSP response | 
|  | 291 | */ | 
|  | 292 | *resp = *(unsigned char *)arg; | 
|  | 293 | if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1)) | 
|  | 294 | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | 295 |  | 
|  | 296 | return SSL_TLSEXT_ERR_OK; | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | static int client_ocsp_cb(SSL *s, void *arg) | 
|  | 300 | { | 
|  | 301 | const unsigned char *resp; | 
|  | 302 | int len; | 
|  | 303 |  | 
|  | 304 | len = SSL_get_tlsext_status_ocsp_resp(s, &resp); | 
|  | 305 | if (len != 1 || *resp != dummy_ocsp_resp_good_val) | 
|  | 306 | return 0; | 
|  | 307 |  | 
|  | 308 | return 1; | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) { | 
|  | 312 | X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION); | 
|  | 313 | return 0; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) { | 
|  | 317 | return 1; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv, | 
|  | 321 | EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) | 
|  | 322 | { | 
|  | 323 | return 0; | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name, | 
|  | 327 | unsigned char *iv, | 
|  | 328 | EVP_CIPHER_CTX *ctx, | 
|  | 329 | HMAC_CTX *hctx, int enc) | 
|  | 330 | { | 
|  | 331 | HANDSHAKE_EX_DATA *ex_data = | 
|  | 332 | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | 333 | ex_data->session_ticket_do_not_call = 1; | 
|  | 334 | return 0; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | /* Parse the comma-separated list into TLS format. */ | 
|  | 338 | static int parse_protos(const char *protos, unsigned char **out, size_t *outlen) | 
|  | 339 | { | 
|  | 340 | size_t len, i, prefix; | 
|  | 341 |  | 
|  | 342 | len = strlen(protos); | 
|  | 343 |  | 
|  | 344 | /* Should never have reuse. */ | 
|  | 345 | if (!TEST_ptr_null(*out) | 
|  | 346 | /* Test values are small, so we omit length limit checks. */ | 
|  | 347 | || !TEST_ptr(*out = OPENSSL_malloc(len + 1))) | 
|  | 348 | return 0; | 
|  | 349 | *outlen = len + 1; | 
|  | 350 |  | 
|  | 351 | /* | 
|  | 352 | * foo => '3', 'f', 'o', 'o' | 
|  | 353 | * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r' | 
|  | 354 | */ | 
|  | 355 | memcpy(*out + 1, protos, len); | 
|  | 356 |  | 
|  | 357 | prefix = 0; | 
|  | 358 | i = prefix + 1; | 
|  | 359 | while (i <= len) { | 
|  | 360 | if ((*out)[i] == ',') { | 
|  | 361 | if (!TEST_int_gt(i - 1, prefix)) | 
|  | 362 | goto err; | 
|  | 363 | (*out)[prefix] = (unsigned char)(i - 1 - prefix); | 
|  | 364 | prefix = i; | 
|  | 365 | } | 
|  | 366 | i++; | 
|  | 367 | } | 
|  | 368 | if (!TEST_int_gt(len, prefix)) | 
|  | 369 | goto err; | 
|  | 370 | (*out)[prefix] = (unsigned char)(len - prefix); | 
|  | 371 | return 1; | 
|  | 372 |  | 
|  | 373 | err: | 
|  | 374 | OPENSSL_free(*out); | 
|  | 375 | *out = NULL; | 
|  | 376 | return 0; | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | 380 | /* | 
|  | 381 | * The client SHOULD select the first protocol advertised by the server that it | 
|  | 382 | * also supports.  In the event that the client doesn't support any of server's | 
|  | 383 | * protocols, or the server doesn't advertise any, it SHOULD select the first | 
|  | 384 | * protocol that it supports. | 
|  | 385 | */ | 
|  | 386 | static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen, | 
|  | 387 | const unsigned char *in, unsigned int inlen, | 
|  | 388 | void *arg) | 
|  | 389 | { | 
|  | 390 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | 391 | int ret; | 
|  | 392 |  | 
|  | 393 | ret = SSL_select_next_proto(out, outlen, in, inlen, | 
|  | 394 | ctx_data->npn_protocols, | 
|  | 395 | ctx_data->npn_protocols_len); | 
|  | 396 | /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */ | 
|  | 397 | return TEST_true(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP) | 
|  | 398 | ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | 399 | } | 
|  | 400 |  | 
|  | 401 | static int server_npn_cb(SSL *s, const unsigned char **data, | 
|  | 402 | unsigned int *len, void *arg) | 
|  | 403 | { | 
|  | 404 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | 405 | *data = ctx_data->npn_protocols; | 
|  | 406 | *len = ctx_data->npn_protocols_len; | 
|  | 407 | return SSL_TLSEXT_ERR_OK; | 
|  | 408 | } | 
|  | 409 | #endif | 
|  | 410 |  | 
|  | 411 | /* | 
|  | 412 | * The server SHOULD select the most highly preferred protocol that it supports | 
|  | 413 | * and that is also advertised by the client.  In the event that the server | 
|  | 414 | * supports no protocols that the client advertises, then the server SHALL | 
|  | 415 | * respond with a fatal "no_application_protocol" alert. | 
|  | 416 | */ | 
|  | 417 | static int server_alpn_cb(SSL *s, const unsigned char **out, | 
|  | 418 | unsigned char *outlen, const unsigned char *in, | 
|  | 419 | unsigned int inlen, void *arg) | 
|  | 420 | { | 
|  | 421 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | 422 | int ret; | 
|  | 423 |  | 
|  | 424 | /* SSL_select_next_proto isn't const-correct... */ | 
|  | 425 | unsigned char *tmp_out; | 
|  | 426 |  | 
|  | 427 | /* | 
|  | 428 | * The result points either to |in| or to |ctx_data->alpn_protocols|. | 
|  | 429 | * The callback is allowed to point to |in| or to a long-lived buffer, | 
|  | 430 | * so we can return directly without storing a copy. | 
|  | 431 | */ | 
|  | 432 | ret = SSL_select_next_proto(&tmp_out, outlen, | 
|  | 433 | ctx_data->alpn_protocols, | 
|  | 434 | ctx_data->alpn_protocols_len, in, inlen); | 
|  | 435 |  | 
|  | 436 | *out = tmp_out; | 
|  | 437 | /* Unlike NPN, we don't tolerate a mismatch. */ | 
|  | 438 | return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK | 
|  | 439 | : SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | #ifndef OPENSSL_NO_SRP | 
|  | 443 | static char *client_srp_cb(SSL *s, void *arg) | 
|  | 444 | { | 
|  | 445 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | 446 | return OPENSSL_strdup(ctx_data->srp_password); | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | static int server_srp_cb(SSL *s, int *ad, void *arg) | 
|  | 450 | { | 
|  | 451 | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | 452 | if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0) | 
|  | 453 | return SSL3_AL_FATAL; | 
|  | 454 | if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user, | 
|  | 455 | ctx_data->srp_password, | 
|  | 456 | "2048" /* known group */) < 0) { | 
|  | 457 | *ad = SSL_AD_INTERNAL_ERROR; | 
|  | 458 | return SSL3_AL_FATAL; | 
|  | 459 | } | 
|  | 460 | return SSL_ERROR_NONE; | 
|  | 461 | } | 
|  | 462 | #endif  /* !OPENSSL_NO_SRP */ | 
|  | 463 |  | 
|  | 464 | static int generate_session_ticket_cb(SSL *s, void *arg) | 
|  | 465 | { | 
|  | 466 | CTX_DATA *server_ctx_data = arg; | 
|  | 467 | SSL_SESSION *ss = SSL_get_session(s); | 
|  | 468 | char *app_data = server_ctx_data->session_ticket_app_data; | 
|  | 469 |  | 
|  | 470 | if (ss == NULL || app_data == NULL) | 
|  | 471 | return 0; | 
|  | 472 |  | 
|  | 473 | return SSL_SESSION_set1_ticket_appdata(ss, app_data, strlen(app_data)); | 
|  | 474 | } | 
|  | 475 |  | 
|  | 476 | static int decrypt_session_ticket_cb(SSL *s, SSL_SESSION *ss, | 
|  | 477 | const unsigned char *keyname, | 
|  | 478 | size_t keyname_len, | 
|  | 479 | SSL_TICKET_STATUS status, | 
|  | 480 | void *arg) | 
|  | 481 | { | 
|  | 482 | switch (status) { | 
|  | 483 | case SSL_TICKET_EMPTY: | 
|  | 484 | case SSL_TICKET_NO_DECRYPT: | 
|  | 485 | return SSL_TICKET_RETURN_IGNORE_RENEW; | 
|  | 486 | case SSL_TICKET_SUCCESS: | 
|  | 487 | return SSL_TICKET_RETURN_USE; | 
|  | 488 | case SSL_TICKET_SUCCESS_RENEW: | 
|  | 489 | return SSL_TICKET_RETURN_USE_RENEW; | 
|  | 490 | default: | 
|  | 491 | break; | 
|  | 492 | } | 
|  | 493 | return SSL_TICKET_RETURN_ABORT; | 
|  | 494 | } | 
|  | 495 |  | 
|  | 496 | /* | 
|  | 497 | * Configure callbacks and other properties that can't be set directly | 
|  | 498 | * in the server/client CONF. | 
|  | 499 | */ | 
|  | 500 | static int configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, | 
|  | 501 | SSL_CTX *client_ctx, | 
|  | 502 | const SSL_TEST_CTX *test, | 
|  | 503 | const SSL_TEST_EXTRA_CONF *extra, | 
|  | 504 | CTX_DATA *server_ctx_data, | 
|  | 505 | CTX_DATA *server2_ctx_data, | 
|  | 506 | CTX_DATA *client_ctx_data) | 
|  | 507 | { | 
|  | 508 | unsigned char *ticket_keys; | 
|  | 509 | size_t ticket_key_len; | 
|  | 510 |  | 
|  | 511 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server_ctx, | 
|  | 512 | test->max_fragment_size), 1)) | 
|  | 513 | goto err; | 
|  | 514 | if (server2_ctx != NULL) { | 
|  | 515 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server2_ctx, | 
|  | 516 | test->max_fragment_size), | 
|  | 517 | 1)) | 
|  | 518 | goto err; | 
|  | 519 | } | 
|  | 520 | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(client_ctx, | 
|  | 521 | test->max_fragment_size), 1)) | 
|  | 522 | goto err; | 
|  | 523 |  | 
|  | 524 | switch (extra->client.verify_callback) { | 
|  | 525 | case SSL_TEST_VERIFY_ACCEPT_ALL: | 
|  | 526 | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb, NULL); | 
|  | 527 | break; | 
|  | 528 | case SSL_TEST_VERIFY_REJECT_ALL: | 
|  | 529 | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb, NULL); | 
|  | 530 | break; | 
|  | 531 | case SSL_TEST_VERIFY_NONE: | 
|  | 532 | break; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | switch (extra->client.max_fragment_len_mode) { | 
|  | 536 | case TLSEXT_max_fragment_length_512: | 
|  | 537 | case TLSEXT_max_fragment_length_1024: | 
|  | 538 | case TLSEXT_max_fragment_length_2048: | 
|  | 539 | case TLSEXT_max_fragment_length_4096: | 
|  | 540 | case TLSEXT_max_fragment_length_DISABLED: | 
|  | 541 | SSL_CTX_set_tlsext_max_fragment_length( | 
|  | 542 | client_ctx, extra->client.max_fragment_len_mode); | 
|  | 543 | break; | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | /* | 
|  | 547 | * Link the two contexts for SNI purposes. | 
|  | 548 | * Also do ClientHello callbacks here, as setting both ClientHello and SNI | 
|  | 549 | * is bad. | 
|  | 550 | */ | 
|  | 551 | switch (extra->server.servername_callback) { | 
|  | 552 | case SSL_TEST_SERVERNAME_IGNORE_MISMATCH: | 
|  | 553 | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb); | 
|  | 554 | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); | 
|  | 555 | break; | 
|  | 556 | case SSL_TEST_SERVERNAME_REJECT_MISMATCH: | 
|  | 557 | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb); | 
|  | 558 | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); | 
|  | 559 | break; | 
|  | 560 | case SSL_TEST_SERVERNAME_CB_NONE: | 
|  | 561 | break; | 
|  | 562 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_IGNORE_MISMATCH: | 
|  | 563 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_ignore_cb, server2_ctx); | 
|  | 564 | break; | 
|  | 565 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_REJECT_MISMATCH: | 
|  | 566 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_reject_cb, server2_ctx); | 
|  | 567 | break; | 
|  | 568 | case SSL_TEST_SERVERNAME_CLIENT_HELLO_NO_V12: | 
|  | 569 | SSL_CTX_set_client_hello_cb(server_ctx, client_hello_nov12_cb, server2_ctx); | 
|  | 570 | } | 
|  | 571 |  | 
|  | 572 | if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) { | 
|  | 573 | SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp); | 
|  | 574 | SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb); | 
|  | 575 | SSL_CTX_set_tlsext_status_arg(client_ctx, NULL); | 
|  | 576 | SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb); | 
|  | 577 | SSL_CTX_set_tlsext_status_arg(server_ctx, | 
|  | 578 | ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE) | 
|  | 579 | ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val)); | 
|  | 580 | } | 
|  | 581 |  | 
|  | 582 | /* | 
|  | 583 | * The initial_ctx/session_ctx always handles the encrypt/decrypt of the | 
|  | 584 | * session ticket. This ticket_key callback is assigned to the second | 
|  | 585 | * session (assigned via SNI), and should never be invoked | 
|  | 586 | */ | 
|  | 587 | if (server2_ctx != NULL) | 
|  | 588 | SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx, | 
|  | 589 | do_not_call_session_ticket_cb); | 
|  | 590 |  | 
|  | 591 | if (extra->server.broken_session_ticket) { | 
|  | 592 | SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb); | 
|  | 593 | } | 
|  | 594 | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | 595 | if (extra->server.npn_protocols != NULL) { | 
|  | 596 | if (!TEST_true(parse_protos(extra->server.npn_protocols, | 
|  | 597 | &server_ctx_data->npn_protocols, | 
|  | 598 | &server_ctx_data->npn_protocols_len))) | 
|  | 599 | goto err; | 
|  | 600 | SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb, | 
|  | 601 | server_ctx_data); | 
|  | 602 | } | 
|  | 603 | if (extra->server2.npn_protocols != NULL) { | 
|  | 604 | if (!TEST_true(parse_protos(extra->server2.npn_protocols, | 
|  | 605 | &server2_ctx_data->npn_protocols, | 
|  | 606 | &server2_ctx_data->npn_protocols_len)) | 
|  | 607 | || !TEST_ptr(server2_ctx)) | 
|  | 608 | goto err; | 
|  | 609 | SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb, | 
|  | 610 | server2_ctx_data); | 
|  | 611 | } | 
|  | 612 | if (extra->client.npn_protocols != NULL) { | 
|  | 613 | if (!TEST_true(parse_protos(extra->client.npn_protocols, | 
|  | 614 | &client_ctx_data->npn_protocols, | 
|  | 615 | &client_ctx_data->npn_protocols_len))) | 
|  | 616 | goto err; | 
|  | 617 | SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb, | 
|  | 618 | client_ctx_data); | 
|  | 619 | } | 
|  | 620 | #endif | 
|  | 621 | if (extra->server.alpn_protocols != NULL) { | 
|  | 622 | if (!TEST_true(parse_protos(extra->server.alpn_protocols, | 
|  | 623 | &server_ctx_data->alpn_protocols, | 
|  | 624 | &server_ctx_data->alpn_protocols_len))) | 
|  | 625 | goto err; | 
|  | 626 | SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data); | 
|  | 627 | } | 
|  | 628 | if (extra->server2.alpn_protocols != NULL) { | 
|  | 629 | if (!TEST_ptr(server2_ctx) | 
|  | 630 | || !TEST_true(parse_protos(extra->server2.alpn_protocols, | 
|  | 631 | &server2_ctx_data->alpn_protocols, | 
|  | 632 | &server2_ctx_data->alpn_protocols_len | 
|  | 633 | ))) | 
|  | 634 | goto err; | 
|  | 635 | SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, | 
|  | 636 | server2_ctx_data); | 
|  | 637 | } | 
|  | 638 | if (extra->client.alpn_protocols != NULL) { | 
|  | 639 | unsigned char *alpn_protos = NULL; | 
|  | 640 | size_t alpn_protos_len = 0; | 
|  | 641 |  | 
|  | 642 | if (!TEST_true(parse_protos(extra->client.alpn_protocols, | 
|  | 643 | &alpn_protos, &alpn_protos_len)) | 
|  | 644 | /* Reversed return value convention... */ | 
|  | 645 | || !TEST_int_eq(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos, | 
|  | 646 | alpn_protos_len), 0)) | 
|  | 647 | goto err; | 
|  | 648 | OPENSSL_free(alpn_protos); | 
|  | 649 | } | 
|  | 650 |  | 
|  | 651 | if (extra->server.session_ticket_app_data != NULL) { | 
|  | 652 | server_ctx_data->session_ticket_app_data = | 
|  | 653 | OPENSSL_strdup(extra->server.session_ticket_app_data); | 
|  | 654 | SSL_CTX_set_session_ticket_cb(server_ctx, generate_session_ticket_cb, | 
|  | 655 | decrypt_session_ticket_cb, server_ctx_data); | 
|  | 656 | } | 
|  | 657 | if (extra->server2.session_ticket_app_data != NULL) { | 
|  | 658 | if (!TEST_ptr(server2_ctx)) | 
|  | 659 | goto err; | 
|  | 660 | server2_ctx_data->session_ticket_app_data = | 
|  | 661 | OPENSSL_strdup(extra->server2.session_ticket_app_data); | 
|  | 662 | SSL_CTX_set_session_ticket_cb(server2_ctx, NULL, | 
|  | 663 | decrypt_session_ticket_cb, server2_ctx_data); | 
|  | 664 | } | 
|  | 665 |  | 
|  | 666 | /* | 
|  | 667 | * Use fixed session ticket keys so that we can decrypt a ticket created with | 
|  | 668 | * one CTX in another CTX. Don't address server2 for the moment. | 
|  | 669 | */ | 
|  | 670 | ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0); | 
|  | 671 | if (!TEST_ptr(ticket_keys = OPENSSL_zalloc(ticket_key_len)) | 
|  | 672 | || !TEST_int_eq(SSL_CTX_set_tlsext_ticket_keys(server_ctx, | 
|  | 673 | ticket_keys, | 
|  | 674 | ticket_key_len), 1)) { | 
|  | 675 | OPENSSL_free(ticket_keys); | 
|  | 676 | goto err; | 
|  | 677 | } | 
|  | 678 | OPENSSL_free(ticket_keys); | 
|  | 679 |  | 
|  | 680 | /* The default log list includes EC keys, so CT can't work without EC. */ | 
|  | 681 | #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC) | 
|  | 682 | if (!TEST_true(SSL_CTX_set_default_ctlog_list_file(client_ctx))) | 
|  | 683 | goto err; | 
|  | 684 | switch (extra->client.ct_validation) { | 
|  | 685 | case SSL_TEST_CT_VALIDATION_PERMISSIVE: | 
|  | 686 | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, | 
|  | 687 | SSL_CT_VALIDATION_PERMISSIVE))) | 
|  | 688 | goto err; | 
|  | 689 | break; | 
|  | 690 | case SSL_TEST_CT_VALIDATION_STRICT: | 
|  | 691 | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT))) | 
|  | 692 | goto err; | 
|  | 693 | break; | 
|  | 694 | case SSL_TEST_CT_VALIDATION_NONE: | 
|  | 695 | break; | 
|  | 696 | } | 
|  | 697 | #endif | 
|  | 698 | #ifndef OPENSSL_NO_SRP | 
|  | 699 | if (extra->server.srp_user != NULL) { | 
|  | 700 | SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb); | 
|  | 701 | server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user); | 
|  | 702 | server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password); | 
|  | 703 | SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data); | 
|  | 704 | } | 
|  | 705 | if (extra->server2.srp_user != NULL) { | 
|  | 706 | if (!TEST_ptr(server2_ctx)) | 
|  | 707 | goto err; | 
|  | 708 | SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb); | 
|  | 709 | server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user); | 
|  | 710 | server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password); | 
|  | 711 | SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data); | 
|  | 712 | } | 
|  | 713 | if (extra->client.srp_user != NULL) { | 
|  | 714 | if (!TEST_true(SSL_CTX_set_srp_username(client_ctx, | 
|  | 715 | extra->client.srp_user))) | 
|  | 716 | goto err; | 
|  | 717 | SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb); | 
|  | 718 | client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password); | 
|  | 719 | SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data); | 
|  | 720 | } | 
|  | 721 | #endif  /* !OPENSSL_NO_SRP */ | 
|  | 722 | return 1; | 
|  | 723 | err: | 
|  | 724 | return 0; | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | /* Configure per-SSL callbacks and other properties. */ | 
|  | 728 | static void configure_handshake_ssl(SSL *server, SSL *client, | 
|  | 729 | const SSL_TEST_EXTRA_CONF *extra) | 
|  | 730 | { | 
|  | 731 | if (extra->client.servername != SSL_TEST_SERVERNAME_NONE) | 
|  | 732 | SSL_set_tlsext_host_name(client, | 
|  | 733 | ssl_servername_name(extra->client.servername)); | 
|  | 734 | if (extra->client.enable_pha) | 
|  | 735 | SSL_set_post_handshake_auth(client, 1); | 
|  | 736 | } | 
|  | 737 |  | 
|  | 738 | /* The status for each connection phase. */ | 
|  | 739 | typedef enum { | 
|  | 740 | PEER_SUCCESS, | 
|  | 741 | PEER_RETRY, | 
|  | 742 | PEER_ERROR, | 
|  | 743 | PEER_WAITING, | 
|  | 744 | PEER_TEST_FAILURE | 
|  | 745 | } peer_status_t; | 
|  | 746 |  | 
|  | 747 | /* An SSL object and associated read-write buffers. */ | 
|  | 748 | typedef struct peer_st { | 
|  | 749 | SSL *ssl; | 
|  | 750 | /* Buffer lengths are int to match the SSL read/write API. */ | 
|  | 751 | unsigned char *write_buf; | 
|  | 752 | int write_buf_len; | 
|  | 753 | unsigned char *read_buf; | 
|  | 754 | int read_buf_len; | 
|  | 755 | int bytes_to_write; | 
|  | 756 | int bytes_to_read; | 
|  | 757 | peer_status_t status; | 
|  | 758 | } PEER; | 
|  | 759 |  | 
|  | 760 | static int create_peer(PEER *peer, SSL_CTX *ctx) | 
|  | 761 | { | 
|  | 762 | static const int peer_buffer_size = 64 * 1024; | 
|  | 763 | SSL *ssl = NULL; | 
|  | 764 | unsigned char *read_buf = NULL, *write_buf = NULL; | 
|  | 765 |  | 
|  | 766 | if (!TEST_ptr(ssl = SSL_new(ctx)) | 
|  | 767 | || !TEST_ptr(write_buf = OPENSSL_zalloc(peer_buffer_size)) | 
|  | 768 | || !TEST_ptr(read_buf = OPENSSL_zalloc(peer_buffer_size))) | 
|  | 769 | goto err; | 
|  | 770 |  | 
|  | 771 | peer->ssl = ssl; | 
|  | 772 | peer->write_buf = write_buf; | 
|  | 773 | peer->read_buf = read_buf; | 
|  | 774 | peer->write_buf_len = peer->read_buf_len = peer_buffer_size; | 
|  | 775 | return 1; | 
|  | 776 | err: | 
|  | 777 | SSL_free(ssl); | 
|  | 778 | OPENSSL_free(write_buf); | 
|  | 779 | OPENSSL_free(read_buf); | 
|  | 780 | return 0; | 
|  | 781 | } | 
|  | 782 |  | 
|  | 783 | static void peer_free_data(PEER *peer) | 
|  | 784 | { | 
|  | 785 | SSL_free(peer->ssl); | 
|  | 786 | OPENSSL_free(peer->write_buf); | 
|  | 787 | OPENSSL_free(peer->read_buf); | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | /* | 
|  | 791 | * Note that we could do the handshake transparently under an SSL_write, | 
|  | 792 | * but separating the steps is more helpful for debugging test failures. | 
|  | 793 | */ | 
|  | 794 | static void do_handshake_step(PEER *peer) | 
|  | 795 | { | 
|  | 796 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | 797 | peer->status = PEER_TEST_FAILURE; | 
|  | 798 | } else { | 
|  | 799 | int ret = SSL_do_handshake(peer->ssl); | 
|  | 800 |  | 
|  | 801 | if (ret == 1) { | 
|  | 802 | peer->status = PEER_SUCCESS; | 
|  | 803 | } else if (ret == 0) { | 
|  | 804 | peer->status = PEER_ERROR; | 
|  | 805 | } else { | 
|  | 806 | int error = SSL_get_error(peer->ssl, ret); | 
|  | 807 | /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */ | 
|  | 808 | if (error != SSL_ERROR_WANT_READ) | 
|  | 809 | peer->status = PEER_ERROR; | 
|  | 810 | } | 
|  | 811 | } | 
|  | 812 | } | 
|  | 813 |  | 
|  | 814 | /*- | 
|  | 815 | * Send/receive some application data. The read-write sequence is | 
|  | 816 | * Peer A: (R) W - first read will yield no data | 
|  | 817 | * Peer B:  R  W | 
|  | 818 | * ... | 
|  | 819 | * Peer A:  R  W | 
|  | 820 | * Peer B:  R  W | 
|  | 821 | * Peer A:  R | 
|  | 822 | */ | 
|  | 823 | static void do_app_data_step(PEER *peer) | 
|  | 824 | { | 
|  | 825 | int ret = 1, write_bytes; | 
|  | 826 |  | 
|  | 827 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | 828 | peer->status = PEER_TEST_FAILURE; | 
|  | 829 | return; | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | /* We read everything available... */ | 
|  | 833 | while (ret > 0 && peer->bytes_to_read) { | 
|  | 834 | ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len); | 
|  | 835 | if (ret > 0) { | 
|  | 836 | if (!TEST_int_le(ret, peer->bytes_to_read)) { | 
|  | 837 | peer->status = PEER_TEST_FAILURE; | 
|  | 838 | return; | 
|  | 839 | } | 
|  | 840 | peer->bytes_to_read -= ret; | 
|  | 841 | } else if (ret == 0) { | 
|  | 842 | peer->status = PEER_ERROR; | 
|  | 843 | return; | 
|  | 844 | } else { | 
|  | 845 | int error = SSL_get_error(peer->ssl, ret); | 
|  | 846 | if (error != SSL_ERROR_WANT_READ) { | 
|  | 847 | peer->status = PEER_ERROR; | 
|  | 848 | return; | 
|  | 849 | } /* Else continue with write. */ | 
|  | 850 | } | 
|  | 851 | } | 
|  | 852 |  | 
|  | 853 | /* ... but we only write one write-buffer-full of data. */ | 
|  | 854 | write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write : | 
|  | 855 | peer->write_buf_len; | 
|  | 856 | if (write_bytes) { | 
|  | 857 | ret = SSL_write(peer->ssl, peer->write_buf, write_bytes); | 
|  | 858 | if (ret > 0) { | 
|  | 859 | /* SSL_write will only succeed with a complete write. */ | 
|  | 860 | if (!TEST_int_eq(ret, write_bytes)) { | 
|  | 861 | peer->status = PEER_TEST_FAILURE; | 
|  | 862 | return; | 
|  | 863 | } | 
|  | 864 | peer->bytes_to_write -= ret; | 
|  | 865 | } else { | 
|  | 866 | /* | 
|  | 867 | * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here | 
|  | 868 | * but this doesn't yet occur with current app data sizes. | 
|  | 869 | */ | 
|  | 870 | peer->status = PEER_ERROR; | 
|  | 871 | return; | 
|  | 872 | } | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | /* | 
|  | 876 | * We could simply finish when there was nothing to read, and we have | 
|  | 877 | * nothing left to write. But keeping track of the expected number of bytes | 
|  | 878 | * to read gives us somewhat better guarantees that all data sent is in fact | 
|  | 879 | * received. | 
|  | 880 | */ | 
|  | 881 | if (!peer->bytes_to_write && !peer->bytes_to_read) { | 
|  | 882 | peer->status = PEER_SUCCESS; | 
|  | 883 | } | 
|  | 884 | } | 
|  | 885 |  | 
|  | 886 | static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer) | 
|  | 887 | { | 
|  | 888 | int ret; | 
|  | 889 | char buf; | 
|  | 890 |  | 
|  | 891 | if (peer->status == PEER_SUCCESS) { | 
|  | 892 | /* | 
|  | 893 | * We are a client that succeeded this step previously, but the server | 
|  | 894 | * wanted to retry. Probably there is a no_renegotiation warning alert | 
|  | 895 | * waiting for us. Attempt to continue the handshake. | 
|  | 896 | */ | 
|  | 897 | peer->status = PEER_RETRY; | 
|  | 898 | do_handshake_step(peer); | 
|  | 899 | return; | 
|  | 900 | } | 
|  | 901 |  | 
|  | 902 | if (!TEST_int_eq(peer->status, PEER_RETRY) | 
|  | 903 | || !TEST_true(test_ctx->handshake_mode | 
|  | 904 | == SSL_TEST_HANDSHAKE_RENEG_SERVER | 
|  | 905 | || test_ctx->handshake_mode | 
|  | 906 | == SSL_TEST_HANDSHAKE_RENEG_CLIENT | 
|  | 907 | || test_ctx->handshake_mode | 
|  | 908 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER | 
|  | 909 | || test_ctx->handshake_mode | 
|  | 910 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT | 
|  | 911 | || test_ctx->handshake_mode | 
|  | 912 | == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH)) { | 
|  | 913 | peer->status = PEER_TEST_FAILURE; | 
|  | 914 | return; | 
|  | 915 | } | 
|  | 916 |  | 
|  | 917 | /* Reset the count of the amount of app data we need to read/write */ | 
|  | 918 | peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size; | 
|  | 919 |  | 
|  | 920 | /* Check if we are the peer that is going to initiate */ | 
|  | 921 | if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER | 
|  | 922 | && SSL_is_server(peer->ssl)) | 
|  | 923 | || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT | 
|  | 924 | && !SSL_is_server(peer->ssl))) { | 
|  | 925 | /* | 
|  | 926 | * If we already asked for a renegotiation then fall through to the | 
|  | 927 | * SSL_read() below. | 
|  | 928 | */ | 
|  | 929 | if (!SSL_renegotiate_pending(peer->ssl)) { | 
|  | 930 | /* | 
|  | 931 | * If we are the client we will always attempt to resume the | 
|  | 932 | * session. The server may or may not resume dependent on the | 
|  | 933 | * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | 
|  | 934 | */ | 
|  | 935 | if (SSL_is_server(peer->ssl)) { | 
|  | 936 | ret = SSL_renegotiate(peer->ssl); | 
|  | 937 | } else { | 
|  | 938 | if (test_ctx->extra.client.reneg_ciphers != NULL) { | 
|  | 939 | if (!SSL_set_cipher_list(peer->ssl, | 
|  | 940 | test_ctx->extra.client.reneg_ciphers)) { | 
|  | 941 | peer->status = PEER_ERROR; | 
|  | 942 | return; | 
|  | 943 | } | 
|  | 944 | ret = SSL_renegotiate(peer->ssl); | 
|  | 945 | } else { | 
|  | 946 | ret = SSL_renegotiate_abbreviated(peer->ssl); | 
|  | 947 | } | 
|  | 948 | } | 
|  | 949 | if (!ret) { | 
|  | 950 | peer->status = PEER_ERROR; | 
|  | 951 | return; | 
|  | 952 | } | 
|  | 953 | do_handshake_step(peer); | 
|  | 954 | /* | 
|  | 955 | * If status is PEER_RETRY it means we're waiting on the peer to | 
|  | 956 | * continue the handshake. As far as setting up the renegotiation is | 
|  | 957 | * concerned that is a success. The next step will continue the | 
|  | 958 | * handshake to its conclusion. | 
|  | 959 | * | 
|  | 960 | * If status is PEER_SUCCESS then we are the server and we have | 
|  | 961 | * successfully sent the HelloRequest. We need to continue to wait | 
|  | 962 | * until the handshake arrives from the client. | 
|  | 963 | */ | 
|  | 964 | if (peer->status == PEER_RETRY) | 
|  | 965 | peer->status = PEER_SUCCESS; | 
|  | 966 | else if (peer->status == PEER_SUCCESS) | 
|  | 967 | peer->status = PEER_RETRY; | 
|  | 968 | return; | 
|  | 969 | } | 
|  | 970 | } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER | 
|  | 971 | || test_ctx->handshake_mode | 
|  | 972 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) { | 
|  | 973 | if (SSL_is_server(peer->ssl) | 
|  | 974 | != (test_ctx->handshake_mode | 
|  | 975 | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) { | 
|  | 976 | peer->status = PEER_SUCCESS; | 
|  | 977 | return; | 
|  | 978 | } | 
|  | 979 |  | 
|  | 980 | ret = SSL_key_update(peer->ssl, test_ctx->key_update_type); | 
|  | 981 | if (!ret) { | 
|  | 982 | peer->status = PEER_ERROR; | 
|  | 983 | return; | 
|  | 984 | } | 
|  | 985 | do_handshake_step(peer); | 
|  | 986 | /* | 
|  | 987 | * This is a one step handshake. We shouldn't get anything other than | 
|  | 988 | * PEER_SUCCESS | 
|  | 989 | */ | 
|  | 990 | if (peer->status != PEER_SUCCESS) | 
|  | 991 | peer->status = PEER_ERROR; | 
|  | 992 | return; | 
|  | 993 | } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH) { | 
|  | 994 | if (SSL_is_server(peer->ssl)) { | 
|  | 995 | /* Make the server believe it's received the extension */ | 
|  | 996 | if (test_ctx->extra.server.force_pha) | 
|  | 997 | peer->ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; | 
|  | 998 | ret = SSL_verify_client_post_handshake(peer->ssl); | 
|  | 999 | if (!ret) { | 
|  | 1000 | peer->status = PEER_ERROR; | 
|  | 1001 | return; | 
|  | 1002 | } | 
|  | 1003 | } | 
|  | 1004 | do_handshake_step(peer); | 
|  | 1005 | /* | 
|  | 1006 | * This is a one step handshake. We shouldn't get anything other than | 
|  | 1007 | * PEER_SUCCESS | 
|  | 1008 | */ | 
|  | 1009 | if (peer->status != PEER_SUCCESS) | 
|  | 1010 | peer->status = PEER_ERROR; | 
|  | 1011 | return; | 
|  | 1012 | } | 
|  | 1013 |  | 
|  | 1014 | /* | 
|  | 1015 | * The SSL object is still expecting app data, even though it's going to | 
|  | 1016 | * get a handshake message. We try to read, and it should fail - after which | 
|  | 1017 | * we should be in a handshake | 
|  | 1018 | */ | 
|  | 1019 | ret = SSL_read(peer->ssl, &buf, sizeof(buf)); | 
|  | 1020 | if (ret >= 0) { | 
|  | 1021 | /* | 
|  | 1022 | * We're not actually expecting data - we're expecting a reneg to | 
|  | 1023 | * start | 
|  | 1024 | */ | 
|  | 1025 | peer->status = PEER_ERROR; | 
|  | 1026 | return; | 
|  | 1027 | } else { | 
|  | 1028 | int error = SSL_get_error(peer->ssl, ret); | 
|  | 1029 | if (error != SSL_ERROR_WANT_READ) { | 
|  | 1030 | peer->status = PEER_ERROR; | 
|  | 1031 | return; | 
|  | 1032 | } | 
|  | 1033 | /* If we're not in init yet then we're not done with setup yet */ | 
|  | 1034 | if (!SSL_in_init(peer->ssl)) | 
|  | 1035 | return; | 
|  | 1036 | } | 
|  | 1037 |  | 
|  | 1038 | peer->status = PEER_SUCCESS; | 
|  | 1039 | } | 
|  | 1040 |  | 
|  | 1041 |  | 
|  | 1042 | /* | 
|  | 1043 | * RFC 5246 says: | 
|  | 1044 | * | 
|  | 1045 | * Note that as of TLS 1.1, | 
|  | 1046 | *     failure to properly close a connection no longer requires that a | 
|  | 1047 | *     session not be resumed.  This is a change from TLS 1.0 to conform | 
|  | 1048 | *     with widespread implementation practice. | 
|  | 1049 | * | 
|  | 1050 | * However, | 
|  | 1051 | * (a) OpenSSL requires that a connection be shutdown for all protocol versions. | 
|  | 1052 | * (b) We test lower versions, too. | 
|  | 1053 | * So we just implement shutdown. We do a full bidirectional shutdown so that we | 
|  | 1054 | * can compare sent and received close_notify alerts and get some test coverage | 
|  | 1055 | * for SSL_shutdown as a bonus. | 
|  | 1056 | */ | 
|  | 1057 | static void do_shutdown_step(PEER *peer) | 
|  | 1058 | { | 
|  | 1059 | int ret; | 
|  | 1060 |  | 
|  | 1061 | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | 1062 | peer->status = PEER_TEST_FAILURE; | 
|  | 1063 | return; | 
|  | 1064 | } | 
|  | 1065 | ret = SSL_shutdown(peer->ssl); | 
|  | 1066 |  | 
|  | 1067 | if (ret == 1) { | 
|  | 1068 | peer->status = PEER_SUCCESS; | 
|  | 1069 | } else if (ret < 0) { /* On 0, we retry. */ | 
|  | 1070 | int error = SSL_get_error(peer->ssl, ret); | 
|  | 1071 |  | 
|  | 1072 | if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE) | 
|  | 1073 | peer->status = PEER_ERROR; | 
|  | 1074 | } | 
|  | 1075 | } | 
|  | 1076 |  | 
|  | 1077 | typedef enum { | 
|  | 1078 | HANDSHAKE, | 
|  | 1079 | RENEG_APPLICATION_DATA, | 
|  | 1080 | RENEG_SETUP, | 
|  | 1081 | RENEG_HANDSHAKE, | 
|  | 1082 | APPLICATION_DATA, | 
|  | 1083 | SHUTDOWN, | 
|  | 1084 | CONNECTION_DONE | 
|  | 1085 | } connect_phase_t; | 
|  | 1086 |  | 
|  | 1087 |  | 
|  | 1088 | static int renegotiate_op(const SSL_TEST_CTX *test_ctx) | 
|  | 1089 | { | 
|  | 1090 | switch (test_ctx->handshake_mode) { | 
|  | 1091 | case SSL_TEST_HANDSHAKE_RENEG_SERVER: | 
|  | 1092 | case SSL_TEST_HANDSHAKE_RENEG_CLIENT: | 
|  | 1093 | return 1; | 
|  | 1094 | default: | 
|  | 1095 | return 0; | 
|  | 1096 | } | 
|  | 1097 | } | 
|  | 1098 | static int post_handshake_op(const SSL_TEST_CTX *test_ctx) | 
|  | 1099 | { | 
|  | 1100 | switch (test_ctx->handshake_mode) { | 
|  | 1101 | case SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT: | 
|  | 1102 | case SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER: | 
|  | 1103 | case SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH: | 
|  | 1104 | return 1; | 
|  | 1105 | default: | 
|  | 1106 | return 0; | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx, | 
|  | 1111 | connect_phase_t phase) | 
|  | 1112 | { | 
|  | 1113 | switch (phase) { | 
|  | 1114 | case HANDSHAKE: | 
|  | 1115 | if (renegotiate_op(test_ctx) || post_handshake_op(test_ctx)) | 
|  | 1116 | return RENEG_APPLICATION_DATA; | 
|  | 1117 | return APPLICATION_DATA; | 
|  | 1118 | case RENEG_APPLICATION_DATA: | 
|  | 1119 | return RENEG_SETUP; | 
|  | 1120 | case RENEG_SETUP: | 
|  | 1121 | if (post_handshake_op(test_ctx)) | 
|  | 1122 | return APPLICATION_DATA; | 
|  | 1123 | return RENEG_HANDSHAKE; | 
|  | 1124 | case RENEG_HANDSHAKE: | 
|  | 1125 | return APPLICATION_DATA; | 
|  | 1126 | case APPLICATION_DATA: | 
|  | 1127 | return SHUTDOWN; | 
|  | 1128 | case SHUTDOWN: | 
|  | 1129 | return CONNECTION_DONE; | 
|  | 1130 | case CONNECTION_DONE: | 
|  | 1131 | TEST_error("Trying to progress after connection done"); | 
|  | 1132 | break; | 
|  | 1133 | } | 
|  | 1134 | return -1; | 
|  | 1135 | } | 
|  | 1136 |  | 
|  | 1137 | static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer, | 
|  | 1138 | connect_phase_t phase) | 
|  | 1139 | { | 
|  | 1140 | switch (phase) { | 
|  | 1141 | case HANDSHAKE: | 
|  | 1142 | do_handshake_step(peer); | 
|  | 1143 | break; | 
|  | 1144 | case RENEG_APPLICATION_DATA: | 
|  | 1145 | do_app_data_step(peer); | 
|  | 1146 | break; | 
|  | 1147 | case RENEG_SETUP: | 
|  | 1148 | do_reneg_setup_step(test_ctx, peer); | 
|  | 1149 | break; | 
|  | 1150 | case RENEG_HANDSHAKE: | 
|  | 1151 | do_handshake_step(peer); | 
|  | 1152 | break; | 
|  | 1153 | case APPLICATION_DATA: | 
|  | 1154 | do_app_data_step(peer); | 
|  | 1155 | break; | 
|  | 1156 | case SHUTDOWN: | 
|  | 1157 | do_shutdown_step(peer); | 
|  | 1158 | break; | 
|  | 1159 | case CONNECTION_DONE: | 
|  | 1160 | TEST_error("Action after connection done"); | 
|  | 1161 | break; | 
|  | 1162 | } | 
|  | 1163 | } | 
|  | 1164 |  | 
|  | 1165 | typedef enum { | 
|  | 1166 | /* Both parties succeeded. */ | 
|  | 1167 | HANDSHAKE_SUCCESS, | 
|  | 1168 | /* Client errored. */ | 
|  | 1169 | CLIENT_ERROR, | 
|  | 1170 | /* Server errored. */ | 
|  | 1171 | SERVER_ERROR, | 
|  | 1172 | /* Peers are in inconsistent state. */ | 
|  | 1173 | INTERNAL_ERROR, | 
|  | 1174 | /* One or both peers not done. */ | 
|  | 1175 | HANDSHAKE_RETRY | 
|  | 1176 | } handshake_status_t; | 
|  | 1177 |  | 
|  | 1178 | /* | 
|  | 1179 | * Determine the handshake outcome. | 
|  | 1180 | * last_status: the status of the peer to have acted last. | 
|  | 1181 | * previous_status: the status of the peer that didn't act last. | 
|  | 1182 | * client_spoke_last: 1 if the client went last. | 
|  | 1183 | */ | 
|  | 1184 | static handshake_status_t handshake_status(peer_status_t last_status, | 
|  | 1185 | peer_status_t previous_status, | 
|  | 1186 | int client_spoke_last) | 
|  | 1187 | { | 
|  | 1188 | switch (last_status) { | 
|  | 1189 | case PEER_TEST_FAILURE: | 
|  | 1190 | return INTERNAL_ERROR; | 
|  | 1191 |  | 
|  | 1192 | case PEER_WAITING: | 
|  | 1193 | /* Shouldn't ever happen */ | 
|  | 1194 | return INTERNAL_ERROR; | 
|  | 1195 |  | 
|  | 1196 | case PEER_SUCCESS: | 
|  | 1197 | switch (previous_status) { | 
|  | 1198 | case PEER_TEST_FAILURE: | 
|  | 1199 | return INTERNAL_ERROR; | 
|  | 1200 | case PEER_SUCCESS: | 
|  | 1201 | /* Both succeeded. */ | 
|  | 1202 | return HANDSHAKE_SUCCESS; | 
|  | 1203 | case PEER_WAITING: | 
|  | 1204 | case PEER_RETRY: | 
|  | 1205 | /* Let the first peer finish. */ | 
|  | 1206 | return HANDSHAKE_RETRY; | 
|  | 1207 | case PEER_ERROR: | 
|  | 1208 | /* | 
|  | 1209 | * Second peer succeeded despite the fact that the first peer | 
|  | 1210 | * already errored. This shouldn't happen. | 
|  | 1211 | */ | 
|  | 1212 | return INTERNAL_ERROR; | 
|  | 1213 | } | 
|  | 1214 | break; | 
|  | 1215 |  | 
|  | 1216 | case PEER_RETRY: | 
|  | 1217 | return HANDSHAKE_RETRY; | 
|  | 1218 |  | 
|  | 1219 | case PEER_ERROR: | 
|  | 1220 | switch (previous_status) { | 
|  | 1221 | case PEER_TEST_FAILURE: | 
|  | 1222 | return INTERNAL_ERROR; | 
|  | 1223 | case PEER_WAITING: | 
|  | 1224 | /* The client failed immediately before sending the ClientHello */ | 
|  | 1225 | return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR; | 
|  | 1226 | case PEER_SUCCESS: | 
|  | 1227 | /* | 
|  | 1228 | * First peer succeeded but second peer errored. | 
|  | 1229 | * TODO(emilia): we should be able to continue here (with some | 
|  | 1230 | * application data?) to ensure the first peer receives the | 
|  | 1231 | * alert / close_notify. | 
|  | 1232 | * (No tests currently exercise this branch.) | 
|  | 1233 | */ | 
|  | 1234 | return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR; | 
|  | 1235 | case PEER_RETRY: | 
|  | 1236 | /* We errored; let the peer finish. */ | 
|  | 1237 | return HANDSHAKE_RETRY; | 
|  | 1238 | case PEER_ERROR: | 
|  | 1239 | /* Both peers errored. Return the one that errored first. */ | 
|  | 1240 | return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR; | 
|  | 1241 | } | 
|  | 1242 | } | 
|  | 1243 | /* Control should never reach here. */ | 
|  | 1244 | return INTERNAL_ERROR; | 
|  | 1245 | } | 
|  | 1246 |  | 
|  | 1247 | /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */ | 
|  | 1248 | static char *dup_str(const unsigned char *in, size_t len) | 
|  | 1249 | { | 
|  | 1250 | char *ret = NULL; | 
|  | 1251 |  | 
|  | 1252 | if (len == 0) | 
|  | 1253 | return NULL; | 
|  | 1254 |  | 
|  | 1255 | /* Assert that the string does not contain NUL-bytes. */ | 
|  | 1256 | if (TEST_size_t_eq(OPENSSL_strnlen((const char*)(in), len), len)) | 
|  | 1257 | TEST_ptr(ret = OPENSSL_strndup((const char*)(in), len)); | 
|  | 1258 | return ret; | 
|  | 1259 | } | 
|  | 1260 |  | 
|  | 1261 | static int pkey_type(EVP_PKEY *pkey) | 
|  | 1262 | { | 
|  | 1263 | int nid = EVP_PKEY_id(pkey); | 
|  | 1264 |  | 
|  | 1265 | #ifndef OPENSSL_NO_EC | 
|  | 1266 | if (nid == EVP_PKEY_EC) { | 
|  | 1267 | const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | 1268 | return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); | 
|  | 1269 | } | 
|  | 1270 | #endif | 
|  | 1271 | return nid; | 
|  | 1272 | } | 
|  | 1273 |  | 
|  | 1274 | static int peer_pkey_type(SSL *s) | 
|  | 1275 | { | 
|  | 1276 | X509 *x = SSL_get_peer_certificate(s); | 
|  | 1277 |  | 
|  | 1278 | if (x != NULL) { | 
|  | 1279 | int nid = pkey_type(X509_get0_pubkey(x)); | 
|  | 1280 |  | 
|  | 1281 | X509_free(x); | 
|  | 1282 | return nid; | 
|  | 1283 | } | 
|  | 1284 | return NID_undef; | 
|  | 1285 | } | 
|  | 1286 |  | 
|  | 1287 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | 1288 | static int set_sock_as_sctp(int sock) | 
|  | 1289 | { | 
|  | 1290 | struct sctp_assocparams assocparams; | 
|  | 1291 | struct sctp_rtoinfo rto_info; | 
|  | 1292 | BIO *tmpbio; | 
|  | 1293 |  | 
|  | 1294 | /* | 
|  | 1295 | * To allow tests to fail fast (within a second or so), reduce the | 
|  | 1296 | * retransmission timeouts and the number of retransmissions. | 
|  | 1297 | */ | 
|  | 1298 | memset(&rto_info, 0, sizeof(struct sctp_rtoinfo)); | 
|  | 1299 | rto_info.srto_initial = 100; | 
|  | 1300 | rto_info.srto_max = 200; | 
|  | 1301 | rto_info.srto_min = 50; | 
|  | 1302 | (void)setsockopt(sock, IPPROTO_SCTP, SCTP_RTOINFO, | 
|  | 1303 | (const void *)&rto_info, sizeof(struct sctp_rtoinfo)); | 
|  | 1304 | memset(&assocparams, 0, sizeof(struct sctp_assocparams)); | 
|  | 1305 | assocparams.sasoc_asocmaxrxt = 2; | 
|  | 1306 | (void)setsockopt(sock, IPPROTO_SCTP, SCTP_ASSOCINFO, | 
|  | 1307 | (const void *)&assocparams, | 
|  | 1308 | sizeof(struct sctp_assocparams)); | 
|  | 1309 |  | 
|  | 1310 | /* | 
|  | 1311 | * For SCTP we have to set various options on the socket prior to | 
|  | 1312 | * connecting. This is done automatically by BIO_new_dgram_sctp(). | 
|  | 1313 | * We don't actually need the created BIO though so we free it again | 
|  | 1314 | * immediately. | 
|  | 1315 | */ | 
|  | 1316 | tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE); | 
|  | 1317 |  | 
|  | 1318 | if (tmpbio == NULL) | 
|  | 1319 | return 0; | 
|  | 1320 | BIO_free(tmpbio); | 
|  | 1321 |  | 
|  | 1322 | return 1; | 
|  | 1323 | } | 
|  | 1324 |  | 
|  | 1325 | static int create_sctp_socks(int *ssock, int *csock) | 
|  | 1326 | { | 
|  | 1327 | BIO_ADDRINFO *res = NULL; | 
|  | 1328 | const BIO_ADDRINFO *ai = NULL; | 
|  | 1329 | int lsock = INVALID_SOCKET, asock = INVALID_SOCKET; | 
|  | 1330 | int consock = INVALID_SOCKET; | 
|  | 1331 | int ret = 0; | 
|  | 1332 | int family = 0; | 
|  | 1333 |  | 
|  | 1334 | if (BIO_sock_init() != 1) | 
|  | 1335 | return 0; | 
|  | 1336 |  | 
|  | 1337 | /* | 
|  | 1338 | * Port is 4463. It could be anything. It will fail if it's already being | 
|  | 1339 | * used for some other SCTP service. It seems unlikely though so we don't | 
|  | 1340 | * worry about it here. | 
|  | 1341 | */ | 
|  | 1342 | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM, | 
|  | 1343 | IPPROTO_SCTP, &res)) | 
|  | 1344 | return 0; | 
|  | 1345 |  | 
|  | 1346 | for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) { | 
|  | 1347 | family = BIO_ADDRINFO_family(ai); | 
|  | 1348 | lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); | 
|  | 1349 | if (lsock == INVALID_SOCKET) { | 
|  | 1350 | /* Maybe the kernel doesn't support the socket family, even if | 
|  | 1351 | * BIO_lookup() added it in the returned result... | 
|  | 1352 | */ | 
|  | 1353 | continue; | 
|  | 1354 | } | 
|  | 1355 |  | 
|  | 1356 | if (!set_sock_as_sctp(lsock) | 
|  | 1357 | || !BIO_listen(lsock, BIO_ADDRINFO_address(ai), | 
|  | 1358 | BIO_SOCK_REUSEADDR)) { | 
|  | 1359 | BIO_closesocket(lsock); | 
|  | 1360 | lsock = INVALID_SOCKET; | 
|  | 1361 | continue; | 
|  | 1362 | } | 
|  | 1363 |  | 
|  | 1364 | /* Success, don't try any more addresses */ | 
|  | 1365 | break; | 
|  | 1366 | } | 
|  | 1367 |  | 
|  | 1368 | if (lsock == INVALID_SOCKET) | 
|  | 1369 | goto err; | 
|  | 1370 |  | 
|  | 1371 | BIO_ADDRINFO_free(res); | 
|  | 1372 | res = NULL; | 
|  | 1373 |  | 
|  | 1374 | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM, | 
|  | 1375 | IPPROTO_SCTP, &res)) | 
|  | 1376 | goto err; | 
|  | 1377 |  | 
|  | 1378 | consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); | 
|  | 1379 | if (consock == INVALID_SOCKET) | 
|  | 1380 | goto err; | 
|  | 1381 |  | 
|  | 1382 | if (!set_sock_as_sctp(consock) | 
|  | 1383 | || !BIO_connect(consock, BIO_ADDRINFO_address(res), 0) | 
|  | 1384 | || !BIO_socket_nbio(consock, 1)) | 
|  | 1385 | goto err; | 
|  | 1386 |  | 
|  | 1387 | asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK); | 
|  | 1388 | if (asock == INVALID_SOCKET) | 
|  | 1389 | goto err; | 
|  | 1390 |  | 
|  | 1391 | *csock = consock; | 
|  | 1392 | *ssock = asock; | 
|  | 1393 | consock = asock = INVALID_SOCKET; | 
|  | 1394 | ret = 1; | 
|  | 1395 |  | 
|  | 1396 | err: | 
|  | 1397 | BIO_ADDRINFO_free(res); | 
|  | 1398 | if (consock != INVALID_SOCKET) | 
|  | 1399 | BIO_closesocket(consock); | 
|  | 1400 | if (lsock != INVALID_SOCKET) | 
|  | 1401 | BIO_closesocket(lsock); | 
|  | 1402 | if (asock != INVALID_SOCKET) | 
|  | 1403 | BIO_closesocket(asock); | 
|  | 1404 | return ret; | 
|  | 1405 | } | 
|  | 1406 | #endif | 
|  | 1407 |  | 
|  | 1408 | /* | 
|  | 1409 | * Note that |extra| points to the correct client/server configuration | 
|  | 1410 | * within |test_ctx|. When configuring the handshake, general mode settings | 
|  | 1411 | * are taken from |test_ctx|, and client/server-specific settings should be | 
|  | 1412 | * taken from |extra|. | 
|  | 1413 | * | 
|  | 1414 | * The configuration code should never reach into |test_ctx->extra| or | 
|  | 1415 | * |test_ctx->resume_extra| directly. | 
|  | 1416 | * | 
|  | 1417 | * (We could refactor test mode settings into a substructure. This would result | 
|  | 1418 | * in cleaner argument passing but would complicate the test configuration | 
|  | 1419 | * parsing.) | 
|  | 1420 | */ | 
|  | 1421 | static HANDSHAKE_RESULT *do_handshake_internal( | 
|  | 1422 | SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, | 
|  | 1423 | const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra, | 
|  | 1424 | SSL_SESSION *session_in, SSL_SESSION *serv_sess_in, | 
|  | 1425 | SSL_SESSION **session_out, SSL_SESSION **serv_sess_out) | 
|  | 1426 | { | 
|  | 1427 | PEER server, client; | 
|  | 1428 | BIO *client_to_server = NULL, *server_to_client = NULL; | 
|  | 1429 | HANDSHAKE_EX_DATA server_ex_data, client_ex_data; | 
|  | 1430 | CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; | 
|  | 1431 | HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); | 
|  | 1432 | int client_turn = 1, client_turn_count = 0, client_wait_count = 0; | 
|  | 1433 | connect_phase_t phase = HANDSHAKE; | 
|  | 1434 | handshake_status_t status = HANDSHAKE_RETRY; | 
|  | 1435 | const unsigned char* tick = NULL; | 
|  | 1436 | size_t tick_len = 0; | 
|  | 1437 | const unsigned char* sess_id = NULL; | 
|  | 1438 | unsigned int sess_id_len = 0; | 
|  | 1439 | SSL_SESSION* sess = NULL; | 
|  | 1440 | const unsigned char *proto = NULL; | 
|  | 1441 | /* API dictates unsigned int rather than size_t. */ | 
|  | 1442 | unsigned int proto_len = 0; | 
|  | 1443 | EVP_PKEY *tmp_key; | 
|  | 1444 | const STACK_OF(X509_NAME) *names; | 
|  | 1445 | time_t start; | 
|  | 1446 | const char* cipher; | 
|  | 1447 |  | 
|  | 1448 | if (ret == NULL) | 
|  | 1449 | return NULL; | 
|  | 1450 |  | 
|  | 1451 | memset(&server_ctx_data, 0, sizeof(server_ctx_data)); | 
|  | 1452 | memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); | 
|  | 1453 | memset(&client_ctx_data, 0, sizeof(client_ctx_data)); | 
|  | 1454 | memset(&server, 0, sizeof(server)); | 
|  | 1455 | memset(&client, 0, sizeof(client)); | 
|  | 1456 | memset(&server_ex_data, 0, sizeof(server_ex_data)); | 
|  | 1457 | memset(&client_ex_data, 0, sizeof(client_ex_data)); | 
|  | 1458 |  | 
|  | 1459 | if (!configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, | 
|  | 1460 | test_ctx, extra, &server_ctx_data, | 
|  | 1461 | &server2_ctx_data, &client_ctx_data)) { | 
|  | 1462 | TEST_note("configure_handshake_ctx"); | 
|  | 1463 | return NULL; | 
|  | 1464 | } | 
|  | 1465 |  | 
|  | 1466 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | 1467 | if (test_ctx->enable_client_sctp_label_bug) | 
|  | 1468 | SSL_CTX_set_mode(client_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); | 
|  | 1469 | if (test_ctx->enable_server_sctp_label_bug) | 
|  | 1470 | SSL_CTX_set_mode(server_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); | 
|  | 1471 | #endif | 
|  | 1472 |  | 
|  | 1473 | /* Setup SSL and buffers; additional configuration happens below. */ | 
|  | 1474 | if (!create_peer(&server, server_ctx)) { | 
|  | 1475 | TEST_note("creating server context"); | 
|  | 1476 | goto err; | 
|  | 1477 | } | 
|  | 1478 | if (!create_peer(&client, client_ctx)) { | 
|  | 1479 | TEST_note("creating client context"); | 
|  | 1480 | goto err; | 
|  | 1481 | } | 
|  | 1482 |  | 
|  | 1483 | server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size; | 
|  | 1484 | client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size; | 
|  | 1485 |  | 
|  | 1486 | configure_handshake_ssl(server.ssl, client.ssl, extra); | 
|  | 1487 | if (session_in != NULL) { | 
|  | 1488 | SSL_SESSION_get_id(serv_sess_in, &sess_id_len); | 
|  | 1489 | /* In case we're testing resumption without tickets. */ | 
|  | 1490 | if ((sess_id_len > 0 | 
|  | 1491 | && !TEST_true(SSL_CTX_add_session(server_ctx, | 
|  | 1492 | serv_sess_in))) | 
|  | 1493 | || !TEST_true(SSL_set_session(client.ssl, session_in))) | 
|  | 1494 | goto err; | 
|  | 1495 | sess_id_len = 0; | 
|  | 1496 | } | 
|  | 1497 |  | 
|  | 1498 | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | 1499 |  | 
|  | 1500 | if (test_ctx->use_sctp) { | 
|  | 1501 | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | 1502 | int csock, ssock; | 
|  | 1503 |  | 
|  | 1504 | if (create_sctp_socks(&ssock, &csock)) { | 
|  | 1505 | client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE); | 
|  | 1506 | server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE); | 
|  | 1507 | } | 
|  | 1508 | #endif | 
|  | 1509 | } else { | 
|  | 1510 | client_to_server = BIO_new(BIO_s_mem()); | 
|  | 1511 | server_to_client = BIO_new(BIO_s_mem()); | 
|  | 1512 | } | 
|  | 1513 |  | 
|  | 1514 | if (!TEST_ptr(client_to_server) | 
|  | 1515 | || !TEST_ptr(server_to_client)) | 
|  | 1516 | goto err; | 
|  | 1517 |  | 
|  | 1518 | /* Non-blocking bio. */ | 
|  | 1519 | BIO_set_nbio(client_to_server, 1); | 
|  | 1520 | BIO_set_nbio(server_to_client, 1); | 
|  | 1521 |  | 
|  | 1522 | SSL_set_connect_state(client.ssl); | 
|  | 1523 | SSL_set_accept_state(server.ssl); | 
|  | 1524 |  | 
|  | 1525 | /* The bios are now owned by the SSL object. */ | 
|  | 1526 | if (test_ctx->use_sctp) { | 
|  | 1527 | SSL_set_bio(client.ssl, client_to_server, client_to_server); | 
|  | 1528 | SSL_set_bio(server.ssl, server_to_client, server_to_client); | 
|  | 1529 | } else { | 
|  | 1530 | SSL_set_bio(client.ssl, server_to_client, client_to_server); | 
|  | 1531 | if (!TEST_int_gt(BIO_up_ref(server_to_client), 0) | 
|  | 1532 | || !TEST_int_gt(BIO_up_ref(client_to_server), 0)) | 
|  | 1533 | goto err; | 
|  | 1534 | SSL_set_bio(server.ssl, client_to_server, server_to_client); | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); | 
|  | 1538 | if (!TEST_int_ge(ex_data_idx, 0) | 
|  | 1539 | || !TEST_int_eq(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data), 1) | 
|  | 1540 | || !TEST_int_eq(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data), 1)) | 
|  | 1541 | goto err; | 
|  | 1542 |  | 
|  | 1543 | SSL_set_info_callback(server.ssl, &info_cb); | 
|  | 1544 | SSL_set_info_callback(client.ssl, &info_cb); | 
|  | 1545 |  | 
|  | 1546 | client.status = PEER_RETRY; | 
|  | 1547 | server.status = PEER_WAITING; | 
|  | 1548 |  | 
|  | 1549 | start = time(NULL); | 
|  | 1550 |  | 
|  | 1551 | /* | 
|  | 1552 | * Half-duplex handshake loop. | 
|  | 1553 | * Client and server speak to each other synchronously in the same process. | 
|  | 1554 | * We use non-blocking BIOs, so whenever one peer blocks for read, it | 
|  | 1555 | * returns PEER_RETRY to indicate that it's the other peer's turn to write. | 
|  | 1556 | * The handshake succeeds once both peers have succeeded. If one peer | 
|  | 1557 | * errors out, we also let the other peer retry (and presumably fail). | 
|  | 1558 | */ | 
|  | 1559 | for(;;) { | 
|  | 1560 | if (client_turn) { | 
|  | 1561 | do_connect_step(test_ctx, &client, phase); | 
|  | 1562 | status = handshake_status(client.status, server.status, | 
|  | 1563 | 1 /* client went last */); | 
|  | 1564 | if (server.status == PEER_WAITING) | 
|  | 1565 | server.status = PEER_RETRY; | 
|  | 1566 | } else { | 
|  | 1567 | do_connect_step(test_ctx, &server, phase); | 
|  | 1568 | status = handshake_status(server.status, client.status, | 
|  | 1569 | 0 /* server went last */); | 
|  | 1570 | } | 
|  | 1571 |  | 
|  | 1572 | switch (status) { | 
|  | 1573 | case HANDSHAKE_SUCCESS: | 
|  | 1574 | client_turn_count = 0; | 
|  | 1575 | phase = next_phase(test_ctx, phase); | 
|  | 1576 | if (phase == CONNECTION_DONE) { | 
|  | 1577 | ret->result = SSL_TEST_SUCCESS; | 
|  | 1578 | goto err; | 
|  | 1579 | } else { | 
|  | 1580 | client.status = server.status = PEER_RETRY; | 
|  | 1581 | /* | 
|  | 1582 | * For now, client starts each phase. Since each phase is | 
|  | 1583 | * started separately, we can later control this more | 
|  | 1584 | * precisely, for example, to test client-initiated and | 
|  | 1585 | * server-initiated shutdown. | 
|  | 1586 | */ | 
|  | 1587 | client_turn = 1; | 
|  | 1588 | break; | 
|  | 1589 | } | 
|  | 1590 | case CLIENT_ERROR: | 
|  | 1591 | ret->result = SSL_TEST_CLIENT_FAIL; | 
|  | 1592 | goto err; | 
|  | 1593 | case SERVER_ERROR: | 
|  | 1594 | ret->result = SSL_TEST_SERVER_FAIL; | 
|  | 1595 | goto err; | 
|  | 1596 | case INTERNAL_ERROR: | 
|  | 1597 | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | 1598 | goto err; | 
|  | 1599 | case HANDSHAKE_RETRY: | 
|  | 1600 | if (test_ctx->use_sctp) { | 
|  | 1601 | if (time(NULL) - start > 3) { | 
|  | 1602 | /* | 
|  | 1603 | * We've waited for too long. Give up. | 
|  | 1604 | */ | 
|  | 1605 | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | 1606 | goto err; | 
|  | 1607 | } | 
|  | 1608 | /* | 
|  | 1609 | * With "real" sockets we only swap to processing the peer | 
|  | 1610 | * if they are expecting to retry. Otherwise we just retry the | 
|  | 1611 | * same endpoint again. | 
|  | 1612 | */ | 
|  | 1613 | if ((client_turn && server.status == PEER_RETRY) | 
|  | 1614 | || (!client_turn && client.status == PEER_RETRY)) | 
|  | 1615 | client_turn ^= 1; | 
|  | 1616 | } else { | 
|  | 1617 | if (client_turn_count++ >= 2000) { | 
|  | 1618 | /* | 
|  | 1619 | * At this point, there's been so many PEER_RETRY in a row | 
|  | 1620 | * that it's likely both sides are stuck waiting for a read. | 
|  | 1621 | * It's time to give up. | 
|  | 1622 | */ | 
|  | 1623 | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | 1624 | goto err; | 
|  | 1625 | } | 
|  | 1626 | if (client_turn && server.status == PEER_SUCCESS) { | 
|  | 1627 | /* | 
|  | 1628 | * The server may finish before the client because the | 
|  | 1629 | * client spends some turns processing NewSessionTickets. | 
|  | 1630 | */ | 
|  | 1631 | if (client_wait_count++ >= 2) { | 
|  | 1632 | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | 1633 | goto err; | 
|  | 1634 | } | 
|  | 1635 | } else { | 
|  | 1636 | /* Continue. */ | 
|  | 1637 | client_turn ^= 1; | 
|  | 1638 | } | 
|  | 1639 | } | 
|  | 1640 | break; | 
|  | 1641 | } | 
|  | 1642 | } | 
|  | 1643 | err: | 
|  | 1644 | ret->server_alert_sent = server_ex_data.alert_sent; | 
|  | 1645 | ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent; | 
|  | 1646 | ret->server_alert_received = client_ex_data.alert_received; | 
|  | 1647 | ret->client_alert_sent = client_ex_data.alert_sent; | 
|  | 1648 | ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent; | 
|  | 1649 | ret->client_alert_received = server_ex_data.alert_received; | 
|  | 1650 | ret->server_protocol = SSL_version(server.ssl); | 
|  | 1651 | ret->client_protocol = SSL_version(client.ssl); | 
|  | 1652 | ret->servername = server_ex_data.servername; | 
|  | 1653 | if ((sess = SSL_get0_session(client.ssl)) != NULL) { | 
|  | 1654 | SSL_SESSION_get0_ticket(sess, &tick, &tick_len); | 
|  | 1655 | sess_id = SSL_SESSION_get_id(sess, &sess_id_len); | 
|  | 1656 | } | 
|  | 1657 | if (tick == NULL || tick_len == 0) | 
|  | 1658 | ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; | 
|  | 1659 | else | 
|  | 1660 | ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; | 
|  | 1661 | ret->compression = (SSL_get_current_compression(client.ssl) == NULL) | 
|  | 1662 | ? SSL_TEST_COMPRESSION_NO | 
|  | 1663 | : SSL_TEST_COMPRESSION_YES; | 
|  | 1664 | if (sess_id == NULL || sess_id_len == 0) | 
|  | 1665 | ret->session_id = SSL_TEST_SESSION_ID_NO; | 
|  | 1666 | else | 
|  | 1667 | ret->session_id = SSL_TEST_SESSION_ID_YES; | 
|  | 1668 | ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; | 
|  | 1669 |  | 
|  | 1670 | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | 1671 | SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len); | 
|  | 1672 | ret->client_npn_negotiated = dup_str(proto, proto_len); | 
|  | 1673 |  | 
|  | 1674 | SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len); | 
|  | 1675 | ret->server_npn_negotiated = dup_str(proto, proto_len); | 
|  | 1676 | #endif | 
|  | 1677 |  | 
|  | 1678 | SSL_get0_alpn_selected(client.ssl, &proto, &proto_len); | 
|  | 1679 | ret->client_alpn_negotiated = dup_str(proto, proto_len); | 
|  | 1680 |  | 
|  | 1681 | SSL_get0_alpn_selected(server.ssl, &proto, &proto_len); | 
|  | 1682 | ret->server_alpn_negotiated = dup_str(proto, proto_len); | 
|  | 1683 |  | 
|  | 1684 | if ((sess = SSL_get0_session(server.ssl)) != NULL) { | 
|  | 1685 | SSL_SESSION_get0_ticket_appdata(sess, (void**)&tick, &tick_len); | 
|  | 1686 | ret->result_session_ticket_app_data = OPENSSL_strndup((const char*)tick, tick_len); | 
|  | 1687 | } | 
|  | 1688 |  | 
|  | 1689 | ret->client_resumed = SSL_session_reused(client.ssl); | 
|  | 1690 | ret->server_resumed = SSL_session_reused(server.ssl); | 
|  | 1691 |  | 
|  | 1692 | cipher = SSL_CIPHER_get_name(SSL_get_current_cipher(client.ssl)); | 
|  | 1693 | ret->cipher = dup_str((const unsigned char*)cipher, strlen(cipher)); | 
|  | 1694 |  | 
|  | 1695 | if (session_out != NULL) | 
|  | 1696 | *session_out = SSL_get1_session(client.ssl); | 
|  | 1697 | if (serv_sess_out != NULL) { | 
|  | 1698 | SSL_SESSION *tmp = SSL_get_session(server.ssl); | 
|  | 1699 |  | 
|  | 1700 | /* | 
|  | 1701 | * We create a fresh copy that is not in the server session ctx linked | 
|  | 1702 | * list. | 
|  | 1703 | */ | 
|  | 1704 | if (tmp != NULL) | 
|  | 1705 | *serv_sess_out = SSL_SESSION_dup(tmp); | 
|  | 1706 | } | 
|  | 1707 |  | 
|  | 1708 | if (SSL_get_peer_tmp_key(client.ssl, &tmp_key)) { | 
|  | 1709 | ret->tmp_key_type = pkey_type(tmp_key); | 
|  | 1710 | EVP_PKEY_free(tmp_key); | 
|  | 1711 | } | 
|  | 1712 |  | 
|  | 1713 | SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash); | 
|  | 1714 | SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash); | 
|  | 1715 |  | 
|  | 1716 | SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type); | 
|  | 1717 | SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type); | 
|  | 1718 |  | 
|  | 1719 | names = SSL_get0_peer_CA_list(client.ssl); | 
|  | 1720 | if (names == NULL) | 
|  | 1721 | ret->client_ca_names = NULL; | 
|  | 1722 | else | 
|  | 1723 | ret->client_ca_names = SSL_dup_CA_list(names); | 
|  | 1724 |  | 
|  | 1725 | names = SSL_get0_peer_CA_list(server.ssl); | 
|  | 1726 | if (names == NULL) | 
|  | 1727 | ret->server_ca_names = NULL; | 
|  | 1728 | else | 
|  | 1729 | ret->server_ca_names = SSL_dup_CA_list(names); | 
|  | 1730 |  | 
|  | 1731 | ret->server_cert_type = peer_pkey_type(client.ssl); | 
|  | 1732 | ret->client_cert_type = peer_pkey_type(server.ssl); | 
|  | 1733 |  | 
|  | 1734 | ctx_data_free_data(&server_ctx_data); | 
|  | 1735 | ctx_data_free_data(&server2_ctx_data); | 
|  | 1736 | ctx_data_free_data(&client_ctx_data); | 
|  | 1737 |  | 
|  | 1738 | peer_free_data(&server); | 
|  | 1739 | peer_free_data(&client); | 
|  | 1740 | return ret; | 
|  | 1741 | } | 
|  | 1742 |  | 
|  | 1743 | HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, | 
|  | 1744 | SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx, | 
|  | 1745 | SSL_CTX *resume_client_ctx, | 
|  | 1746 | const SSL_TEST_CTX *test_ctx) | 
|  | 1747 | { | 
|  | 1748 | HANDSHAKE_RESULT *result; | 
|  | 1749 | SSL_SESSION *session = NULL, *serv_sess = NULL; | 
|  | 1750 |  | 
|  | 1751 | result = do_handshake_internal(server_ctx, server2_ctx, client_ctx, | 
|  | 1752 | test_ctx, &test_ctx->extra, | 
|  | 1753 | NULL, NULL, &session, &serv_sess); | 
|  | 1754 | if (result == NULL | 
|  | 1755 | || test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME | 
|  | 1756 | || result->result == SSL_TEST_INTERNAL_ERROR) | 
|  | 1757 | goto end; | 
|  | 1758 |  | 
|  | 1759 | if (result->result != SSL_TEST_SUCCESS) { | 
|  | 1760 | result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED; | 
|  | 1761 | goto end; | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | HANDSHAKE_RESULT_free(result); | 
|  | 1765 | /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */ | 
|  | 1766 | result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx, | 
|  | 1767 | test_ctx, &test_ctx->resume_extra, | 
|  | 1768 | session, serv_sess, NULL, NULL); | 
|  | 1769 | end: | 
|  | 1770 | SSL_SESSION_free(session); | 
|  | 1771 | SSL_SESSION_free(serv_sess); | 
|  | 1772 | return result; | 
|  | 1773 | } |