blob: 292ee354dbcefdf66804388ba2918d0074bf52ec [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#if 1
5#include "mod_devicetable.h"
6#endif
7
8#include "ch9.h"
9#include "errno.h"
10#include "list.h"
11#include "spinlock.h"
12#include "oss_irq.h"
13
14#define USB_MAJOR 180
15#define USB_DEVICE_MAJOR 189
16
17#if 1//def __KERNEL__
18#if 1
19//#include <linux/errno.h> /* for -ENODEV */
20//#include <linux/delay.h> /* for mdelay() */
21//#include <linux/interrupt.h> /* for in_interrupt() */
22//#include <linux/list.h> /* for struct list_head */
23//#include <linux/kref.h> /* for struct kref */
24//#include <linux/device.h> /* for struct device */
25//#include <linux/fs.h> /* for struct file_operations */
26//#include <linux/completion.h> /* for struct completion */
27//#include <linux/sched.h> /* for current && schedule_timeout */
28//#include <linux/mutex.h> /* for struct mutex */
29//#include <linux/pm_runtime.h> /* for runtime PM */
30#endif
31#define USB_CORE_DEBUG
32#define USB_HOST_HISR_SUPPORT
33#define USB_HOST_ZERO_COPY
34struct usb_device;
35struct usb_driver;
36
37#if 0
38struct wusb_dev;
39#endif
40
41#ifndef _OS_LINUX
42#define spin_lock_irqsave(_lock, f) LOCK_SAVE(f)
43#define spin_unlock_irqrestore(_lock, f) LOCK_RESTORE(f)
44
45#define DWC_SPINLOCK_IRQSAVE(_lock, f) LOCK_SAVE(f)
46#define DWC_SPINUNLOCK_IRQRESTORE(_lock, f) LOCK_RESTORE(f)
47
48struct kref {
49 usbHostTos_atomic_t refcount;
50};
51#else
52#define DWC_SPINLOCK_IRQSAVE(_lock, f)
53#define DWC_SPINUNLOCK_IRQRESTORE(_lock, f)
54
55#endif
56
57#if 0
58struct list_head {
59 struct list_head *next;
60 struct list_head *prev;
61};
62#endif
63
64#ifndef _OS_LINUX
65#define WARN_ON(x)
66#endif
67
68// const typeof( ((type *)0)->member ) *__mptr = (ptr); \
69const char *__mptr = (char *)(ptr); \
70
71#undef offsetof
72#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
73
74#ifdef USB_CORE_DEBUG
75#define DBG_COREV (0x100)
76#define DBG_USBINF (0x400)
77#define DBG_ANY (0xFF)
78extern uint32_t g_dbg_lvl;
79extern VOID usbHostDebug_Printf(CHAR *fmt,...);
80#define __USBCORE_DEBUG(x...) usbHostDebug_Printf(x)
81#define USB_CORE "USB_Core: "
82#define USBCORE_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)__USBCORE_DEBUG(USB_CORE x ); }while(0)
83#define USBCORE_ERROR(x...) do{__USBCORE_DEBUG(USB_CORE x ); }while(0)
84#else
85#define USBCORE_DEBUGPL(lvl, x...)
86#define USBCORE_ERROR(x...)
87#endif
88
89#ifndef _OS_LINUX
90#define container_of(ptr, type, member) ({ \
91 const __typeof__( ((type *)0)->member ) *__mptr = (ptr); \
92 (type *)( (char *)__mptr - offsetof(type,member) );})
93#endif
94
95/*-------------------------------------------------------------------------*/
96
97/*
98 * Host-side wrappers for standard USB descriptors ... these are parsed
99 * from the data provided by devices. Parsing turns them from a flat
100 * sequence of descriptors into a hierarchy:
101 *
102 * - devices have one (usually) or more configs;
103 * - configs have one (often) or more interfaces;
104 * - interfaces have one (usually) or more settings;
105 * - each interface setting has zero or (usually) more endpoints.
106 * - a SuperSpeed endpoint has a companion descriptor
107 *
108 * And there might be other descriptors mixed in with those.
109 *
110 * Devices may also have class-specific or vendor-specific descriptors.
111 */
112
113struct ep_device;
114
115/**
116 * struct usb_host_endpoint - host-side endpoint descriptor and queue
117 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
118 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
119 * @urb_list: urbs queued to this endpoint; maintained by usbcore
120 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
121 * with one or more transfer descriptors (TDs) per urb
122 * @ep_dev: ep_device for sysfs info
123 * @extra: descriptors following this endpoint in the configuration
124 * @extralen: how many bytes of "extra" are valid
125 * @enabled: URBs may be submitted to this endpoint
126 *
127 * USB requests are always queued to a given endpoint, identified by a
128 * descriptor within an active interface in a given USB configuration.
129 */
130struct usb_host_endpoint {
131 struct usb_endpoint_descriptor desc;
132 struct usb_ss_ep_comp_descriptor ss_ep_comp;
133 struct list_head urb_list;
134 void *hcpriv;
135 struct ep_device *ep_dev; /* For sysfs info */
136
137 unsigned char *extra; /* Extra descriptors */
138 int extralen;
139 int enabled;
140};
141
142/* host-side wrapper for one interface setting's parsed descriptors */
143struct usb_host_interface {
144 struct usb_interface_descriptor desc;
145
146 /* array of desc.bNumEndpoint endpoints associated with this
147 * interface setting. these will be in no particular order.
148 */
149 struct usb_host_endpoint *endpoint;
150
151 char *string; /* iInterface string, if present */
152 unsigned char *extra; /* Extra descriptors */
153 int extralen;
154};
155
156enum usb_interface_condition {
157 USB_INTERFACE_UNBOUND = 0,
158 USB_INTERFACE_BINDING,
159 USB_INTERFACE_BOUND,
160 USB_INTERFACE_UNBINDING,
161};
162
163/**
164 * struct usb_interface - what usb device drivers talk to
165 * @altsetting: array of interface structures, one for each alternate
166 * setting that may be selected. Each one includes a set of
167 * endpoint configurations. They will be in no particular order.
168 * @cur_altsetting: the current altsetting.
169 * @num_altsetting: number of altsettings defined.
170 * @intf_assoc: interface association descriptor
171 * @minor: the minor number assigned to this interface, if this
172 * interface is bound to a driver that uses the USB major number.
173 * If this interface does not use the USB major, this field should
174 * be unused. The driver should set this value in the probe()
175 * function of the driver, after it has been assigned a minor
176 * number from the USB core by calling usb_register_dev().
177 * @condition: binding state of the interface: not bound, binding
178 * (in probe()), bound to a driver, or unbinding (in disconnect())
179 * @sysfs_files_created: sysfs attributes exist
180 * @ep_devs_created: endpoint child pseudo-devices exist
181 * @unregistering: flag set when the interface is being unregistered
182 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
183 * capability during autosuspend.
184 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
185 * has been deferred.
186 * @needs_binding: flag set when the driver should be re-probed or unbound
187 * following a reset or suspend operation it doesn't support.
188 * @dev: driver model's view of this device
189 * @usb_dev: if an interface is bound to the USB major, this will point
190 * to the sysfs representation for that device.
191 * @pm_usage_cnt: PM usage counter for this interface
192 * @reset_ws: Used for scheduling resets from atomic context.
193 * @reset_running: set to 1 if the interface is currently running a
194 * queued reset so that usb_cancel_queued_reset() doesn't try to
195 * remove from the workqueue when running inside the worker
196 * thread. See __usb_queue_reset_device().
197 * @resetting_device: USB core reset the device, so use alt setting 0 as
198 * current; needs bandwidth alloc after reset.
199 *
200 * USB device drivers attach to interfaces on a physical device. Each
201 * interface encapsulates a single high level function, such as feeding
202 * an audio stream to a speaker or reporting a change in a volume control.
203 * Many USB devices only have one interface. The protocol used to talk to
204 * an interface's endpoints can be defined in a usb "class" specification,
205 * or by a product's vendor. The (default) control endpoint is part of
206 * every interface, but is never listed among the interface's descriptors.
207 *
208 * The driver that is bound to the interface can use standard driver model
209 * calls such as dev_get_drvdata() on the dev member of this structure.
210 *
211 * Each interface may have alternate settings. The initial configuration
212 * of a device sets altsetting 0, but the device driver can change
213 * that setting using usb_set_interface(). Alternate settings are often
214 * used to control the use of periodic endpoints, such as by having
215 * different endpoints use different amounts of reserved USB bandwidth.
216 * All standards-conformant USB devices that use isochronous endpoints
217 * will use them in non-default settings.
218 *
219 * The USB specification says that alternate setting numbers must run from
220 * 0 to one less than the total number of alternate settings. But some
221 * devices manage to mess this up, and the structures aren't necessarily
222 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
223 * look up an alternate setting in the altsetting array based on its number.
224 */
225struct usb_interface {
226 /* array of alternate settings for this interface,
227 * stored in no particular order */
228 struct usb_host_interface *altsetting;
229
230 struct usb_host_interface *cur_altsetting; /* the currently
231 * active alternate setting */
232 unsigned num_altsetting; /* number of alternate settings */
233
234 /* If there is an interface association descriptor then it will list
235 * the associated interfaces */
236 struct usb_interface_assoc_descriptor *intf_assoc;
237
238 int minor; /* minor number this interface is
239 * bound to */
240 enum usb_interface_condition condition; /* state of binding */
241 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
242 unsigned ep_devs_created:1; /* endpoint "devices" exist */
243 unsigned unregistering:1; /* unregistration is in progress */
244 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
245 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
246 unsigned needs_binding:1; /* needs delayed unbind/rebind */
247 unsigned reset_running:1;
248 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
249#if 0
250 struct device dev; /* interface specific device info */
251 struct device *usb_dev;
252 usbHostTos_atomic_t pm_usage_cnt; /* usage counter for autosuspend */
253 struct work_struct reset_ws; /* for resets in atomic context */
254#endif
255};
256#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
257
258static inline void *usb_get_intfdata(struct usb_interface *intf)
259{
260// return dev_get_drvdata(&intf->dev);
261 return NULL;
262}
263
264static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
265{
266// dev_set_drvdata(&intf->dev, data);
267}
268
269struct usb_interface *usb_get_intf(struct usb_interface *intf);
270void usb_put_intf(struct usb_interface *intf);
271
272/* this maximum is arbitrary */
273#define USB_MAXINTERFACES 32
274#define USB_MAXIADS (USB_MAXINTERFACES/2)
275
276/**
277 * struct usb_interface_cache - long-term representation of a device interface
278 * @num_altsetting: number of altsettings defined.
279 * @ref: reference counter.
280 * @altsetting: variable-length array of interface structures, one for
281 * each alternate setting that may be selected. Each one includes a
282 * set of endpoint configurations. They will be in no particular order.
283 *
284 * These structures persist for the lifetime of a usb_device, unlike
285 * struct usb_interface (which persists only as long as its configuration
286 * is installed). The altsetting arrays can be accessed through these
287 * structures at any time, permitting comparison of configurations and
288 * providing support for the /proc/bus/usb/devices pseudo-file.
289 */
290struct usb_interface_cache {
291 unsigned num_altsetting; /* number of alternate settings */
292 int ref; /* reference counter */
293
294 /* variable-length array of alternate settings for this interface,
295 * stored in no particular order */
296 struct usb_host_interface altsetting[0];
297};
298#define ref_to_usb_interface_cache(r) \
299 container_of(r, struct usb_interface_cache, ref)
300#define altsetting_to_usb_interface_cache(a) \
301 container_of(a, struct usb_interface_cache, altsetting[0])
302
303/**
304 * struct usb_host_config - representation of a device's configuration
305 * @desc: the device's configuration descriptor.
306 * @string: pointer to the cached version of the iConfiguration string, if
307 * present for this configuration.
308 * @intf_assoc: list of any interface association descriptors in this config
309 * @interface: array of pointers to usb_interface structures, one for each
310 * interface in the configuration. The number of interfaces is stored
311 * in desc.bNumInterfaces. These pointers are valid only while the
312 * the configuration is active.
313 * @intf_cache: array of pointers to usb_interface_cache structures, one
314 * for each interface in the configuration. These structures exist
315 * for the entire life of the device.
316 * @extra: pointer to buffer containing all extra descriptors associated
317 * with this configuration (those preceding the first interface
318 * descriptor).
319 * @extralen: length of the extra descriptors buffer.
320 *
321 * USB devices may have multiple configurations, but only one can be active
322 * at any time. Each encapsulates a different operational environment;
323 * for example, a dual-speed device would have separate configurations for
324 * full-speed and high-speed operation. The number of configurations
325 * available is stored in the device descriptor as bNumConfigurations.
326 *
327 * A configuration can contain multiple interfaces. Each corresponds to
328 * a different function of the USB device, and all are available whenever
329 * the configuration is active. The USB standard says that interfaces
330 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
331 * of devices get this wrong. In addition, the interface array is not
332 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
333 * look up an interface entry based on its number.
334 *
335 * Device drivers should not attempt to activate configurations. The choice
336 * of which configuration to install is a policy decision based on such
337 * considerations as available power, functionality provided, and the user's
338 * desires (expressed through userspace tools). However, drivers can call
339 * usb_reset_configuration() to reinitialize the current configuration and
340 * all its interfaces.
341 */
342struct usb_host_config {
343 struct usb_config_descriptor desc;
344
345 char *string; /* iConfiguration string, if present */
346
347 /* List of any Interface Association Descriptors in this
348 * configuration. */
349 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
350
351 /* the interfaces associated with this configuration,
352 * stored in no particular order */
353 struct usb_interface *interface[USB_MAXINTERFACES];
354
355 /* Interface information available even when this is not the
356 * active configuration */
357 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
358
359 unsigned char *extra; /* Extra descriptors */
360 int extralen;
361};
362
363/* USB2.0 and USB3.0 device BOS descriptor set */
364struct usb_host_bos {
365 struct usb_bos_descriptor *desc;
366
367 /* wireless cap descriptor is handled by wusb */
368 struct usb_ext_cap_descriptor *ext_cap;
369 struct usb_ss_cap_descriptor *ss_cap;
370 struct usb_ss_container_id_descriptor *ss_id;
371};
372
373int __usb_get_extra_descriptor(char *buffer, unsigned size,
374 unsigned char type, void **ptr);
375#define usb_get_extra_descriptor(ifpoint, type, ptr) \
376 __usb_get_extra_descriptor((ifpoint)->extra, \
377 (ifpoint)->extralen, \
378 type, (void **)ptr)
379
380/* ----------------------------------------------------------------------- */
381
382/* USB device number allocation bitmap */
383struct usb_devmap {
384 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
385};
386
387/*
388 * Allocated per bus (tree of devices) we have:
389 */
390struct usb_bus {
391 struct device *controller; /* host/master side hardware */
392 int busnum; /* Bus number (in order of reg) */
393 const char *bus_name; /* stable id (PCI slot_name etc) */
394 u8 uses_dma; /* Does the host controller use DMA? */
395 u8 uses_pio_for_control; /*
396 * Does the host controller use PIO
397 * for control transfers?
398 */
399 u8 otg_port; /* 0, or number of OTG/HNP port */
400 unsigned is_b_host:1; /* true during some HNP roleswitches */
401 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
402 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
403
404 int devnum_next; /* Next open device number in
405 * round-robin allocation */
406
407 struct usb_devmap devmap; /* device address allocation map */
408 struct usb_device *root_hub; /* Root hub */
409 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
410 struct list_head bus_list; /* list of busses */
411
412 int bandwidth_allocated; /* on this bus: how much of the time
413 * reserved for periodic (intr/iso)
414 * requests is used, on average?
415 * Units: microseconds/frame.
416 * Limits: Full/low speed reserve 90%,
417 * while high speed reserves 80%.
418 */
419 int bandwidth_int_reqs; /* number of Interrupt requests */
420 int bandwidth_isoc_reqs; /* number of Isoc. requests */
421
422#ifdef CONFIG_USB_DEVICEFS
423 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
424#endif
425
426#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
427 struct mon_bus *mon_bus; /* non-null when associated */
428 int monitored; /* non-zero when monitored */
429#endif
430};
431
432/* ----------------------------------------------------------------------- */
433
434/* This is arbitrary.
435 * From USB 2.0 spec Table 11-13, offset 7, a hub can
436 * have up to 255 ports. The most yet reported is 10.
437 *
438 * Current Wireless USB host hardware (Intel i1480 for example) allows
439 * up to 22 devices to connect. Upcoming hardware might raise that
440 * limit. Because the arrays need to add a bit for hub status data, we
441 * do 31, so plus one evens out to four bytes.
442 */
443#define USB_MAXCHILDREN (31)
444
445struct usb_tt;
446
447enum usb_device_removable {
448 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
449 USB_DEVICE_REMOVABLE,
450 USB_DEVICE_FIXED,
451};
452
453/**
454 * struct usb_device - kernel's representation of a USB device
455 * @devnum: device number; address on a USB bus
456 * @devpath: device ID string for use in messages (e.g., /port/...)
457 * @route: tree topology hex string for use with xHCI
458 * @state: device state: configured, not attached, etc.
459 * @speed: device speed: high/full/low (or error)
460 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
461 * @ttport: device port on that tt hub
462 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
463 * @parent: our hub, unless we're the root
464 * @bus: bus we're part of
465 * @ep0: endpoint 0 data (default control pipe)
466 * @dev: generic device interface
467 * @descriptor: USB device descriptor
468 * @bos: USB device BOS descriptor set
469 * @config: all of the device's configs
470 * @actconfig: the active configuration
471 * @ep_in: array of IN endpoints
472 * @ep_out: array of OUT endpoints
473 * @rawdescriptors: raw descriptors for each config
474 * @bus_mA: Current available from the bus
475 * @portnum: parent port number (origin 1)
476 * @level: number of USB hub ancestors
477 * @can_submit: URBs may be submitted
478 * @persist_enabled: USB_PERSIST enabled for this device
479 * @have_langid: whether string_langid is valid
480 * @authorized: policy has said we can use it;
481 * (user space) policy determines if we authorize this device to be
482 * used or not. By default, wired USB devices are authorized.
483 * WUSB devices are not, until we authorize them from user space.
484 * FIXME -- complete doc
485 * @authenticated: Crypto authentication passed
486 * @wusb: device is Wireless USB
487 * @lpm_capable: device supports LPM
488 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
489 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
490 * @string_langid: language ID for strings
491 * @product: iProduct string, if present (static)
492 * @manufacturer: iManufacturer string, if present (static)
493 * @serial: iSerialNumber string, if present (static)
494 * @filelist: usbfs files that are open to this device
495 * @usb_classdev: USB class device that was created for usbfs device
496 * access from userspace
497 * @usbfs_dentry: usbfs dentry entry for the device
498 * @maxchild: number of ports if hub
499 * @children: child devices - USB devices that are attached to this hub
500 * @quirks: quirks of the whole device
501 * @urbnum: number of URBs submitted for the whole device
502 * @active_duration: total time device is not suspended
503 * @connect_time: time device was first connected
504 * @do_remote_wakeup: remote wakeup should be enabled
505 * @reset_resume: needs reset instead of resume
506 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
507 * specific data for the device.
508 * @slot_id: Slot ID assigned by xHCI
509 * @removable: Device can be physically removed from this port
510 *
511 * Notes:
512 * Usbcore drivers should not set usbdev->state directly. Instead use
513 * usb_set_device_state().
514 */
515struct usb_device {
516 int devnum;
517 char devpath[16];
518 u32 route;
519 enum usb_device_state state;
520 enum usb_device_speed speed;
521
522 struct usb_tt *tt;
523 int ttport;
524
525 unsigned int toggle[2];
526
527 struct usb_device *parent;
528 struct usb_bus *bus;
529 struct usb_host_endpoint ep0;
530
531// struct device dev;
532
533 struct usb_device_descriptor descriptor;
534 struct usb_host_bos *bos;
535 struct usb_host_config *config;
536
537 struct usb_host_config *actconfig;
538 struct usb_host_endpoint *ep_in[16];
539 struct usb_host_endpoint *ep_out[16];
540
541 char **rawdescriptors;
542
543 unsigned short bus_mA;
544 u8 portnum;
545 u8 level;
546
547 unsigned can_submit:1;
548 unsigned persist_enabled:1;
549 unsigned have_langid:1;
550 unsigned authorized:1;
551 unsigned authenticated:1;
552 unsigned wusb:1;
553 unsigned lpm_capable:1;
554 unsigned usb2_hw_lpm_capable:1;
555 unsigned usb2_hw_lpm_enabled:1;
556 int string_langid;
557
558 /* static strings from the device */
559 char *product;
560 char *manufacturer;
561 char *serial;
562
563 struct list_head filelist;
564#ifdef CONFIG_USB_DEVICE_CLASS
565// struct device *usb_classdev;
566#endif
567#ifdef CONFIG_USB_DEVICEFS
568 struct dentry *usbfs_dentry;
569#endif
570
571 int maxchild;
572 struct usb_device **children;
573
574 u32 quirks;
575 usbHostTos_atomic_t urbnum;
576
577 unsigned long active_duration;
578
579#ifdef USBHOSTTOS_CONFIG_PM
580 unsigned long connect_time;
581
582 unsigned do_remote_wakeup:1;
583 unsigned reset_resume:1;
584#endif
585 struct wusb_dev *wusb_dev;
586 int slot_id;
587 ZOSS_SEMAPHORE_ID urb_sem;
588 enum usb_device_removable removable;
589};
590#define to_usb_device(d) container_of(d, struct usb_device, dev)
591
592static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
593{
594// return to_usb_device(intf->dev.parent);
595 return NULL;
596}
597
598extern struct usb_device *usb_get_dev(struct usb_device *dev);
599extern void usb_put_dev(struct usb_device *dev);
600
601/* USB device locking */
602#if 0
603#define usb_lock_device(udev) device_lock(&(udev)->dev)
604#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
605#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
606#else
607static inline void device_unlock()
608{
609// mutex_unlock(&dev->mutex);
610}
611static inline void device_lock()
612{
613// mutex_lock(&dev->mutex);
614}
615
616static inline int device_trylock()
617{
618 return 0;
619}
620
621#define usb_lock_device(udev) device_lock()
622#define usb_unlock_device(udev) device_unlock()
623#define usb_trylock_device(udev) device_trylock()
624#endif
625
626#if 0
627extern int usb_lock_device_for_reset(struct usb_device *udev,
628 const struct usb_interface *iface);
629#endif
630
631/* USB port reset for device reinitialization */
632extern int usb_reset_device(struct usb_device *dev);
633extern void usb_queue_reset_device(struct usb_interface *dev);
634
635
636/* USB autosuspend and autoresume */
637#ifdef CONFIG_USB_SUSPEND
638extern void usb_enable_autosuspend(struct usb_device *udev);
639extern void usb_disable_autosuspend(struct usb_device *udev);
640
641extern int usb_autopm_get_interface(struct usb_interface *intf);
642extern void usb_autopm_put_interface(struct usb_interface *intf);
643extern int usb_autopm_get_interface_async(struct usb_interface *intf);
644extern void usb_autopm_put_interface_async(struct usb_interface *intf);
645extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
646extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
647
648static inline void usb_mark_last_busy(struct usb_device *udev)
649{
650 pm_runtime_mark_last_busy(&udev->dev);
651}
652
653#else
654
655static inline int usb_enable_autosuspend(struct usb_device *udev)
656{ return 0; }
657static inline int usb_disable_autosuspend(struct usb_device *udev)
658{ return 0; }
659
660static inline int usb_autopm_get_interface(struct usb_interface *intf)
661{ return 0; }
662static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
663{ return 0; }
664
665static inline void usb_autopm_put_interface(struct usb_interface *intf)
666{ }
667static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
668{ }
669static inline void usb_autopm_get_interface_no_resume(
670 struct usb_interface *intf)
671{ }
672static inline void usb_autopm_put_interface_no_suspend(
673 struct usb_interface *intf)
674{ }
675static inline void usb_mark_last_busy(struct usb_device *udev)
676{ }
677#endif
678
679/*-------------------------------------------------------------------------*/
680
681/* for drivers using iso endpoints */
682extern int usb_get_current_frame_number(struct usb_device *usb_dev);
683
684/* Sets up a group of bulk endpoints to support multiple stream IDs. */
685extern int usb_alloc_streams(struct usb_interface *interface,
686 struct usb_host_endpoint **eps, unsigned int num_eps,
687 unsigned int num_streams, gfp_t mem_flags);
688
689/* Reverts a group of bulk endpoints back to not using stream IDs. */
690extern void usb_free_streams(struct usb_interface *interface,
691 struct usb_host_endpoint **eps, unsigned int num_eps,
692 gfp_t mem_flags);
693
694/* used these for multi-interface device registration */
695extern int usb_driver_claim_interface(struct usb_driver *driver,
696 struct usb_interface *iface, void *priv);
697
698/**
699 * usb_interface_claimed - returns true iff an interface is claimed
700 * @iface: the interface being checked
701 *
702 * Returns true (nonzero) iff the interface is claimed, else false (zero).
703 * Callers must own the driver model's usb bus readlock. So driver
704 * probe() entries don't need extra locking, but other call contexts
705 * may need to explicitly claim that lock.
706 *
707 */
708static inline int usb_interface_claimed(struct usb_interface *iface)
709{
710// return (iface->dev.driver != NULL);
711 return 0;
712}
713
714extern void usb_driver_release_interface(struct usb_driver *driver,
715 struct usb_interface *iface);
716const struct usb_device_id *usb_match_id(struct usb_interface *interface,
717 const struct usb_device_id *id);
718extern int usb_match_one_id(struct usb_interface *interface,
719 const struct usb_device_id *id);
720
721extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
722 int minor);
723extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
724 unsigned ifnum);
725extern struct usb_host_interface *usb_altnum_to_altsetting(
726 const struct usb_interface *intf, unsigned int altnum);
727extern struct usb_host_interface *usb_find_alt_setting(
728 struct usb_host_config *config,
729 unsigned int iface_num,
730 unsigned int alt_num);
731
732
733/**
734 * usb_make_path - returns stable device path in the usb tree
735 * @dev: the device whose path is being constructed
736 * @buf: where to put the string
737 * @size: how big is "buf"?
738 *
739 * Returns length of the string (> 0) or negative if size was too small.
740 *
741 * This identifier is intended to be "stable", reflecting physical paths in
742 * hardware such as physical bus addresses for host controllers or ports on
743 * USB hubs. That makes it stay the same until systems are physically
744 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
745 * controllers. Adding and removing devices, including virtual root hubs
746 * in host controller driver modules, does not change these path identifiers;
747 * neither does rebooting or re-enumerating. These are more useful identifiers
748 * than changeable ("unstable") ones like bus numbers or device addresses.
749 *
750 * With a partial exception for devices connected to USB 2.0 root hubs, these
751 * identifiers are also predictable. So long as the device tree isn't changed,
752 * plugging any USB device into a given hub port always gives it the same path.
753 * Because of the use of "companion" controllers, devices connected to ports on
754 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
755 * high speed, and a different one if they are full or low speed.
756 */
757static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
758{
759 int actual;
760 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
761 dev->devpath);
762 return (actual >= (int)size) ? -1 : actual;
763}
764
765/*-------------------------------------------------------------------------*/
766
767#define USB_DEVICE_ID_MATCH_DEVICE \
768 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
769#define USB_DEVICE_ID_MATCH_DEV_RANGE \
770 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
771#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
772 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
773#define USB_DEVICE_ID_MATCH_DEV_INFO \
774 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
775 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
776 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
777#define USB_DEVICE_ID_MATCH_INT_INFO \
778 (USB_DEVICE_ID_MATCH_INT_CLASS | \
779 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
780 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
781
782/**
783 * USB_DEVICE - macro used to describe a specific usb device
784 * @vend: the 16 bit USB Vendor ID
785 * @prod: the 16 bit USB Product ID
786 *
787 * This macro is used to create a struct usb_device_id that matches a
788 * specific device.
789 */
790#define USB_DEVICE(vend, prod) \
791 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
792 .idVendor = (vend), \
793 .idProduct = (prod)
794/**
795 * USB_DEVICE_VER - describe a specific usb device with a version range
796 * @vend: the 16 bit USB Vendor ID
797 * @prod: the 16 bit USB Product ID
798 * @lo: the bcdDevice_lo value
799 * @hi: the bcdDevice_hi value
800 *
801 * This macro is used to create a struct usb_device_id that matches a
802 * specific device, with a version range.
803 */
804#define USB_DEVICE_VER(vend, prod, lo, hi) \
805 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
806 .idVendor = (vend), \
807 .idProduct = (prod), \
808 .bcdDevice_lo = (lo), \
809 .bcdDevice_hi = (hi)
810
811/**
812 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
813 * @vend: the 16 bit USB Vendor ID
814 * @prod: the 16 bit USB Product ID
815 * @pr: bInterfaceProtocol value
816 *
817 * This macro is used to create a struct usb_device_id that matches a
818 * specific interface protocol of devices.
819 */
820#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
821 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
822 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
823 .idVendor = (vend), \
824 .idProduct = (prod), \
825 .bInterfaceProtocol = (pr)
826
827/**
828 * USB_DEVICE_INFO - macro used to describe a class of usb devices
829 * @cl: bDeviceClass value
830 * @sc: bDeviceSubClass value
831 * @pr: bDeviceProtocol value
832 *
833 * This macro is used to create a struct usb_device_id that matches a
834 * specific class of devices.
835 */
836#define USB_DEVICE_INFO(cl, sc, pr) \
837 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
838 .bDeviceClass = (cl), \
839 .bDeviceSubClass = (sc), \
840 .bDeviceProtocol = (pr)
841
842/**
843 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
844 * @cl: bInterfaceClass value
845 * @sc: bInterfaceSubClass value
846 * @pr: bInterfaceProtocol value
847 *
848 * This macro is used to create a struct usb_device_id that matches a
849 * specific class of interfaces.
850 */
851#define USB_INTERFACE_INFO(cl, sc, pr) \
852 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
853 .bInterfaceClass = (cl), \
854 .bInterfaceSubClass = (sc), \
855 .bInterfaceProtocol = (pr)
856
857/**
858 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
859 * @vend: the 16 bit USB Vendor ID
860 * @prod: the 16 bit USB Product ID
861 * @cl: bInterfaceClass value
862 * @sc: bInterfaceSubClass value
863 * @pr: bInterfaceProtocol value
864 *
865 * This macro is used to create a struct usb_device_id that matches a
866 * specific device with a specific class of interfaces.
867 *
868 * This is especially useful when explicitly matching devices that have
869 * vendor specific bDeviceClass values, but standards-compliant interfaces.
870 */
871#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
872 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
873 | USB_DEVICE_ID_MATCH_DEVICE, \
874 .idVendor = (vend), \
875 .idProduct = (prod), \
876 .bInterfaceClass = (cl), \
877 .bInterfaceSubClass = (sc), \
878 .bInterfaceProtocol = (pr)
879
880/* ----------------------------------------------------------------------- */
881
882/* Stuff for dynamic usb ids */
883struct usb_dynids {
884 spinlock_t lock;
885 struct list_head list;
886};
887
888struct usb_dynid {
889 struct list_head node;
890 struct usb_device_id id;
891};
892
893#if 0
894extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
895 struct device_driver *driver,
896 const char *buf, size_t count);
897#endif
898/**
899 * struct usbdrv_wrap - wrapper for driver-model structure
900 * @driver: The driver-model core driver structure.
901 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
902 */
903#if 0
904struct usbdrv_wrap {
905 struct device_driver driver;
906 int for_devices;
907};
908#endif
909
910/**
911 * struct usb_driver - identifies USB interface driver to usbcore
912 * @name: The driver name should be unique among USB drivers,
913 * and should normally be the same as the module name.
914 * @probe: Called to see if the driver is willing to manage a particular
915 * interface on a device. If it is, probe returns zero and uses
916 * usb_set_intfdata() to associate driver-specific data with the
917 * interface. It may also use usb_set_interface() to specify the
918 * appropriate altsetting. If unwilling to manage the interface,
919 * return -ENODEV, if genuine IO errors occurred, an appropriate
920 * negative errno value.
921 * @disconnect: Called when the interface is no longer accessible, usually
922 * because its device has been (or is being) disconnected or the
923 * driver module is being unloaded.
924 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
925 * the "usbfs" filesystem. This lets devices provide ways to
926 * expose information to user space regardless of where they
927 * do (or don't) show up otherwise in the filesystem.
928 * @suspend: Called when the device is going to be suspended by the system.
929 * @resume: Called when the device is being resumed by the system.
930 * @reset_resume: Called when the suspended device has been reset instead
931 * of being resumed.
932 * @pre_reset: Called by usb_reset_device() when the device is about to be
933 * reset. This routine must not return until the driver has no active
934 * URBs for the device, and no more URBs may be submitted until the
935 * post_reset method is called.
936 * @post_reset: Called by usb_reset_device() after the device
937 * has been reset
938 * @id_table: USB drivers use ID table to support hotplugging.
939 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
940 * or your driver's probe function will never get called.
941 * @dynids: used internally to hold the list of dynamically added device
942 * ids for this driver.
943 * @drvwrap: Driver-model core structure wrapper.
944 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
945 * added to this driver by preventing the sysfs file from being created.
946 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
947 * for interfaces bound to this driver.
948 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
949 * endpoints before calling the driver's disconnect method.
950 *
951 * USB interface drivers must provide a name, probe() and disconnect()
952 * methods, and an id_table. Other driver fields are optional.
953 *
954 * The id_table is used in hotplugging. It holds a set of descriptors,
955 * and specialized data may be associated with each entry. That table
956 * is used by both user and kernel mode hotplugging support.
957 *
958 * The probe() and disconnect() methods are called in a context where
959 * they can sleep, but they should avoid abusing the privilege. Most
960 * work to connect to a device should be done when the device is opened,
961 * and undone at the last close. The disconnect code needs to address
962 * concurrency issues with respect to open() and close() methods, as
963 * well as forcing all pending I/O requests to complete (by unlinking
964 * them as necessary, and blocking until the unlinks complete).
965 */
966struct usb_driver {
967 const char *name;
968
969 int (*probe) (struct usb_interface *intf,
970 const struct usb_device_id *id);
971
972 void (*disconnect) (struct usb_interface *intf);
973
974 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
975 void *buf);
976
977// int (*suspend) (struct usb_interface *intf, pm_message_t message);
978 int (*suspend) (struct usb_interface *intf);
979 int (*resume) (struct usb_interface *intf);
980 int (*reset_resume)(struct usb_interface *intf);
981
982 int (*pre_reset)(struct usb_interface *intf);
983 int (*post_reset)(struct usb_interface *intf);
984
985 const struct usb_device_id *id_table;
986
987 struct usb_dynids dynids;
988// struct usbdrv_wrap drvwrap;
989 unsigned int no_dynamic_id:1;
990 unsigned int supports_autosuspend:1;
991 unsigned int soft_unbind:1;
992};
993#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
994
995/**
996 * struct usb_device_driver - identifies USB device driver to usbcore
997 * @name: The driver name should be unique among USB drivers,
998 * and should normally be the same as the module name.
999 * @probe: Called to see if the driver is willing to manage a particular
1000 * device. If it is, probe returns zero and uses dev_set_drvdata()
1001 * to associate driver-specific data with the device. If unwilling
1002 * to manage the device, return a negative errno value.
1003 * @disconnect: Called when the device is no longer accessible, usually
1004 * because it has been (or is being) disconnected or the driver's
1005 * module is being unloaded.
1006 * @suspend: Called when the device is going to be suspended by the system.
1007 * @resume: Called when the device is being resumed by the system.
1008 * @drvwrap: Driver-model core structure wrapper.
1009 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1010 * for devices bound to this driver.
1011 *
1012 * USB drivers must provide all the fields listed above except drvwrap.
1013 */
1014struct usb_device_driver {
1015 const char *name;
1016
1017 int (*probe) (struct usb_device *udev);
1018 void (*disconnect) (struct usb_device *udev);
1019#if 0
1020 int (*suspend) (struct usb_device *udev, pm_message_t message);
1021 int (*resume) (struct usb_device *udev, pm_message_t message);
1022#else
1023 int (*suspend) (struct usb_device *udev);
1024 int (*resume) (struct usb_device *udev);
1025#endif
1026// struct usbdrv_wrap drvwrap;
1027 unsigned int supports_autosuspend:1;
1028};
1029#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1030 drvwrap.driver)
1031
1032extern struct bus_type usb_bus_type;
1033
1034/**
1035 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1036 * @name: the usb class device name for this driver. Will show up in sysfs.
1037 * @devnode: Callback to provide a naming hint for a possible
1038 * device node to create.
1039 * @fops: pointer to the struct file_operations of this driver.
1040 * @minor_base: the start of the minor range for this driver.
1041 *
1042 * This structure is used for the usb_register_dev() and
1043 * usb_unregister_dev() functions, to consolidate a number of the
1044 * parameters used for them.
1045 */
1046#if 0
1047struct usb_class_driver {
1048 char *name;
1049 char *(*devnode)(struct device *dev, umode_t *mode);
1050 const struct file_operations *fops;
1051 int minor_base;
1052};
1053#endif
1054
1055/*
1056 * use these in module_init()/module_exit()
1057 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1058 */
1059extern int usb_register_driver(struct usb_driver *, struct module *,
1060 const char *);
1061
1062/* use a define to avoid include chaining to get THIS_MODULE & friends */
1063#define usb_register(driver) \
1064 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1065
1066extern void usb_deregister(struct usb_driver *);
1067
1068/**
1069 * module_usb_driver() - Helper macro for registering a USB driver
1070 * @__usb_driver: usb_driver struct
1071 *
1072 * Helper macro for USB drivers which do not do anything special in module
1073 * init/exit. This eliminates a lot of boilerplate. Each module may only
1074 * use this macro once, and calling it replaces module_init() and module_exit()
1075 */
1076#define module_usb_driver(__usb_driver) \
1077 module_driver(__usb_driver, usb_register, \
1078 usb_deregister)
1079
1080extern int usb_register_device_driver(struct usb_device_driver *,
1081 struct module *);
1082extern void usb_deregister_device_driver(struct usb_device_driver *);
1083
1084#if 0
1085extern int usb_register_dev(struct usb_interface *intf,
1086 struct usb_class_driver *class_driver);
1087extern void usb_deregister_dev(struct usb_interface *intf,
1088 struct usb_class_driver *class_driver);
1089#endif
1090
1091extern int usb_disabled(void);
1092
1093/* ----------------------------------------------------------------------- */
1094
1095/*
1096 * URB support, for asynchronous request completions
1097 */
1098
1099/*
1100 * urb->transfer_flags:
1101 *
1102 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1103 */
1104#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1105#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1106 * ignored */
1107#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1108#define URB_NO_FSBR 0x0020 /* UHCI-specific */
1109#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1110#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1111 * needed */
1112#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1113
1114/* The following flags are used internally by usbcore and HCDs */
1115#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1116#define URB_DIR_OUT 0
1117#define URB_DIR_MASK URB_DIR_IN
1118
1119#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1120#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1121#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1122#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1123#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1124#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1125#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1126#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1127
1128struct usb_iso_packet_descriptor {
1129 unsigned int offset;
1130 unsigned int length; /* expected length */
1131 unsigned int actual_length;
1132 int status;
1133};
1134
1135struct urb;
1136
1137#ifndef _OS_LINUX
1138struct __wait_queue_head {
1139 spinlock_t lock;
1140 struct list_head task_list;
1141};
1142typedef struct __wait_queue_head wait_queue_head_t;
1143#endif
1144
1145struct usb_anchor {
1146 struct list_head urb_list;
1147 wait_queue_head_t wait;
1148 spinlock_t lock;
1149 unsigned int poisoned:1;
1150};
1151
1152static inline void init_usb_anchor(struct usb_anchor *anchor)
1153{
1154 INIT_LIST_HEAD(&anchor->urb_list);
1155 usbHostTos_init_waitqueue_head(&anchor->wait);
1156 spin_lock_init(&anchor->lock);
1157}
1158
1159typedef void (*usb_complete_t)(struct urb *);
1160
1161/**
1162 * struct urb - USB Request Block
1163 * @urb_list: For use by current owner of the URB.
1164 * @anchor_list: membership in the list of an anchor
1165 * @anchor: to anchor URBs to a common mooring
1166 * @ep: Points to the endpoint's data structure. Will eventually
1167 * replace @pipe.
1168 * @pipe: Holds endpoint number, direction, type, and more.
1169 * Create these values with the eight macros available;
1170 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1171 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1172 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1173 * numbers range from zero to fifteen. Note that "in" endpoint two
1174 * is a different endpoint (and pipe) from "out" endpoint two.
1175 * The current configuration controls the existence, type, and
1176 * maximum packet size of any given endpoint.
1177 * @stream_id: the endpoint's stream ID for bulk streams
1178 * @dev: Identifies the USB device to perform the request.
1179 * @status: This is read in non-iso completion functions to get the
1180 * status of the particular request. ISO requests only use it
1181 * to tell whether the URB was unlinked; detailed status for
1182 * each frame is in the fields of the iso_frame-desc.
1183 * @transfer_flags: A variety of flags may be used to affect how URB
1184 * submission, unlinking, or operation are handled. Different
1185 * kinds of URB can use different flags.
1186 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1187 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1188 * (however, do not leave garbage in transfer_buffer even then).
1189 * This buffer must be suitable for DMA; allocate it with
1190 * zOss_Malloc() or equivalent. For transfers to "in" endpoints, contents
1191 * of this buffer will be modified. This buffer is used for the data
1192 * stage of control transfers.
1193 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1194 * the device driver is saying that it provided this DMA address,
1195 * which the host controller driver should use in preference to the
1196 * transfer_buffer.
1197 * @sg: scatter gather buffer list
1198 * @num_mapped_sgs: (internal) number of mapped sg entries
1199 * @num_sgs: number of entries in the sg list
1200 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1201 * be broken up into chunks according to the current maximum packet
1202 * size for the endpoint, which is a function of the configuration
1203 * and is encoded in the pipe. When the length is zero, neither
1204 * transfer_buffer nor transfer_dma is used.
1205 * @actual_length: This is read in non-iso completion functions, and
1206 * it tells how many bytes (out of transfer_buffer_length) were
1207 * transferred. It will normally be the same as requested, unless
1208 * either an error was reported or a short read was performed.
1209 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1210 * short reads be reported as errors.
1211 * @setup_packet: Only used for control transfers, this points to eight bytes
1212 * of setup data. Control transfers always start by sending this data
1213 * to the device. Then transfer_buffer is read or written, if needed.
1214 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1215 * this field; setup_packet must point to a valid buffer.
1216 * @start_frame: Returns the initial frame for isochronous transfers.
1217 * @number_of_packets: Lists the number of ISO transfer buffers.
1218 * @interval: Specifies the polling interval for interrupt or isochronous
1219 * transfers. The units are frames (milliseconds) for full and low
1220 * speed devices, and microframes (1/8 millisecond) for highspeed
1221 * and SuperSpeed devices.
1222 * @error_count: Returns the number of ISO transfers that reported errors.
1223 * @context: For use in completion functions. This normally points to
1224 * request-specific driver context.
1225 * @complete: Completion handler. This URB is passed as the parameter to the
1226 * completion function. The completion function may then do what
1227 * it likes with the URB, including resubmitting or freeing it.
1228 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1229 * collect the transfer status for each buffer.
1230 *
1231 * This structure identifies USB transfer requests. URBs must be allocated by
1232 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1233 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1234 * are submitted using usb_submit_urb(), and pending requests may be canceled
1235 * using usb_unlink_urb() or usb_kill_urb().
1236 *
1237 * Data Transfer Buffers:
1238 *
1239 * Normally drivers provide I/O buffers allocated with zOss_Malloc() or otherwise
1240 * taken from the general page pool. That is provided by transfer_buffer
1241 * (control requests also use setup_packet), and host controller drivers
1242 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1243 * mapping operations can be expensive on some platforms (perhaps using a dma
1244 * bounce buffer or talking to an IOMMU),
1245 * although they're cheap on commodity x86 and ppc hardware.
1246 *
1247 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1248 * which tells the host controller driver that no such mapping is needed for
1249 * the transfer_buffer since
1250 * the device driver is DMA-aware. For example, a device driver might
1251 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1252 * When this transfer flag is provided, host controller drivers will
1253 * attempt to use the dma address found in the transfer_dma
1254 * field rather than determining a dma address themselves.
1255 *
1256 * Note that transfer_buffer must still be set if the controller
1257 * does not support DMA (as indicated by bus.uses_dma) and when talking
1258 * to root hub. If you have to trasfer between highmem zone and the device
1259 * on such controller, create a bounce buffer or bail out with an error.
1260 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1261 * capable, assign NULL to it, so that usbmon knows not to use the value.
1262 * The setup_packet must always be set, so it cannot be located in highmem.
1263 *
1264 * Initialization:
1265 *
1266 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1267 * zero), and complete fields. All URBs must also initialize
1268 * transfer_buffer and transfer_buffer_length. They may provide the
1269 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1270 * to be treated as errors; that flag is invalid for write requests.
1271 *
1272 * Bulk URBs may
1273 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1274 * should always terminate with a short packet, even if it means adding an
1275 * extra zero length packet.
1276 *
1277 * Control URBs must provide a valid pointer in the setup_packet field.
1278 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1279 * beforehand.
1280 *
1281 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1282 * or, for highspeed devices, 125 microsecond units)
1283 * to poll for transfers. After the URB has been submitted, the interval
1284 * field reflects how the transfer was actually scheduled.
1285 * The polling interval may be more frequent than requested.
1286 * For example, some controllers have a maximum interval of 32 milliseconds,
1287 * while others support intervals of up to 1024 milliseconds.
1288 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1289 * endpoints, as well as high speed interrupt endpoints, the encoding of
1290 * the transfer interval in the endpoint descriptor is logarithmic.
1291 * Device drivers must convert that value to linear units themselves.)
1292 *
1293 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1294 * the host controller to schedule the transfer as soon as bandwidth
1295 * utilization allows, and then set start_frame to reflect the actual frame
1296 * selected during submission. Otherwise drivers must specify the start_frame
1297 * and handle the case where the transfer can't begin then. However, drivers
1298 * won't know how bandwidth is currently allocated, and while they can
1299 * find the current frame using usb_get_current_frame_number () they can't
1300 * know the range for that frame number. (Ranges for frame counter values
1301 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1302 *
1303 * Isochronous URBs have a different data transfer model, in part because
1304 * the quality of service is only "best effort". Callers provide specially
1305 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1306 * at the end. Each such packet is an individual ISO transfer. Isochronous
1307 * URBs are normally queued, submitted by drivers to arrange that
1308 * transfers are at least double buffered, and then explicitly resubmitted
1309 * in completion handlers, so
1310 * that data (such as audio or video) streams at as constant a rate as the
1311 * host controller scheduler can support.
1312 *
1313 * Completion Callbacks:
1314 *
1315 * The completion callback is made in_interrupt(), and one of the first
1316 * things that a completion handler should do is check the status field.
1317 * The status field is provided for all URBs. It is used to report
1318 * unlinked URBs, and status for all non-ISO transfers. It should not
1319 * be examined before the URB is returned to the completion handler.
1320 *
1321 * The context field is normally used to link URBs back to the relevant
1322 * driver or request state.
1323 *
1324 * When the completion callback is invoked for non-isochronous URBs, the
1325 * actual_length field tells how many bytes were transferred. This field
1326 * is updated even when the URB terminated with an error or was unlinked.
1327 *
1328 * ISO transfer status is reported in the status and actual_length fields
1329 * of the iso_frame_desc array, and the number of errors is reported in
1330 * error_count. Completion callbacks for ISO transfers will normally
1331 * (re)submit URBs to ensure a constant transfer rate.
1332 *
1333 * Note that even fields marked "public" should not be touched by the driver
1334 * when the urb is owned by the hcd, that is, since the call to
1335 * usb_submit_urb() till the entry into the completion routine.
1336 */
1337struct urb {
1338 /* private: usb core and host controller only fields in the urb */
1339 int kref; /* reference count of the URB */
1340 void *hcpriv; /* private data for host controller */
1341 usbHostTos_atomic_t use_count; /* concurrent submissions counter */
1342 usbHostTos_atomic_t reject; /* submissions will fail */
1343 int unlinked; /* unlink error code */
1344
1345 /* public: documented fields in the urb that can be used by drivers */
1346 struct list_head urb_list; /* list head for use by the urb's
1347 * current owner */
1348 struct list_head anchor_list; /* the URB may be anchored */
1349 struct usb_anchor *anchor;
1350 struct usb_device *dev; /* (in) pointer to associated device */
1351 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1352 unsigned int pipe; /* (in) pipe information */
1353 unsigned int stream_id; /* (in) stream ID */
1354 int status; /* (return) non-ISO status */
1355 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1356 void *transfer_buffer; /* (in) associated data buffer */
1357 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1358 struct scatterlist *sg; /* (in) scatter gather buffer list */
1359 int num_mapped_sgs; /* (internal) mapped sg entries */
1360 int num_sgs; /* (in) number of entries in the sg list */
1361 u32 transfer_buffer_length; /* (in) data buffer length */
1362 u32 actual_length; /* (return) actual transfer length */
1363 unsigned char *setup_packet; /* (in) setup packet (control only) */
1364 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1365 int start_frame; /* (modify) start frame (ISO) */
1366 int number_of_packets; /* (in) number of ISO packets */
1367 int interval; /* (modify) transfer interval
1368 * (INT/ISO) */
1369 int error_count; /* (return) number of ISO errors */
1370 void *context; /* (in) context for completion */
1371 usb_complete_t complete; /* (in) completion routine */
1372 struct usb_iso_packet_descriptor iso_frame_desc[0];
1373 /* (in) ISO ONLY */
1374};
1375
1376/* ----------------------------------------------------------------------- */
1377
1378/**
1379 * usb_fill_control_urb - initializes a control urb
1380 * @urb: pointer to the urb to initialize.
1381 * @dev: pointer to the struct usb_device for this urb.
1382 * @pipe: the endpoint pipe
1383 * @setup_packet: pointer to the setup_packet buffer
1384 * @transfer_buffer: pointer to the transfer buffer
1385 * @buffer_length: length of the transfer buffer
1386 * @complete_fn: pointer to the usb_complete_t function
1387 * @context: what to set the urb context to.
1388 *
1389 * Initializes a control urb with the proper information needed to submit
1390 * it to a device.
1391 */
1392static inline void usb_fill_control_urb(struct urb *urb,
1393 struct usb_device *dev,
1394 unsigned int pipe,
1395 unsigned char *setup_packet,
1396 void *transfer_buffer,
1397 int buffer_length,
1398 usb_complete_t complete_fn,
1399 void *context)
1400{
1401 urb->dev = dev;
1402 urb->pipe = pipe;
1403 urb->setup_packet = setup_packet;
1404 urb->transfer_buffer = transfer_buffer;
1405 urb->transfer_buffer_length = buffer_length;
1406 urb->complete = complete_fn;
1407 urb->context = context;
1408}
1409
1410/**
1411 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1412 * @urb: pointer to the urb to initialize.
1413 * @dev: pointer to the struct usb_device for this urb.
1414 * @pipe: the endpoint pipe
1415 * @transfer_buffer: pointer to the transfer buffer
1416 * @buffer_length: length of the transfer buffer
1417 * @complete_fn: pointer to the usb_complete_t function
1418 * @context: what to set the urb context to.
1419 *
1420 * Initializes a bulk urb with the proper information needed to submit it
1421 * to a device.
1422 */
1423static inline void usb_fill_bulk_urb(struct urb *urb,
1424 struct usb_device *dev,
1425 unsigned int pipe,
1426 void *transfer_buffer,
1427 int buffer_length,
1428 usb_complete_t complete_fn,
1429 void *context)
1430{
1431 urb->dev = dev;
1432 urb->pipe = pipe;
1433 urb->transfer_buffer = transfer_buffer;
1434 urb->transfer_buffer_length = buffer_length;
1435 urb->complete = complete_fn;
1436 urb->context = context;
1437}
1438
1439/**
1440 * usb_fill_int_urb - macro to help initialize a interrupt urb
1441 * @urb: pointer to the urb to initialize.
1442 * @dev: pointer to the struct usb_device for this urb.
1443 * @pipe: the endpoint pipe
1444 * @transfer_buffer: pointer to the transfer buffer
1445 * @buffer_length: length of the transfer buffer
1446 * @complete_fn: pointer to the usb_complete_t function
1447 * @context: what to set the urb context to.
1448 * @interval: what to set the urb interval to, encoded like
1449 * the endpoint descriptor's bInterval value.
1450 *
1451 * Initializes a interrupt urb with the proper information needed to submit
1452 * it to a device.
1453 *
1454 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1455 * encoding of the endpoint interval, and express polling intervals in
1456 * microframes (eight per millisecond) rather than in frames (one per
1457 * millisecond).
1458 *
1459 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1460 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1461 * through to the host controller, rather than being translated into microframe
1462 * units.
1463 */
1464static inline void usb_fill_int_urb(struct urb *urb,
1465 struct usb_device *dev,
1466 unsigned int pipe,
1467 void *transfer_buffer,
1468 int buffer_length,
1469 usb_complete_t complete_fn,
1470 void *context,
1471 int interval)
1472{
1473 urb->dev = dev;
1474 urb->pipe = pipe;
1475 urb->transfer_buffer = transfer_buffer;
1476 urb->transfer_buffer_length = buffer_length;
1477 urb->complete = complete_fn;
1478 urb->context = context;
1479 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1480 urb->interval = 1 << (interval - 1);
1481 else
1482 urb->interval = interval;
1483 urb->start_frame = -1;
1484}
1485
1486extern void usb_init_urb(struct urb *urb);
1487extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1488extern void usb_free_urb(struct urb *urb);
1489#define usb_put_urb usb_free_urb
1490extern struct urb *usb_get_urb(struct urb *urb);
1491extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1492extern int usb_unlink_urb(struct urb *urb);
1493extern void usb_kill_urb(struct urb *urb);
1494extern void usb_poison_urb(struct urb *urb);
1495extern void usb_unpoison_urb(struct urb *urb);
1496extern void usb_block_urb(struct urb *urb);
1497extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1498extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1499extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1500extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1501extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1502extern void usb_unanchor_urb(struct urb *urb);
1503extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1504 unsigned int timeout);
1505extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1506extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1507extern int usb_anchor_empty(struct usb_anchor *anchor);
1508
1509#define usb_unblock_urb usb_unpoison_urb
1510
1511/**
1512 * usb_urb_dir_in - check if an URB describes an IN transfer
1513 * @urb: URB to be checked
1514 *
1515 * Returns 1 if @urb describes an IN transfer (device-to-host),
1516 * otherwise 0.
1517 */
1518static inline int usb_urb_dir_in(struct urb *urb)
1519{
1520 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1521}
1522
1523/**
1524 * usb_urb_dir_out - check if an URB describes an OUT transfer
1525 * @urb: URB to be checked
1526 *
1527 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1528 * otherwise 0.
1529 */
1530static inline int usb_urb_dir_out(struct urb *urb)
1531{
1532 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1533}
1534
1535void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1536 gfp_t mem_flags, dma_addr_t *dma);
1537void usb_free_coherent(struct usb_device *dev, size_t size,
1538 void *addr, dma_addr_t dma);
1539
1540#if 0
1541struct urb *usb_buffer_map(struct urb *urb);
1542void usb_buffer_dmasync(struct urb *urb);
1543void usb_buffer_unmap(struct urb *urb);
1544#endif
1545
1546struct scatterlist;
1547int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1548 struct scatterlist *sg, int nents);
1549#if 0
1550void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1551 struct scatterlist *sg, int n_hw_ents);
1552#endif
1553void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1554 struct scatterlist *sg, int n_hw_ents);
1555
1556/*-------------------------------------------------------------------*
1557 * SYNCHRONOUS CALL SUPPORT *
1558 *-------------------------------------------------------------------*/
1559
1560extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1561 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1562 void *data, __u16 size, int timeout);
1563extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1564 void *data, int len, int *actual_length, int timeout);
1565extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1566 void *data, int len, int *actual_length,
1567 int timeout);
1568
1569/* wrappers around usb_control_msg() for the most common standard requests */
1570extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1571 unsigned char descindex, void *buf, int size);
1572extern int usb_get_status(struct usb_device *dev,
1573 int type, int target, void *data);
1574extern int usb_string(struct usb_device *dev, int index,
1575 char *buf, size_t size);
1576
1577/* wrappers that also update important state inside usbcore */
1578extern int usb_clear_halt(struct usb_device *dev, int pipe);
1579extern int usb_reset_configuration(struct usb_device *dev);
1580extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1581extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1582
1583/* this request isn't really synchronous, but it belongs with the others */
1584extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1585
1586/*
1587 * timeouts, in milliseconds, used for sending/receiving control messages
1588 * they typically complete within a few frames (msec) after they're issued
1589 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1590 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1591 */
1592#define USB_CTRL_GET_TIMEOUT 5000
1593#define USB_CTRL_SET_TIMEOUT 5000
1594
1595
1596#ifndef _OS_LINUX
1597struct completion {
1598 unsigned int done;
1599 wait_queue_head_t wait;
1600};
1601#endif
1602
1603/**
1604 * struct usb_sg_request - support for scatter/gather I/O
1605 * @status: zero indicates success, else negative errno
1606 * @bytes: counts bytes transferred.
1607 *
1608 * These requests are initialized using usb_sg_init(), and then are used
1609 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1610 * members of the request object aren't for driver access.
1611 *
1612 * The status and bytecount values are valid only after usb_sg_wait()
1613 * returns. If the status is zero, then the bytecount matches the total
1614 * from the request.
1615 *
1616 * After an error completion, drivers may need to clear a halt condition
1617 * on the endpoint.
1618 */
1619struct usb_sg_request {
1620 int status;
1621 size_t bytes;
1622
1623 /* private:
1624 * members below are private to usbcore,
1625 * and are not provided for driver access!
1626 */
1627 spinlock_t lock;
1628
1629 struct usb_device *dev;
1630 int pipe;
1631
1632 int entries;
1633 struct urb **urbs;
1634
1635 int count;
1636 struct completion complete;
1637};
1638
1639#if 0
1640int usb_sg_init(
1641 struct usb_sg_request *io,
1642 struct usb_device *dev,
1643 unsigned pipe,
1644 unsigned period,
1645 struct scatterlist *sg,
1646 int nents,
1647 size_t length,
1648 gfp_t mem_flags
1649);
1650#endif
1651
1652void usb_sg_cancel(struct usb_sg_request *io);
1653void usb_sg_wait(struct usb_sg_request *io);
1654
1655
1656/* ----------------------------------------------------------------------- */
1657
1658/*
1659 * For various legacy reasons, Linux has a small cookie that's paired with
1660 * a struct usb_device to identify an endpoint queue. Queue characteristics
1661 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1662 * an unsigned int encoded as:
1663 *
1664 * - direction: bit 7 (0 = Host-to-Device [Out],
1665 * 1 = Device-to-Host [In] ...
1666 * like endpoint bEndpointAddress)
1667 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1668 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1669 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1670 * 10 = control, 11 = bulk)
1671 *
1672 * Given the device address and endpoint descriptor, pipes are redundant.
1673 */
1674
1675/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1676/* (yet ... they're the values used by usbfs) */
1677#define PIPE_ISOCHRONOUS 0
1678#define PIPE_INTERRUPT 1
1679#define PIPE_CONTROL 2
1680#define PIPE_BULK 3
1681
1682#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1683#define usb_pipeout(pipe) (!usb_pipein(pipe))
1684
1685#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1686#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1687
1688#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1689#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1690#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1691#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1692#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1693
1694static inline unsigned int __create_pipe(struct usb_device *dev,
1695 unsigned int endpoint)
1696{
1697 return (dev->devnum << 8) | (endpoint << 15);
1698}
1699
1700/* Create various pipes... */
1701#define usb_sndctrlpipe(dev, endpoint) \
1702 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1703#define usb_rcvctrlpipe(dev, endpoint) \
1704 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1705#define usb_sndisocpipe(dev, endpoint) \
1706 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1707#define usb_rcvisocpipe(dev, endpoint) \
1708 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1709#define usb_sndbulkpipe(dev, endpoint) \
1710 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1711#define usb_rcvbulkpipe(dev, endpoint) \
1712 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1713#define usb_sndintpipe(dev, endpoint) \
1714 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1715#define usb_rcvintpipe(dev, endpoint) \
1716 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1717
1718static inline struct usb_host_endpoint *
1719usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1720{
1721 struct usb_host_endpoint **eps;
1722 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1723 return eps[usb_pipeendpoint(pipe)];
1724}
1725
1726/*-------------------------------------------------------------------------*/
1727
1728static inline __u16
1729usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1730{
1731 struct usb_host_endpoint *ep;
1732 unsigned epnum = usb_pipeendpoint(pipe);
1733
1734 if (is_out) {
1735 WARN_ON(usb_pipein(pipe));
1736 ep = udev->ep_out[epnum];
1737 } else {
1738 WARN_ON(usb_pipeout(pipe));
1739 ep = udev->ep_in[epnum];
1740 }
1741 if (!ep)
1742 return 0;
1743
1744 /* NOTE: only 0x07ff bits are for packet size... */
1745 return usb_endpoint_maxp(&ep->desc);
1746}
1747
1748/* ----------------------------------------------------------------------- */
1749
1750/* translate USB error codes to codes user space understands */
1751static inline int usb_translate_errors(int error_code)
1752{
1753 switch (error_code) {
1754 case 0:
1755 case -ENOMEM:
1756 case -ENODEV:
1757 return error_code;
1758 default:
1759 return -EIO;
1760 }
1761}
1762
1763/* Events from the usb core */
1764#define USB_DEVICE_ADD 0x0001
1765#define USB_DEVICE_REMOVE 0x0002
1766#define USB_BUS_ADD 0x0003
1767#define USB_BUS_REMOVE 0x0004
1768extern void usb_register_notify(struct notifier_block *nb);
1769extern void usb_unregister_notify(struct notifier_block *nb);
1770
1771#ifdef DEBUG
1772#define dbg(format, arg...) \
1773 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1774#else
1775#define dbg(format, arg...) \
1776do { \
1777 if (0) \
1778 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1779} while (0)
1780#endif
1781
1782#define err(format, arg...) \
1783 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1784
1785/* debugfs stuff */
1786extern struct dentry *usb_debug_root;
1787
1788#endif /* __KERNEL__ */
1789
1790#define usb_autosuspend_device(udev) do {} while (0)
1791static inline int usb_autoresume_device(struct usb_device *udev)
1792{
1793 return 0;
1794}
1795
1796static inline int usb_remote_wakeup(struct usb_device *udev)
1797{
1798 return 0;
1799}
1800
1801static inline int usb_set_usb2_hardware_lpm(struct usb_device *udev, int enable)
1802{
1803 return 0;
1804}
1805
1806//#define zOss_Malloc(x,y) zOss_Malloc(x)
1807extern int usb_hub_init(void);
1808
1809#endif