| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. | 
|  | 2 | Basic one-word fraction declaration and manipulation. | 
|  | 3 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 4 | This file is part of the GNU C Library. | 
|  | 5 | Contributed by Richard Henderson (rth@cygnus.com), | 
|  | 6 | Jakub Jelinek (jj@ultra.linux.cz), | 
|  | 7 | David S. Miller (davem@redhat.com) and | 
|  | 8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
|  | 9 |  | 
|  | 10 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 11 | modify it under the terms of the GNU Lesser General Public | 
|  | 12 | License as published by the Free Software Foundation; either | 
|  | 13 | version 2.1 of the License, or (at your option) any later version. | 
|  | 14 |  | 
|  | 15 | In addition to the permissions in the GNU Lesser General Public | 
|  | 16 | License, the Free Software Foundation gives you unlimited | 
|  | 17 | permission to link the compiled version of this file into | 
|  | 18 | combinations with other programs, and to distribute those | 
|  | 19 | combinations without any restriction coming from the use of this | 
|  | 20 | file.  (The Lesser General Public License restrictions do apply in | 
|  | 21 | other respects; for example, they cover modification of the file, | 
|  | 22 | and distribution when not linked into a combine executable.) | 
|  | 23 |  | 
|  | 24 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 27 | Lesser General Public License for more details. | 
|  | 28 |  | 
|  | 29 | You should have received a copy of the GNU Lesser General Public | 
|  | 30 | License along with the GNU C Library; if not, see | 
|  | 31 | <http://www.gnu.org/licenses/>.  */ | 
|  | 32 |  | 
|  | 33 | #ifndef SOFT_FP_OP_1_H | 
|  | 34 | #define SOFT_FP_OP_1_H	1 | 
|  | 35 |  | 
|  | 36 | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f _FP_ZERO_INIT | 
|  | 37 | #define _FP_FRAC_COPY_1(D, S)	(D##_f = S##_f) | 
|  | 38 | #define _FP_FRAC_SET_1(X, I)	(X##_f = I) | 
|  | 39 | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
|  | 40 | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
|  | 41 | #define _FP_FRAC_WORD_1(X, w)	(X##_f) | 
|  | 42 |  | 
|  | 43 | #define _FP_FRAC_ADDI_1(X, I)	(X##_f += I) | 
|  | 44 | #define _FP_FRAC_SLL_1(X, N)			\ | 
|  | 45 | do						\ | 
|  | 46 | {						\ | 
|  | 47 | if (__builtin_constant_p (N) && (N) == 1)	\ | 
|  | 48 | X##_f += X##_f;				\ | 
|  | 49 | else					\ | 
|  | 50 | X##_f <<= (N);				\ | 
|  | 51 | }						\ | 
|  | 52 | while (0) | 
|  | 53 | #define _FP_FRAC_SRL_1(X, N)	(X##_f >>= N) | 
|  | 54 |  | 
|  | 55 | /* Right shift with sticky-lsb.  */ | 
|  | 56 | #define _FP_FRAC_SRST_1(X, S, N, sz)	__FP_FRAC_SRST_1 (X##_f, S, (N), (sz)) | 
|  | 57 | #define _FP_FRAC_SRS_1(X, N, sz)	__FP_FRAC_SRS_1 (X##_f, (N), (sz)) | 
|  | 58 |  | 
|  | 59 | #define __FP_FRAC_SRST_1(X, S, N, sz)			\ | 
|  | 60 | do							\ | 
|  | 61 | {							\ | 
|  | 62 | S = (__builtin_constant_p (N) && (N) == 1		\ | 
|  | 63 | ? X & 1					\ | 
|  | 64 | : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\ | 
|  | 65 | X = X >> (N);					\ | 
|  | 66 | }							\ | 
|  | 67 | while (0) | 
|  | 68 |  | 
|  | 69 | #define __FP_FRAC_SRS_1(X, N, sz)				\ | 
|  | 70 | (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1	\ | 
|  | 71 | ? X & 1					\ | 
|  | 72 | : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
|  | 73 |  | 
|  | 74 | #define _FP_FRAC_ADD_1(R, X, Y)	(R##_f = X##_f + Y##_f) | 
|  | 75 | #define _FP_FRAC_SUB_1(R, X, Y)	(R##_f = X##_f - Y##_f) | 
|  | 76 | #define _FP_FRAC_DEC_1(X, Y)	(X##_f -= Y##_f) | 
|  | 77 | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ ((z), X##_f) | 
|  | 78 |  | 
|  | 79 | /* Predicates.  */ | 
|  | 80 | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE) X##_f < 0) | 
|  | 81 | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
|  | 82 | #define _FP_FRAC_OVERP_1(fs, X)	(X##_f & _FP_OVERFLOW_##fs) | 
|  | 83 | #define _FP_FRAC_CLEAR_OVERP_1(fs, X)	(X##_f &= ~_FP_OVERFLOW_##fs) | 
|  | 84 | #define _FP_FRAC_HIGHBIT_DW_1(fs, X)	(X##_f & _FP_HIGHBIT_DW_##fs) | 
|  | 85 | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
|  | 86 | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
|  | 87 | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
|  | 88 |  | 
|  | 89 | #define _FP_ZEROFRAC_1		0 | 
|  | 90 | #define _FP_MINFRAC_1		1 | 
|  | 91 | #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE) 0) | 
|  | 92 |  | 
|  | 93 | /* Unpack the raw bits of a native fp value.  Do not classify or | 
|  | 94 | normalize the data.  */ | 
|  | 95 |  | 
|  | 96 | #define _FP_UNPACK_RAW_1(fs, X, val)			\ | 
|  | 97 | do							\ | 
|  | 98 | {							\ | 
|  | 99 | union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo;	\ | 
|  | 100 | _FP_UNPACK_RAW_1_flo.flt = (val);			\ | 
|  | 101 | \ | 
|  | 102 | X##_f = _FP_UNPACK_RAW_1_flo.bits.frac;		\ | 
|  | 103 | X##_e = _FP_UNPACK_RAW_1_flo.bits.exp;		\ | 
|  | 104 | X##_s = _FP_UNPACK_RAW_1_flo.bits.sign;		\ | 
|  | 105 | }							\ | 
|  | 106 | while (0) | 
|  | 107 |  | 
|  | 108 | #define _FP_UNPACK_RAW_1_P(fs, X, val)			\ | 
|  | 109 | do							\ | 
|  | 110 | {							\ | 
|  | 111 | union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo	\ | 
|  | 112 | = (union _FP_UNION_##fs *) (val);		\ | 
|  | 113 | \ | 
|  | 114 | X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac;	\ | 
|  | 115 | X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp;		\ | 
|  | 116 | X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign;	\ | 
|  | 117 | }							\ | 
|  | 118 | while (0) | 
|  | 119 |  | 
|  | 120 | /* Repack the raw bits of a native fp value.  */ | 
|  | 121 |  | 
|  | 122 | #define _FP_PACK_RAW_1(fs, val, X)		\ | 
|  | 123 | do						\ | 
|  | 124 | {						\ | 
|  | 125 | union _FP_UNION_##fs _FP_PACK_RAW_1_flo;	\ | 
|  | 126 | \ | 
|  | 127 | _FP_PACK_RAW_1_flo.bits.frac = X##_f;	\ | 
|  | 128 | _FP_PACK_RAW_1_flo.bits.exp  = X##_e;	\ | 
|  | 129 | _FP_PACK_RAW_1_flo.bits.sign = X##_s;	\ | 
|  | 130 | \ | 
|  | 131 | (val) = _FP_PACK_RAW_1_flo.flt;		\ | 
|  | 132 | }						\ | 
|  | 133 | while (0) | 
|  | 134 |  | 
|  | 135 | #define _FP_PACK_RAW_1_P(fs, val, X)			\ | 
|  | 136 | do							\ | 
|  | 137 | {							\ | 
|  | 138 | union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo	\ | 
|  | 139 | = (union _FP_UNION_##fs *) (val);		\ | 
|  | 140 | \ | 
|  | 141 | _FP_PACK_RAW_1_P_flo->bits.frac = X##_f;		\ | 
|  | 142 | _FP_PACK_RAW_1_P_flo->bits.exp  = X##_e;		\ | 
|  | 143 | _FP_PACK_RAW_1_P_flo->bits.sign = X##_s;		\ | 
|  | 144 | }							\ | 
|  | 145 | while (0) | 
|  | 146 |  | 
|  | 147 |  | 
|  | 148 | /* Multiplication algorithms: */ | 
|  | 149 |  | 
|  | 150 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 151 | multiplication immediately.  */ | 
|  | 152 |  | 
|  | 153 | #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y)	\ | 
|  | 154 | do							\ | 
|  | 155 | {							\ | 
|  | 156 | R##_f = X##_f * Y##_f;				\ | 
|  | 157 | }							\ | 
|  | 158 | while (0) | 
|  | 159 |  | 
|  | 160 | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\ | 
|  | 161 | do									\ | 
|  | 162 | {									\ | 
|  | 163 | _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y);			\ | 
|  | 164 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 165 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 166 | at either 2B or 2B-1.  */					\ | 
|  | 167 | _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits));			\ | 
|  | 168 | }									\ | 
|  | 169 | while (0) | 
|  | 170 |  | 
|  | 171 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  | 172 |  | 
|  | 173 | #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit)	\ | 
|  | 174 | do								\ | 
|  | 175 | {								\ | 
|  | 176 | doit (R##_f1, R##_f0, X##_f, Y##_f);			\ | 
|  | 177 | }								\ | 
|  | 178 | while (0) | 
|  | 179 |  | 
|  | 180 | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\ | 
|  | 181 | do									\ | 
|  | 182 | {									\ | 
|  | 183 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z);				\ | 
|  | 184 | _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z,	\ | 
|  | 185 | X, Y, doit);				\ | 
|  | 186 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 187 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 188 | at either 2B or 2B-1.  */					\ | 
|  | 189 | _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1,		\ | 
|  | 190 | 2*(wfracbits));					\ | 
|  | 191 | R##_f = _FP_MUL_MEAT_1_wide_Z_f0;					\ | 
|  | 192 | }									\ | 
|  | 193 | while (0) | 
|  | 194 |  | 
|  | 195 | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
|  | 196 |  | 
|  | 197 | #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y)			\ | 
|  | 198 | do									\ | 
|  | 199 | {									\ | 
|  | 200 | _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl;	\ | 
|  | 201 | _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
|  | 202 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a);			\ | 
|  | 203 | \ | 
|  | 204 | /* Split the words in half.  */					\ | 
|  | 205 | _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2);		\ | 
|  | 206 | _FP_MUL_MEAT_DW_1_hard_xl						\ | 
|  | 207 | = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\ | 
|  | 208 | _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2);		\ | 
|  | 209 | _FP_MUL_MEAT_DW_1_hard_yl						\ | 
|  | 210 | = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\ | 
|  | 211 | \ | 
|  | 212 | /* Multiply the pieces.  */					\ | 
|  | 213 | R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
|  | 214 | _FP_MUL_MEAT_DW_1_hard_a_f0					\ | 
|  | 215 | = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl;	\ | 
|  | 216 | _FP_MUL_MEAT_DW_1_hard_a_f1					\ | 
|  | 217 | = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh;	\ | 
|  | 218 | R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh;	\ | 
|  | 219 | \ | 
|  | 220 | /* Reassemble into two full words.  */				\ | 
|  | 221 | if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1)	\ | 
|  | 222 | < _FP_MUL_MEAT_DW_1_hard_a_f1)				\ | 
|  | 223 | R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2);		\ | 
|  | 224 | _FP_MUL_MEAT_DW_1_hard_a_f1					\ | 
|  | 225 | = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2);		\ | 
|  | 226 | _FP_MUL_MEAT_DW_1_hard_a_f0					\ | 
|  | 227 | = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2);		\ | 
|  | 228 | _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a);			\ | 
|  | 229 | }									\ | 
|  | 230 | while (0) | 
|  | 231 |  | 
|  | 232 | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)			\ | 
|  | 233 | do								\ | 
|  | 234 | {								\ | 
|  | 235 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z);			\ | 
|  | 236 | _FP_MUL_MEAT_DW_1_hard ((wfracbits),			\ | 
|  | 237 | _FP_MUL_MEAT_1_hard_z, X, Y);	\ | 
|  | 238 | \ | 
|  | 239 | /* Normalize.  */						\ | 
|  | 240 | _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z,			\ | 
|  | 241 | (wfracbits) - 1, 2*(wfracbits));		\ | 
|  | 242 | R##_f = _FP_MUL_MEAT_1_hard_z_f0;				\ | 
|  | 243 | }								\ | 
|  | 244 | while (0) | 
|  | 245 |  | 
|  | 246 |  | 
|  | 247 | /* Division algorithms: */ | 
|  | 248 |  | 
|  | 249 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 250 | division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
|  | 251 | C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
|  | 252 | choose will depend on what the compiler does with divrem4.  */ | 
|  | 253 |  | 
|  | 254 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)				\ | 
|  | 255 | do									\ | 
|  | 256 | {									\ | 
|  | 257 | _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r;		\ | 
|  | 258 | X##_f <<= (X##_f < Y##_f						\ | 
|  | 259 | ? R##_e--, _FP_WFRACBITS_##fs				\ | 
|  | 260 | : _FP_WFRACBITS_##fs - 1);				\ | 
|  | 261 | doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f);	\ | 
|  | 262 | R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0);	\ | 
|  | 263 | }									\ | 
|  | 264 | while (0) | 
|  | 265 |  | 
|  | 266 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
|  | 267 | that may be useful in this situation.  This first is for a primitive | 
|  | 268 | that requires normalization, the second for one that does not.  Look | 
|  | 269 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
|  | 270 |  | 
|  | 271 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
|  | 272 | do									\ | 
|  | 273 | {									\ | 
|  | 274 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh;				\ | 
|  | 275 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl;				\ | 
|  | 276 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q;				\ | 
|  | 277 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r;				\ | 
|  | 278 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y;				\ | 
|  | 279 | \ | 
|  | 280 | /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
|  | 281 | _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs;	\ | 
|  | 282 | \ | 
|  | 283 | /* Shift X op correspondingly high, that is, up one full word.  */ \ | 
|  | 284 | if (X##_f < Y##_f)						\ | 
|  | 285 | {								\ | 
|  | 286 | R##_e--;							\ | 
|  | 287 | _FP_DIV_MEAT_1_udiv_norm_nl = 0;				\ | 
|  | 288 | _FP_DIV_MEAT_1_udiv_norm_nh = X##_f;				\ | 
|  | 289 | }								\ | 
|  | 290 | else								\ | 
|  | 291 | {								\ | 
|  | 292 | _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1);	\ | 
|  | 293 | _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1;			\ | 
|  | 294 | }								\ | 
|  | 295 | \ | 
|  | 296 | udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q,				\ | 
|  | 297 | _FP_DIV_MEAT_1_udiv_norm_r,				\ | 
|  | 298 | _FP_DIV_MEAT_1_udiv_norm_nh,				\ | 
|  | 299 | _FP_DIV_MEAT_1_udiv_norm_nl,				\ | 
|  | 300 | _FP_DIV_MEAT_1_udiv_norm_y);				\ | 
|  | 301 | R##_f = (_FP_DIV_MEAT_1_udiv_norm_q				\ | 
|  | 302 | | (_FP_DIV_MEAT_1_udiv_norm_r != 0));			\ | 
|  | 303 | }									\ | 
|  | 304 | while (0) | 
|  | 305 |  | 
|  | 306 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)				\ | 
|  | 307 | do									\ | 
|  | 308 | {									\ | 
|  | 309 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl;	\ | 
|  | 310 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r;		\ | 
|  | 311 | if (X##_f < Y##_f)						\ | 
|  | 312 | {								\ | 
|  | 313 | R##_e--;							\ | 
|  | 314 | _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
|  | 315 | _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs;	\ | 
|  | 316 | }								\ | 
|  | 317 | else								\ | 
|  | 318 | {								\ | 
|  | 319 | _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
|  | 320 | _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
|  | 321 | }								\ | 
|  | 322 | udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r,		\ | 
|  | 323 | _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl,	\ | 
|  | 324 | Y##_f);						\ | 
|  | 325 | R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0);	\ | 
|  | 326 | }									\ | 
|  | 327 | while (0) | 
|  | 328 |  | 
|  | 329 |  | 
|  | 330 | /* Square root algorithms: | 
|  | 331 | We have just one right now, maybe Newton approximation | 
|  | 332 | should be added for those machines where division is fast.  */ | 
|  | 333 |  | 
|  | 334 | #define _FP_SQRT_MEAT_1(R, S, T, X, q)		\ | 
|  | 335 | do						\ | 
|  | 336 | {						\ | 
|  | 337 | while ((q) != _FP_WORK_ROUND)		\ | 
|  | 338 | {					\ | 
|  | 339 | T##_f = S##_f + (q);			\ | 
|  | 340 | if (T##_f <= X##_f)			\ | 
|  | 341 | {					\ | 
|  | 342 | S##_f = T##_f + (q);		\ | 
|  | 343 | X##_f -= T##_f;			\ | 
|  | 344 | R##_f += (q);			\ | 
|  | 345 | }					\ | 
|  | 346 | _FP_FRAC_SLL_1 (X, 1);		\ | 
|  | 347 | (q) >>= 1;				\ | 
|  | 348 | }					\ | 
|  | 349 | if (X##_f)				\ | 
|  | 350 | {					\ | 
|  | 351 | if (S##_f < X##_f)			\ | 
|  | 352 | R##_f |= _FP_WORK_ROUND;		\ | 
|  | 353 | R##_f |= _FP_WORK_STICKY;		\ | 
|  | 354 | }					\ | 
|  | 355 | }						\ | 
|  | 356 | while (0) | 
|  | 357 |  | 
|  | 358 | /* Assembly/disassembly for converting to/from integral types. | 
|  | 359 | No shifting or overflow handled here.  */ | 
|  | 360 |  | 
|  | 361 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	((r) = X##_f) | 
|  | 362 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = (r)) | 
|  | 363 |  | 
|  | 364 |  | 
|  | 365 | /* Convert FP values between word sizes.  */ | 
|  | 366 |  | 
|  | 367 | #define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f) | 
|  | 368 |  | 
|  | 369 | #endif /* !SOFT_FP_OP_1_H */ |