| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Convert a 'struct tm' to a time_t value. | 
|  | 2 | Copyright (C) 1993-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Paul Eggert <eggert@twinsun.com>. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | /* Define this to have a standalone program to test this implementation of | 
|  | 21 | mktime.  */ | 
|  | 22 | /* #define DEBUG_MKTIME 1 */ | 
|  | 23 |  | 
|  | 24 | #ifndef _LIBC | 
|  | 25 | # include <config.h> | 
|  | 26 | #endif | 
|  | 27 |  | 
|  | 28 | /* Assume that leap seconds are possible, unless told otherwise. | 
|  | 29 | If the host has a 'zic' command with a '-L leapsecondfilename' option, | 
|  | 30 | then it supports leap seconds; otherwise it probably doesn't.  */ | 
|  | 31 | #ifndef LEAP_SECONDS_POSSIBLE | 
|  | 32 | # define LEAP_SECONDS_POSSIBLE 1 | 
|  | 33 | #endif | 
|  | 34 |  | 
|  | 35 | #include <time.h> | 
|  | 36 |  | 
|  | 37 | #include <limits.h> | 
|  | 38 |  | 
|  | 39 | #include <string.h>		/* For the real memcpy prototype.  */ | 
|  | 40 |  | 
|  | 41 | #if defined DEBUG_MKTIME && DEBUG_MKTIME | 
|  | 42 | # include <stdio.h> | 
|  | 43 | # include <stdlib.h> | 
|  | 44 | /* Make it work even if the system's libc has its own mktime routine.  */ | 
|  | 45 | # undef mktime | 
|  | 46 | # define mktime my_mktime | 
|  | 47 | #endif /* DEBUG_MKTIME */ | 
|  | 48 |  | 
|  | 49 | /* Some of the code in this file assumes that signed integer overflow | 
|  | 50 | silently wraps around.  This assumption can't easily be programmed | 
|  | 51 | around, nor can it be checked for portably at compile-time or | 
|  | 52 | easily eliminated at run-time. | 
|  | 53 |  | 
|  | 54 | Define WRAPV to 1 if the assumption is valid and if | 
|  | 55 | #pragma GCC optimize ("wrapv") | 
|  | 56 | does not trigger GCC bug 51793 | 
|  | 57 | <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=51793>. | 
|  | 58 | Otherwise, define it to 0; this forces the use of slower code that, | 
|  | 59 | while not guaranteed by the C Standard, works on all production | 
|  | 60 | platforms that we know about.  */ | 
|  | 61 | #ifndef WRAPV | 
|  | 62 | # if (((__GNUC__ == 4 && 4 <= __GNUC_MINOR__) || 4 < __GNUC__) \ | 
|  | 63 | && defined __GLIBC__) | 
|  | 64 | #  pragma GCC optimize ("wrapv") | 
|  | 65 | #  define WRAPV 1 | 
|  | 66 | # else | 
|  | 67 | #  define WRAPV 0 | 
|  | 68 | # endif | 
|  | 69 | #endif | 
|  | 70 |  | 
|  | 71 | /* Verify a requirement at compile-time (unlike assert, which is runtime).  */ | 
|  | 72 | #define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; } | 
|  | 73 |  | 
|  | 74 | /* A signed type that is at least one bit wider than int.  */ | 
|  | 75 | #if INT_MAX <= LONG_MAX / 2 | 
|  | 76 | typedef long int long_int; | 
|  | 77 | #else | 
|  | 78 | typedef long long int long_int; | 
|  | 79 | #endif | 
|  | 80 | verify (long_int_is_wide_enough, INT_MAX == INT_MAX * (long_int) 2 / 2); | 
|  | 81 |  | 
|  | 82 | /* Shift A right by B bits portably, by dividing A by 2**B and | 
|  | 83 | truncating towards minus infinity.  A and B should be free of side | 
|  | 84 | effects, and B should be in the range 0 <= B <= INT_BITS - 2, where | 
|  | 85 | INT_BITS is the number of useful bits in an int.  GNU code can | 
|  | 86 | assume that INT_BITS is at least 32. | 
|  | 87 |  | 
|  | 88 | ISO C99 says that A >> B is implementation-defined if A < 0.  Some | 
|  | 89 | implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift | 
|  | 90 | right in the usual way when A < 0, so SHR falls back on division if | 
|  | 91 | ordinary A >> B doesn't seem to be the usual signed shift.  */ | 
|  | 92 | #define SHR(a, b)                                               \ | 
|  | 93 | ((-1 >> 1 == -1                                               \ | 
|  | 94 | && (long_int) -1 >> 1 == -1                                 \ | 
|  | 95 | && ((time_t) -1 >> 1 == -1 || ! TYPE_SIGNED (time_t)))      \ | 
|  | 96 | ? (a) >> (b)                                                 \ | 
|  | 97 | : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) | 
|  | 98 |  | 
|  | 99 | /* The extra casts in the following macros work around compiler bugs, | 
|  | 100 | e.g., in Cray C 5.0.3.0.  */ | 
|  | 101 |  | 
|  | 102 | /* True if the arithmetic type T is an integer type.  bool counts as | 
|  | 103 | an integer.  */ | 
|  | 104 | #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) | 
|  | 105 |  | 
|  | 106 | /* True if negative values of the signed integer type T use two's | 
|  | 107 | complement, or if T is an unsigned integer type.  */ | 
|  | 108 | #define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) | 
|  | 109 |  | 
|  | 110 | /* True if the arithmetic type T is signed.  */ | 
|  | 111 | #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) | 
|  | 112 |  | 
|  | 113 | /* The maximum and minimum values for the integer type T.  These | 
|  | 114 | macros have undefined behavior if T is signed and has padding bits. | 
|  | 115 | If this is a problem for you, please let us know how to fix it for | 
|  | 116 | your host.  */ | 
|  | 117 | #define TYPE_MINIMUM(t) \ | 
|  | 118 | ((t) (! TYPE_SIGNED (t) \ | 
|  | 119 | ? (t) 0 \ | 
|  | 120 | : ~ TYPE_MAXIMUM (t))) | 
|  | 121 | #define TYPE_MAXIMUM(t) \ | 
|  | 122 | ((t) (! TYPE_SIGNED (t) \ | 
|  | 123 | ? (t) -1 \ | 
|  | 124 | : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1))) | 
|  | 125 |  | 
|  | 126 | #ifndef TIME_T_MIN | 
|  | 127 | # define TIME_T_MIN TYPE_MINIMUM (time_t) | 
|  | 128 | #endif | 
|  | 129 | #ifndef TIME_T_MAX | 
|  | 130 | # define TIME_T_MAX TYPE_MAXIMUM (time_t) | 
|  | 131 | #endif | 
|  | 132 | #define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1) | 
|  | 133 |  | 
|  | 134 | verify (time_t_is_integer, TYPE_IS_INTEGER (time_t)); | 
|  | 135 | verify (twos_complement_arithmetic, | 
|  | 136 | (TYPE_TWOS_COMPLEMENT (int) | 
|  | 137 | && TYPE_TWOS_COMPLEMENT (long_int) | 
|  | 138 | && TYPE_TWOS_COMPLEMENT (time_t))); | 
|  | 139 |  | 
|  | 140 | #define EPOCH_YEAR 1970 | 
|  | 141 | #define TM_YEAR_BASE 1900 | 
|  | 142 | verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0); | 
|  | 143 |  | 
|  | 144 | /* Return 1 if YEAR + TM_YEAR_BASE is a leap year.  */ | 
|  | 145 | static int | 
|  | 146 | leapyear (long_int year) | 
|  | 147 | { | 
|  | 148 | /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. | 
|  | 149 | Also, work even if YEAR is negative.  */ | 
|  | 150 | return | 
|  | 151 | ((year & 3) == 0 | 
|  | 152 | && (year % 100 != 0 | 
|  | 153 | || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | /* How many days come before each month (0-12).  */ | 
|  | 157 | #ifndef _LIBC | 
|  | 158 | static | 
|  | 159 | #endif | 
|  | 160 | const unsigned short int __mon_yday[2][13] = | 
|  | 161 | { | 
|  | 162 | /* Normal years.  */ | 
|  | 163 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, | 
|  | 164 | /* Leap years.  */ | 
|  | 165 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } | 
|  | 166 | }; | 
|  | 167 |  | 
|  | 168 |  | 
|  | 169 | #ifndef _LIBC | 
|  | 170 | /* Portable standalone applications should supply a <time.h> that | 
|  | 171 | declares a POSIX-compliant localtime_r, for the benefit of older | 
|  | 172 | implementations that lack localtime_r or have a nonstandard one. | 
|  | 173 | See the gnulib time_r module for one way to implement this.  */ | 
|  | 174 | # undef __localtime_r | 
|  | 175 | # define __localtime_r localtime_r | 
|  | 176 | # define __mktime_internal mktime_internal | 
|  | 177 | # include "mktime-internal.h" | 
|  | 178 | #endif | 
|  | 179 |  | 
|  | 180 | /* Return 1 if the values A and B differ according to the rules for | 
|  | 181 | tm_isdst: A and B differ if one is zero and the other positive.  */ | 
|  | 182 | static int | 
|  | 183 | isdst_differ (int a, int b) | 
|  | 184 | { | 
|  | 185 | return (!a != !b) && (0 <= a) && (0 <= b); | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - | 
|  | 189 | (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks | 
|  | 190 | were not adjusted between the time stamps. | 
|  | 191 |  | 
|  | 192 | The YEAR values uses the same numbering as TP->tm_year.  Values | 
|  | 193 | need not be in the usual range.  However, YEAR1 must not be less | 
|  | 194 | than 2 * INT_MIN or greater than 2 * INT_MAX. | 
|  | 195 |  | 
|  | 196 | The result may overflow.  It is the caller's responsibility to | 
|  | 197 | detect overflow.  */ | 
|  | 198 |  | 
|  | 199 | static time_t | 
|  | 200 | ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1, | 
|  | 201 | int year0, int yday0, int hour0, int min0, int sec0) | 
|  | 202 | { | 
|  | 203 | verify (C99_integer_division, -1 / 2 == 0); | 
|  | 204 |  | 
|  | 205 | /* Compute intervening leap days correctly even if year is negative. | 
|  | 206 | Take care to avoid integer overflow here.  */ | 
|  | 207 | int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3); | 
|  | 208 | int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3); | 
|  | 209 | int a100 = a4 / 25 - (a4 % 25 < 0); | 
|  | 210 | int b100 = b4 / 25 - (b4 % 25 < 0); | 
|  | 211 | int a400 = SHR (a100, 2); | 
|  | 212 | int b400 = SHR (b100, 2); | 
|  | 213 | int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); | 
|  | 214 |  | 
|  | 215 | /* Compute the desired time in time_t precision.  Overflow might | 
|  | 216 | occur here.  */ | 
|  | 217 | time_t tyear1 = year1; | 
|  | 218 | time_t years = tyear1 - year0; | 
|  | 219 | time_t days = 365 * years + yday1 - yday0 + intervening_leap_days; | 
|  | 220 | time_t hours = 24 * days + hour1 - hour0; | 
|  | 221 | time_t minutes = 60 * hours + min1 - min0; | 
|  | 222 | time_t seconds = 60 * minutes + sec1 - sec0; | 
|  | 223 | return seconds; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | /* Return the average of A and B, even if A + B would overflow.  */ | 
|  | 227 | static time_t | 
|  | 228 | time_t_avg (time_t a, time_t b) | 
|  | 229 | { | 
|  | 230 | return SHR (a, 1) + SHR (b, 1) + (a & b & 1); | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | /* Return 1 if A + B does not overflow.  If time_t is unsigned and if | 
|  | 234 | B's top bit is set, assume that the sum represents A - -B, and | 
|  | 235 | return 1 if the subtraction does not wrap around.  */ | 
|  | 236 | static int | 
|  | 237 | time_t_add_ok (time_t a, time_t b) | 
|  | 238 | { | 
|  | 239 | if (! TYPE_SIGNED (time_t)) | 
|  | 240 | { | 
|  | 241 | time_t sum = a + b; | 
|  | 242 | return (sum < a) == (TIME_T_MIDPOINT <= b); | 
|  | 243 | } | 
|  | 244 | else if (WRAPV) | 
|  | 245 | { | 
|  | 246 | time_t sum = a + b; | 
|  | 247 | return (sum < a) == (b < 0); | 
|  | 248 | } | 
|  | 249 | else | 
|  | 250 | { | 
|  | 251 | time_t avg = time_t_avg (a, b); | 
|  | 252 | return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2; | 
|  | 253 | } | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | /* Return 1 if A + B does not overflow.  */ | 
|  | 257 | static int | 
|  | 258 | time_t_int_add_ok (time_t a, int b) | 
|  | 259 | { | 
|  | 260 | verify (int_no_wider_than_time_t, INT_MAX <= TIME_T_MAX); | 
|  | 261 | if (WRAPV) | 
|  | 262 | { | 
|  | 263 | time_t sum = a + b; | 
|  | 264 | return (sum < a) == (b < 0); | 
|  | 265 | } | 
|  | 266 | else | 
|  | 267 | { | 
|  | 268 | int a_odd = a & 1; | 
|  | 269 | time_t avg = SHR (a, 1) + (SHR (b, 1) + (a_odd & b)); | 
|  | 270 | return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2; | 
|  | 271 | } | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | /* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC), | 
|  | 275 | assuming that *T corresponds to *TP and that no clock adjustments | 
|  | 276 | occurred between *TP and the desired time. | 
|  | 277 | If TP is null, return a value not equal to *T; this avoids false matches. | 
|  | 278 | If overflow occurs, yield the minimal or maximal value, except do not | 
|  | 279 | yield a value equal to *T.  */ | 
|  | 280 | static time_t | 
|  | 281 | guess_time_tm (long_int year, long_int yday, int hour, int min, int sec, | 
|  | 282 | const time_t *t, const struct tm *tp) | 
|  | 283 | { | 
|  | 284 | if (tp) | 
|  | 285 | { | 
|  | 286 | time_t d = ydhms_diff (year, yday, hour, min, sec, | 
|  | 287 | tp->tm_year, tp->tm_yday, | 
|  | 288 | tp->tm_hour, tp->tm_min, tp->tm_sec); | 
|  | 289 | if (time_t_add_ok (*t, d)) | 
|  | 290 | return *t + d; | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | /* Overflow occurred one way or another.  Return the nearest result | 
|  | 294 | that is actually in range, except don't report a zero difference | 
|  | 295 | if the actual difference is nonzero, as that would cause a false | 
|  | 296 | match; and don't oscillate between two values, as that would | 
|  | 297 | confuse the spring-forward gap detector.  */ | 
|  | 298 | return (*t < TIME_T_MIDPOINT | 
|  | 299 | ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN) | 
|  | 300 | : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX)); | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | /* Use CONVERT to convert *T to a broken down time in *TP. | 
|  | 304 | If *T is out of range for conversion, adjust it so that | 
|  | 305 | it is the nearest in-range value and then convert that.  */ | 
|  | 306 | static struct tm * | 
|  | 307 | ranged_convert (struct tm *(*convert) (const time_t *, struct tm *), | 
|  | 308 | time_t *t, struct tm *tp) | 
|  | 309 | { | 
|  | 310 | struct tm *r = convert (t, tp); | 
|  | 311 |  | 
|  | 312 | if (!r && *t) | 
|  | 313 | { | 
|  | 314 | time_t bad = *t; | 
|  | 315 | time_t ok = 0; | 
|  | 316 |  | 
|  | 317 | /* BAD is a known unconvertible time_t, and OK is a known good one. | 
|  | 318 | Use binary search to narrow the range between BAD and OK until | 
|  | 319 | they differ by 1.  */ | 
|  | 320 | while (bad != ok + (bad < 0 ? -1 : 1)) | 
|  | 321 | { | 
|  | 322 | time_t mid = *t = time_t_avg (ok, bad); | 
|  | 323 | r = convert (t, tp); | 
|  | 324 | if (r) | 
|  | 325 | ok = mid; | 
|  | 326 | else | 
|  | 327 | bad = mid; | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | if (!r && ok) | 
|  | 331 | { | 
|  | 332 | /* The last conversion attempt failed; | 
|  | 333 | revert to the most recent successful attempt.  */ | 
|  | 334 | *t = ok; | 
|  | 335 | r = convert (t, tp); | 
|  | 336 | } | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | return r; | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 |  | 
|  | 343 | /* Convert *TP to a time_t value, inverting | 
|  | 344 | the monotonic and mostly-unit-linear conversion function CONVERT. | 
|  | 345 | Use *OFFSET to keep track of a guess at the offset of the result, | 
|  | 346 | compared to what the result would be for UTC without leap seconds. | 
|  | 347 | If *OFFSET's guess is correct, only one CONVERT call is needed. | 
|  | 348 | This function is external because it is used also by timegm.c.  */ | 
|  | 349 | time_t | 
|  | 350 | __mktime_internal (struct tm *tp, | 
|  | 351 | struct tm *(*convert) (const time_t *, struct tm *), | 
|  | 352 | time_t *offset) | 
|  | 353 | { | 
|  | 354 | time_t t, gt, t0, t1, t2; | 
|  | 355 | struct tm tm; | 
|  | 356 |  | 
|  | 357 | /* The maximum number of probes (calls to CONVERT) should be enough | 
|  | 358 | to handle any combinations of time zone rule changes, solar time, | 
|  | 359 | leap seconds, and oscillations around a spring-forward gap. | 
|  | 360 | POSIX.1 prohibits leap seconds, but some hosts have them anyway.  */ | 
|  | 361 | int remaining_probes = 6; | 
|  | 362 |  | 
|  | 363 | /* Time requested.  Copy it in case CONVERT modifies *TP; this can | 
|  | 364 | occur if TP is localtime's returned value and CONVERT is localtime.  */ | 
|  | 365 | int sec = tp->tm_sec; | 
|  | 366 | int min = tp->tm_min; | 
|  | 367 | int hour = tp->tm_hour; | 
|  | 368 | int mday = tp->tm_mday; | 
|  | 369 | int mon = tp->tm_mon; | 
|  | 370 | int year_requested = tp->tm_year; | 
|  | 371 | int isdst = tp->tm_isdst; | 
|  | 372 |  | 
|  | 373 | /* 1 if the previous probe was DST.  */ | 
|  | 374 | int dst2; | 
|  | 375 |  | 
|  | 376 | /* Ensure that mon is in range, and set year accordingly.  */ | 
|  | 377 | int mon_remainder = mon % 12; | 
|  | 378 | int negative_mon_remainder = mon_remainder < 0; | 
|  | 379 | int mon_years = mon / 12 - negative_mon_remainder; | 
|  | 380 | long_int lyear_requested = year_requested; | 
|  | 381 | long_int year = lyear_requested + mon_years; | 
|  | 382 |  | 
|  | 383 | /* The other values need not be in range: | 
|  | 384 | the remaining code handles minor overflows correctly, | 
|  | 385 | assuming int and time_t arithmetic wraps around. | 
|  | 386 | Major overflows are caught at the end.  */ | 
|  | 387 |  | 
|  | 388 | /* Calculate day of year from year, month, and day of month. | 
|  | 389 | The result need not be in range.  */ | 
|  | 390 | int mon_yday = ((__mon_yday[leapyear (year)] | 
|  | 391 | [mon_remainder + 12 * negative_mon_remainder]) | 
|  | 392 | - 1); | 
|  | 393 | long_int lmday = mday; | 
|  | 394 | long_int yday = mon_yday + lmday; | 
|  | 395 |  | 
|  | 396 | time_t guessed_offset = *offset; | 
|  | 397 |  | 
|  | 398 | int sec_requested = sec; | 
|  | 399 |  | 
|  | 400 | if (LEAP_SECONDS_POSSIBLE) | 
|  | 401 | { | 
|  | 402 | /* Handle out-of-range seconds specially, | 
|  | 403 | since ydhms_tm_diff assumes every minute has 60 seconds.  */ | 
|  | 404 | if (sec < 0) | 
|  | 405 | sec = 0; | 
|  | 406 | if (59 < sec) | 
|  | 407 | sec = 59; | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | /* Invert CONVERT by probing.  First assume the same offset as last | 
|  | 411 | time.  */ | 
|  | 412 |  | 
|  | 413 | t0 = ydhms_diff (year, yday, hour, min, sec, | 
|  | 414 | EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset); | 
|  | 415 |  | 
|  | 416 | if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3) | 
|  | 417 | { | 
|  | 418 | /* time_t isn't large enough to rule out overflows, so check | 
|  | 419 | for major overflows.  A gross check suffices, since if t0 | 
|  | 420 | has overflowed, it is off by a multiple of TIME_T_MAX - | 
|  | 421 | TIME_T_MIN + 1.  So ignore any component of the difference | 
|  | 422 | that is bounded by a small value.  */ | 
|  | 423 |  | 
|  | 424 | /* Approximate log base 2 of the number of time units per | 
|  | 425 | biennium.  A biennium is 2 years; use this unit instead of | 
|  | 426 | years to avoid integer overflow.  For example, 2 average | 
|  | 427 | Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds, | 
|  | 428 | which is 63113904 seconds, and rint (log2 (63113904)) is | 
|  | 429 | 26.  */ | 
|  | 430 | int ALOG2_SECONDS_PER_BIENNIUM = 26; | 
|  | 431 | int ALOG2_MINUTES_PER_BIENNIUM = 20; | 
|  | 432 | int ALOG2_HOURS_PER_BIENNIUM = 14; | 
|  | 433 | int ALOG2_DAYS_PER_BIENNIUM = 10; | 
|  | 434 | int LOG2_YEARS_PER_BIENNIUM = 1; | 
|  | 435 |  | 
|  | 436 | int approx_requested_biennia = | 
|  | 437 | (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM) | 
|  | 438 | - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM) | 
|  | 439 | + SHR (mday, ALOG2_DAYS_PER_BIENNIUM) | 
|  | 440 | + SHR (hour, ALOG2_HOURS_PER_BIENNIUM) | 
|  | 441 | + SHR (min, ALOG2_MINUTES_PER_BIENNIUM) | 
|  | 442 | + (LEAP_SECONDS_POSSIBLE | 
|  | 443 | ? 0 | 
|  | 444 | : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM))); | 
|  | 445 |  | 
|  | 446 | int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM); | 
|  | 447 | int diff = approx_biennia - approx_requested_biennia; | 
|  | 448 | int approx_abs_diff = diff < 0 ? -1 - diff : diff; | 
|  | 449 |  | 
|  | 450 | /* IRIX 4.0.5 cc miscalculates TIME_T_MIN / 3: it erroneously | 
|  | 451 | gives a positive value of 715827882.  Setting a variable | 
|  | 452 | first then doing math on it seems to work. | 
|  | 453 | (ghazi@caip.rutgers.edu) */ | 
|  | 454 | time_t time_t_max = TIME_T_MAX; | 
|  | 455 | time_t time_t_min = TIME_T_MIN; | 
|  | 456 | time_t overflow_threshold = | 
|  | 457 | (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM; | 
|  | 458 |  | 
|  | 459 | if (overflow_threshold < approx_abs_diff) | 
|  | 460 | { | 
|  | 461 | /* Overflow occurred.  Try repairing it; this might work if | 
|  | 462 | the time zone offset is enough to undo the overflow.  */ | 
|  | 463 | time_t repaired_t0 = -1 - t0; | 
|  | 464 | approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM); | 
|  | 465 | diff = approx_biennia - approx_requested_biennia; | 
|  | 466 | approx_abs_diff = diff < 0 ? -1 - diff : diff; | 
|  | 467 | if (overflow_threshold < approx_abs_diff) | 
|  | 468 | return -1; | 
|  | 469 | guessed_offset += repaired_t0 - t0; | 
|  | 470 | t0 = repaired_t0; | 
|  | 471 | } | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | /* Repeatedly use the error to improve the guess.  */ | 
|  | 475 |  | 
|  | 476 | for (t = t1 = t2 = t0, dst2 = 0; | 
|  | 477 | (gt = guess_time_tm (year, yday, hour, min, sec, &t, | 
|  | 478 | ranged_convert (convert, &t, &tm)), | 
|  | 479 | t != gt); | 
|  | 480 | t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0) | 
|  | 481 | if (t == t1 && t != t2 | 
|  | 482 | && (tm.tm_isdst < 0 | 
|  | 483 | || (isdst < 0 | 
|  | 484 | ? dst2 <= (tm.tm_isdst != 0) | 
|  | 485 | : (isdst != 0) != (tm.tm_isdst != 0)))) | 
|  | 486 | /* We can't possibly find a match, as we are oscillating | 
|  | 487 | between two values.  The requested time probably falls | 
|  | 488 | within a spring-forward gap of size GT - T.  Follow the common | 
|  | 489 | practice in this case, which is to return a time that is GT - T | 
|  | 490 | away from the requested time, preferring a time whose | 
|  | 491 | tm_isdst differs from the requested value.  (If no tm_isdst | 
|  | 492 | was requested and only one of the two values has a nonzero | 
|  | 493 | tm_isdst, prefer that value.)  In practice, this is more | 
|  | 494 | useful than returning -1.  */ | 
|  | 495 | goto offset_found; | 
|  | 496 | else if (--remaining_probes == 0) | 
|  | 497 | return -1; | 
|  | 498 |  | 
|  | 499 | /* We have a match.  Check whether tm.tm_isdst has the requested | 
|  | 500 | value, if any.  */ | 
|  | 501 | if (isdst_differ (isdst, tm.tm_isdst)) | 
|  | 502 | { | 
|  | 503 | /* tm.tm_isdst has the wrong value.  Look for a neighboring | 
|  | 504 | time with the right value, and use its UTC offset. | 
|  | 505 |  | 
|  | 506 | Heuristic: probe the adjacent timestamps in both directions, | 
|  | 507 | looking for the desired isdst.  This should work for all real | 
|  | 508 | time zone histories in the tz database.  */ | 
|  | 509 |  | 
|  | 510 | /* Distance between probes when looking for a DST boundary.  In | 
|  | 511 | tzdata2003a, the shortest period of DST is 601200 seconds | 
|  | 512 | (e.g., America/Recife starting 2000-10-08 01:00), and the | 
|  | 513 | shortest period of non-DST surrounded by DST is 694800 | 
|  | 514 | seconds (Africa/Tunis starting 1943-04-17 01:00).  Use the | 
|  | 515 | minimum of these two values, so we don't miss these short | 
|  | 516 | periods when probing.  */ | 
|  | 517 | int stride = 601200; | 
|  | 518 |  | 
|  | 519 | /* The longest period of DST in tzdata2003a is 536454000 seconds | 
|  | 520 | (e.g., America/Jujuy starting 1946-10-01 01:00).  The longest | 
|  | 521 | period of non-DST is much longer, but it makes no real sense | 
|  | 522 | to search for more than a year of non-DST, so use the DST | 
|  | 523 | max.  */ | 
|  | 524 | int duration_max = 536454000; | 
|  | 525 |  | 
|  | 526 | /* Search in both directions, so the maximum distance is half | 
|  | 527 | the duration; add the stride to avoid off-by-1 problems.  */ | 
|  | 528 | int delta_bound = duration_max / 2 + stride; | 
|  | 529 |  | 
|  | 530 | int delta, direction; | 
|  | 531 |  | 
|  | 532 | for (delta = stride; delta < delta_bound; delta += stride) | 
|  | 533 | for (direction = -1; direction <= 1; direction += 2) | 
|  | 534 | if (time_t_int_add_ok (t, delta * direction)) | 
|  | 535 | { | 
|  | 536 | time_t ot = t + delta * direction; | 
|  | 537 | struct tm otm; | 
|  | 538 | ranged_convert (convert, &ot, &otm); | 
|  | 539 | if (! isdst_differ (isdst, otm.tm_isdst)) | 
|  | 540 | { | 
|  | 541 | /* We found the desired tm_isdst. | 
|  | 542 | Extrapolate back to the desired time.  */ | 
|  | 543 | t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm); | 
|  | 544 | ranged_convert (convert, &t, &tm); | 
|  | 545 | goto offset_found; | 
|  | 546 | } | 
|  | 547 | } | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | offset_found: | 
|  | 551 | *offset = guessed_offset + t - t0; | 
|  | 552 |  | 
|  | 553 | if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) | 
|  | 554 | { | 
|  | 555 | /* Adjust time to reflect the tm_sec requested, not the normalized value. | 
|  | 556 | Also, repair any damage from a false match due to a leap second.  */ | 
|  | 557 | int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec; | 
|  | 558 | if (! time_t_int_add_ok (t, sec_requested)) | 
|  | 559 | return -1; | 
|  | 560 | t1 = t + sec_requested; | 
|  | 561 | if (! time_t_int_add_ok (t1, sec_adjustment)) | 
|  | 562 | return -1; | 
|  | 563 | t2 = t1 + sec_adjustment; | 
|  | 564 | if (! convert (&t2, &tm)) | 
|  | 565 | return -1; | 
|  | 566 | t = t2; | 
|  | 567 | } | 
|  | 568 |  | 
|  | 569 | *tp = tm; | 
|  | 570 | return t; | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 |  | 
|  | 574 | /* FIXME: This should use a signed type wide enough to hold any UTC | 
|  | 575 | offset in seconds.  'int' should be good enough for GNU code.  We | 
|  | 576 | can't fix this unilaterally though, as other modules invoke | 
|  | 577 | __mktime_internal.  */ | 
|  | 578 | static time_t localtime_offset; | 
|  | 579 |  | 
|  | 580 | /* Convert *TP to a time_t value.  */ | 
|  | 581 | time_t | 
|  | 582 | mktime (struct tm *tp) | 
|  | 583 | { | 
|  | 584 | #ifdef _LIBC | 
|  | 585 | /* POSIX.1 8.1.1 requires that whenever mktime() is called, the | 
|  | 586 | time zone names contained in the external variable 'tzname' shall | 
|  | 587 | be set as if the tzset() function had been called.  */ | 
|  | 588 | __tzset (); | 
|  | 589 | #endif | 
|  | 590 |  | 
|  | 591 | return __mktime_internal (tp, __localtime_r, &localtime_offset); | 
|  | 592 | } | 
|  | 593 |  | 
|  | 594 | #ifdef weak_alias | 
|  | 595 | weak_alias (mktime, timelocal) | 
|  | 596 | #endif | 
|  | 597 |  | 
|  | 598 | #ifdef _LIBC | 
|  | 599 | libc_hidden_def (mktime) | 
|  | 600 | libc_hidden_weak (timelocal) | 
|  | 601 | #endif | 
|  | 602 |  | 
|  | 603 | #if defined DEBUG_MKTIME && DEBUG_MKTIME | 
|  | 604 |  | 
|  | 605 | static int | 
|  | 606 | not_equal_tm (const struct tm *a, const struct tm *b) | 
|  | 607 | { | 
|  | 608 | return ((a->tm_sec ^ b->tm_sec) | 
|  | 609 | | (a->tm_min ^ b->tm_min) | 
|  | 610 | | (a->tm_hour ^ b->tm_hour) | 
|  | 611 | | (a->tm_mday ^ b->tm_mday) | 
|  | 612 | | (a->tm_mon ^ b->tm_mon) | 
|  | 613 | | (a->tm_year ^ b->tm_year) | 
|  | 614 | | (a->tm_yday ^ b->tm_yday) | 
|  | 615 | | isdst_differ (a->tm_isdst, b->tm_isdst)); | 
|  | 616 | } | 
|  | 617 |  | 
|  | 618 | static void | 
|  | 619 | print_tm (const struct tm *tp) | 
|  | 620 | { | 
|  | 621 | if (tp) | 
|  | 622 | printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d", | 
|  | 623 | tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday, | 
|  | 624 | tp->tm_hour, tp->tm_min, tp->tm_sec, | 
|  | 625 | tp->tm_yday, tp->tm_wday, tp->tm_isdst); | 
|  | 626 | else | 
|  | 627 | printf ("0"); | 
|  | 628 | } | 
|  | 629 |  | 
|  | 630 | static int | 
|  | 631 | check_result (time_t tk, struct tm tmk, time_t tl, const struct tm *lt) | 
|  | 632 | { | 
|  | 633 | if (tk != tl || !lt || not_equal_tm (&tmk, lt)) | 
|  | 634 | { | 
|  | 635 | printf ("mktime ("); | 
|  | 636 | print_tm (lt); | 
|  | 637 | printf (")\nyields ("); | 
|  | 638 | print_tm (&tmk); | 
|  | 639 | printf (") == %ld, should be %ld\n", (long int) tk, (long int) tl); | 
|  | 640 | return 1; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | return 0; | 
|  | 644 | } | 
|  | 645 |  | 
|  | 646 | int | 
|  | 647 | main (int argc, char **argv) | 
|  | 648 | { | 
|  | 649 | int status = 0; | 
|  | 650 | struct tm tm, tmk, tml; | 
|  | 651 | struct tm *lt; | 
|  | 652 | time_t tk, tl, tl1; | 
|  | 653 | char trailer; | 
|  | 654 |  | 
|  | 655 | if ((argc == 3 || argc == 4) | 
|  | 656 | && (sscanf (argv[1], "%d-%d-%d%c", | 
|  | 657 | &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer) | 
|  | 658 | == 3) | 
|  | 659 | && (sscanf (argv[2], "%d:%d:%d%c", | 
|  | 660 | &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer) | 
|  | 661 | == 3)) | 
|  | 662 | { | 
|  | 663 | tm.tm_year -= TM_YEAR_BASE; | 
|  | 664 | tm.tm_mon--; | 
|  | 665 | tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]); | 
|  | 666 | tmk = tm; | 
|  | 667 | tl = mktime (&tmk); | 
|  | 668 | lt = localtime (&tl); | 
|  | 669 | if (lt) | 
|  | 670 | { | 
|  | 671 | tml = *lt; | 
|  | 672 | lt = &tml; | 
|  | 673 | } | 
|  | 674 | printf ("mktime returns %ld == ", (long int) tl); | 
|  | 675 | print_tm (&tmk); | 
|  | 676 | printf ("\n"); | 
|  | 677 | status = check_result (tl, tmk, tl, lt); | 
|  | 678 | } | 
|  | 679 | else if (argc == 4 || (argc == 5 && strcmp (argv[4], "-") == 0)) | 
|  | 680 | { | 
|  | 681 | time_t from = atol (argv[1]); | 
|  | 682 | time_t by = atol (argv[2]); | 
|  | 683 | time_t to = atol (argv[3]); | 
|  | 684 |  | 
|  | 685 | if (argc == 4) | 
|  | 686 | for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) | 
|  | 687 | { | 
|  | 688 | lt = localtime (&tl); | 
|  | 689 | if (lt) | 
|  | 690 | { | 
|  | 691 | tmk = tml = *lt; | 
|  | 692 | tk = mktime (&tmk); | 
|  | 693 | status |= check_result (tk, tmk, tl, &tml); | 
|  | 694 | } | 
|  | 695 | else | 
|  | 696 | { | 
|  | 697 | printf ("localtime (%ld) yields 0\n", (long int) tl); | 
|  | 698 | status = 1; | 
|  | 699 | } | 
|  | 700 | tl1 = tl + by; | 
|  | 701 | if ((tl1 < tl) != (by < 0)) | 
|  | 702 | break; | 
|  | 703 | } | 
|  | 704 | else | 
|  | 705 | for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) | 
|  | 706 | { | 
|  | 707 | /* Null benchmark.  */ | 
|  | 708 | lt = localtime (&tl); | 
|  | 709 | if (lt) | 
|  | 710 | { | 
|  | 711 | tmk = tml = *lt; | 
|  | 712 | tk = tl; | 
|  | 713 | status |= check_result (tk, tmk, tl, &tml); | 
|  | 714 | } | 
|  | 715 | else | 
|  | 716 | { | 
|  | 717 | printf ("localtime (%ld) yields 0\n", (long int) tl); | 
|  | 718 | status = 1; | 
|  | 719 | } | 
|  | 720 | tl1 = tl + by; | 
|  | 721 | if ((tl1 < tl) != (by < 0)) | 
|  | 722 | break; | 
|  | 723 | } | 
|  | 724 | } | 
|  | 725 | else | 
|  | 726 | printf ("Usage:\ | 
|  | 727 | \t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\ | 
|  | 728 | \t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\ | 
|  | 729 | \t%s FROM BY TO - # Do not test those values (for benchmark).\n", | 
|  | 730 | argv[0], argv[0], argv[0]); | 
|  | 731 |  | 
|  | 732 | return status; | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | #endif /* DEBUG_MKTIME */ | 
|  | 736 |  | 
|  | 737 | /* | 
|  | 738 | Local Variables: | 
|  | 739 | compile-command: "gcc -DDEBUG_MKTIME -I. -Wall -W -O2 -g mktime.c -o mktime" | 
|  | 740 | End: | 
|  | 741 | */ |