| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/mm/swap_state.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 | 5 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 | 6 |  * | 
 | 7 |  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
 | 8 |  */ | 
 | 9 | #include <linux/mm.h> | 
 | 10 | #include <linux/gfp.h> | 
 | 11 | #include <linux/kernel_stat.h> | 
 | 12 | #include <linux/swap.h> | 
 | 13 | #include <linux/swapops.h> | 
 | 14 | #include <linux/init.h> | 
 | 15 | #include <linux/pagemap.h> | 
 | 16 | #include <linux/backing-dev.h> | 
 | 17 | #include <linux/pagevec.h> | 
 | 18 | #include <linux/migrate.h> | 
 | 19 | #include <linux/page_cgroup.h> | 
 | 20 |  | 
 | 21 | #include <asm/pgtable.h> | 
 | 22 |  | 
 | 23 | /* | 
 | 24 |  * swapper_space is a fiction, retained to simplify the path through | 
 | 25 |  * vmscan's shrink_page_list. | 
 | 26 |  */ | 
 | 27 | static const struct address_space_operations swap_aops = { | 
 | 28 | 	.writepage	= swap_writepage, | 
 | 29 | 	.set_page_dirty	= __set_page_dirty_no_writeback, | 
 | 30 | 	.migratepage	= migrate_page, | 
 | 31 | }; | 
 | 32 |  | 
 | 33 | static struct backing_dev_info swap_backing_dev_info = { | 
 | 34 | 	.name		= "swap", | 
 | 35 | 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, | 
 | 36 | }; | 
 | 37 |  | 
 | 38 | struct address_space swapper_space = { | 
 | 39 | 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), | 
 | 40 | 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), | 
 | 41 | 	.a_ops		= &swap_aops, | 
 | 42 | 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), | 
 | 43 | 	.backing_dev_info = &swap_backing_dev_info, | 
 | 44 | }; | 
 | 45 |  | 
 | 46 | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
 | 47 |  | 
 | 48 | static struct { | 
 | 49 | 	unsigned long add_total; | 
 | 50 | 	unsigned long del_total; | 
 | 51 | 	unsigned long find_success; | 
 | 52 | 	unsigned long find_total; | 
 | 53 | } swap_cache_info; | 
 | 54 |  | 
 | 55 | void show_swap_cache_info(void) | 
 | 56 | { | 
 | 57 | 	printk("%lu pages in swap cache\n", total_swapcache_pages); | 
 | 58 | 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
 | 59 | 		swap_cache_info.add_total, swap_cache_info.del_total, | 
 | 60 | 		swap_cache_info.find_success, swap_cache_info.find_total); | 
 | 61 | 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); | 
 | 62 | 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
 | 63 | } | 
 | 64 |  | 
 | 65 | /* | 
 | 66 |  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
 | 67 |  * but sets SwapCache flag and private instead of mapping and index. | 
 | 68 |  */ | 
 | 69 | static int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
 | 70 | { | 
 | 71 | 	int error; | 
 | 72 |  | 
 | 73 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 74 | 	VM_BUG_ON(PageSwapCache(page)); | 
 | 75 | 	VM_BUG_ON(!PageSwapBacked(page)); | 
 | 76 |  | 
 | 77 | 	page_cache_get(page); | 
 | 78 | 	SetPageSwapCache(page); | 
 | 79 | 	set_page_private(page, entry.val); | 
 | 80 |  | 
 | 81 | 	spin_lock_irq(&swapper_space.tree_lock); | 
 | 82 | 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); | 
 | 83 | 	if (likely(!error)) { | 
 | 84 | 		total_swapcache_pages++; | 
 | 85 | #ifndef CONFIG_LIMIT_PAGE_CACHE | 
 | 86 | 		__inc_zone_page_state(page, NR_FILE_PAGES); | 
 | 87 | #endif | 
 | 88 | 		INC_CACHE_INFO(add_total); | 
 | 89 | 	} | 
 | 90 | 	spin_unlock_irq(&swapper_space.tree_lock); | 
 | 91 |  | 
 | 92 | 	if (unlikely(error)) { | 
 | 93 | 		/* | 
 | 94 | 		 * Only the context which have set SWAP_HAS_CACHE flag | 
 | 95 | 		 * would call add_to_swap_cache(). | 
 | 96 | 		 * So add_to_swap_cache() doesn't returns -EEXIST. | 
 | 97 | 		 */ | 
 | 98 | 		VM_BUG_ON(error == -EEXIST); | 
 | 99 | 		set_page_private(page, 0UL); | 
 | 100 | 		ClearPageSwapCache(page); | 
 | 101 | 		page_cache_release(page); | 
 | 102 | 	} | 
 | 103 |  | 
 | 104 | 	return error; | 
 | 105 | } | 
 | 106 |  | 
 | 107 |  | 
 | 108 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
 | 109 | { | 
 | 110 | 	int error; | 
 | 111 |  | 
 | 112 | 	error = radix_tree_preload(gfp_mask); | 
 | 113 | 	if (!error) { | 
 | 114 | 		error = __add_to_swap_cache(page, entry); | 
 | 115 | 		radix_tree_preload_end(); | 
 | 116 | 	} | 
 | 117 | 	return error; | 
 | 118 | } | 
 | 119 |  | 
 | 120 | /* | 
 | 121 |  * This must be called only on pages that have | 
 | 122 |  * been verified to be in the swap cache. | 
 | 123 |  */ | 
 | 124 | void __delete_from_swap_cache(struct page *page) | 
 | 125 | { | 
 | 126 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 127 | 	VM_BUG_ON(!PageSwapCache(page)); | 
 | 128 | 	VM_BUG_ON(PageWriteback(page)); | 
 | 129 |  | 
 | 130 | 	radix_tree_delete(&swapper_space.page_tree, page_private(page)); | 
 | 131 | 	set_page_private(page, 0); | 
 | 132 | 	ClearPageSwapCache(page); | 
 | 133 | 	total_swapcache_pages--; | 
 | 134 | #ifndef CONFIG_LIMIT_PAGE_CACHE | 
 | 135 | 	__dec_zone_page_state(page, NR_FILE_PAGES); | 
 | 136 | #endif | 
 | 137 | 	INC_CACHE_INFO(del_total); | 
 | 138 | } | 
 | 139 |  | 
 | 140 | /** | 
 | 141 |  * add_to_swap - allocate swap space for a page | 
 | 142 |  * @page: page we want to move to swap | 
 | 143 |  * | 
 | 144 |  * Allocate swap space for the page and add the page to the | 
 | 145 |  * swap cache.  Caller needs to hold the page lock.  | 
 | 146 |  */ | 
 | 147 | int add_to_swap(struct page *page) | 
 | 148 | { | 
 | 149 | 	swp_entry_t entry; | 
 | 150 | 	int err; | 
 | 151 |  | 
 | 152 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 153 | 	VM_BUG_ON(!PageUptodate(page)); | 
 | 154 |  | 
 | 155 | 	entry = get_swap_page(); | 
 | 156 | 	if (!entry.val) | 
 | 157 | 		return 0; | 
 | 158 |  | 
 | 159 | 	if (unlikely(PageTransHuge(page))) | 
 | 160 | 		if (unlikely(split_huge_page(page))) { | 
 | 161 | 			swapcache_free(entry, NULL); | 
 | 162 | 			return 0; | 
 | 163 | 		} | 
 | 164 |  | 
 | 165 | 	/* | 
 | 166 | 	 * Radix-tree node allocations from PF_MEMALLOC contexts could | 
 | 167 | 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
 | 168 | 	 * stops emergency reserves from being allocated. | 
 | 169 | 	 * | 
 | 170 | 	 * TODO: this could cause a theoretical memory reclaim | 
 | 171 | 	 * deadlock in the swap out path. | 
 | 172 | 	 */ | 
 | 173 | 	/* | 
 | 174 | 	 * Add it to the swap cache and mark it dirty | 
 | 175 | 	 */ | 
 | 176 | 	err = add_to_swap_cache(page, entry, | 
 | 177 | 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
 | 178 |  | 
 | 179 | 	if (!err) {	/* Success */ | 
 | 180 | 		SetPageDirty(page); | 
 | 181 | 		return 1; | 
 | 182 | 	} else {	/* -ENOMEM radix-tree allocation failure */ | 
 | 183 | 		/* | 
 | 184 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 185 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 186 | 		 */ | 
 | 187 | 		swapcache_free(entry, NULL); | 
 | 188 | 		return 0; | 
 | 189 | 	} | 
 | 190 | } | 
 | 191 |  | 
 | 192 | /* | 
 | 193 |  * This must be called only on pages that have | 
 | 194 |  * been verified to be in the swap cache and locked. | 
 | 195 |  * It will never put the page into the free list, | 
 | 196 |  * the caller has a reference on the page. | 
 | 197 |  */ | 
 | 198 | void delete_from_swap_cache(struct page *page) | 
 | 199 | { | 
 | 200 | 	swp_entry_t entry; | 
 | 201 |  | 
 | 202 | 	entry.val = page_private(page); | 
 | 203 |  | 
 | 204 | 	spin_lock_irq(&swapper_space.tree_lock); | 
 | 205 | 	__delete_from_swap_cache(page); | 
 | 206 | 	spin_unlock_irq(&swapper_space.tree_lock); | 
 | 207 |  | 
 | 208 | 	swapcache_free(entry, page); | 
 | 209 | 	page_cache_release(page); | 
 | 210 | } | 
 | 211 |  | 
 | 212 | /*  | 
 | 213 |  * If we are the only user, then try to free up the swap cache.  | 
 | 214 |  *  | 
 | 215 |  * Its ok to check for PageSwapCache without the page lock | 
 | 216 |  * here because we are going to recheck again inside | 
 | 217 |  * try_to_free_swap() _with_ the lock. | 
 | 218 |  * 					- Marcelo | 
 | 219 |  */ | 
 | 220 | static inline void free_swap_cache(struct page *page) | 
 | 221 | { | 
 | 222 | 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
 | 223 | 		try_to_free_swap(page); | 
 | 224 | 		unlock_page(page); | 
 | 225 | 	} | 
 | 226 | } | 
 | 227 |  | 
 | 228 | /*  | 
 | 229 |  * Perform a free_page(), also freeing any swap cache associated with | 
 | 230 |  * this page if it is the last user of the page. | 
 | 231 |  */ | 
 | 232 | void free_page_and_swap_cache(struct page *page) | 
 | 233 | { | 
 | 234 | 	free_swap_cache(page); | 
 | 235 | 	page_cache_release(page); | 
 | 236 | } | 
 | 237 |  | 
 | 238 | /* | 
 | 239 |  * Passed an array of pages, drop them all from swapcache and then release | 
 | 240 |  * them.  They are removed from the LRU and freed if this is their last use. | 
 | 241 |  */ | 
 | 242 | void free_pages_and_swap_cache(struct page **pages, int nr) | 
 | 243 | { | 
 | 244 | 	struct page **pagep = pages; | 
 | 245 |  | 
 | 246 | 	lru_add_drain(); | 
 | 247 | 	while (nr) { | 
 | 248 | 		int todo = min(nr, PAGEVEC_SIZE); | 
 | 249 | 		int i; | 
 | 250 |  | 
 | 251 | 		for (i = 0; i < todo; i++) | 
 | 252 | 			free_swap_cache(pagep[i]); | 
 | 253 | 		release_pages(pagep, todo, 0); | 
 | 254 | 		pagep += todo; | 
 | 255 | 		nr -= todo; | 
 | 256 | 	} | 
 | 257 | } | 
 | 258 |  | 
 | 259 | /* | 
 | 260 |  * Lookup a swap entry in the swap cache. A found page will be returned | 
 | 261 |  * unlocked and with its refcount incremented - we rely on the kernel | 
 | 262 |  * lock getting page table operations atomic even if we drop the page | 
 | 263 |  * lock before returning. | 
 | 264 |  */ | 
 | 265 | struct page * lookup_swap_cache(swp_entry_t entry) | 
 | 266 | { | 
 | 267 | 	struct page *page; | 
 | 268 |  | 
 | 269 | 	page = find_get_page(&swapper_space, entry.val); | 
 | 270 |  | 
 | 271 | 	if (page) | 
 | 272 | 		INC_CACHE_INFO(find_success); | 
 | 273 |  | 
 | 274 | 	INC_CACHE_INFO(find_total); | 
 | 275 | 	return page; | 
 | 276 | } | 
 | 277 |  | 
 | 278 | /*  | 
 | 279 |  * Locate a page of swap in physical memory, reserving swap cache space | 
 | 280 |  * and reading the disk if it is not already cached. | 
 | 281 |  * A failure return means that either the page allocation failed or that | 
 | 282 |  * the swap entry is no longer in use. | 
 | 283 |  */ | 
 | 284 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
 | 285 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 286 | { | 
 | 287 | 	struct page *found_page, *new_page = NULL; | 
 | 288 | 	int err; | 
 | 289 |  | 
 | 290 | 	do { | 
 | 291 | 		/* | 
 | 292 | 		 * First check the swap cache.  Since this is normally | 
 | 293 | 		 * called after lookup_swap_cache() failed, re-calling | 
 | 294 | 		 * that would confuse statistics. | 
 | 295 | 		 */ | 
 | 296 | 		found_page = find_get_page(&swapper_space, entry.val); | 
 | 297 | 		if (found_page) | 
 | 298 | 			break; | 
 | 299 |  | 
 | 300 | 		/* | 
 | 301 | 		 * Get a new page to read into from swap. | 
 | 302 | 		 */ | 
 | 303 | 		if (!new_page) { | 
 | 304 | 			new_page = alloc_page_vma(gfp_mask, vma, addr); | 
 | 305 | 			if (!new_page) | 
 | 306 | 				break;		/* Out of memory */ | 
 | 307 | 		} | 
 | 308 |  | 
 | 309 | 		/* | 
 | 310 | 		 * call radix_tree_preload() while we can wait. | 
 | 311 | 		 */ | 
 | 312 | 		err = radix_tree_preload(gfp_mask & GFP_KERNEL); | 
 | 313 | 		if (err) | 
 | 314 | 			break; | 
 | 315 |  | 
 | 316 | 		/* | 
 | 317 | 		 * Swap entry may have been freed since our caller observed it. | 
 | 318 | 		 */ | 
 | 319 | 		err = swapcache_prepare(entry); | 
 | 320 | 		if (err == -EEXIST) { | 
 | 321 | 			radix_tree_preload_end(); | 
 | 322 | 			/* | 
 | 323 | 			 * We might race against get_swap_page() and stumble | 
 | 324 | 			 * across a SWAP_HAS_CACHE swap_map entry whose page | 
 | 325 | 			 * has not been brought into the swapcache yet, while | 
 | 326 | 			 * the other end is scheduled away waiting on discard | 
 | 327 | 			 * I/O completion at scan_swap_map(). | 
 | 328 | 			 * | 
 | 329 | 			 * In order to avoid turning this transitory state | 
 | 330 | 			 * into a permanent loop around this -EEXIST case | 
 | 331 | 			 * if !CONFIG_PREEMPT and the I/O completion happens | 
 | 332 | 			 * to be waiting on the CPU waitqueue where we are now | 
 | 333 | 			 * busy looping, we just conditionally invoke the | 
 | 334 | 			 * scheduler here, if there are some more important | 
 | 335 | 			 * tasks to run. | 
 | 336 | 			 */ | 
 | 337 | 			cond_resched(); | 
 | 338 | 			continue; | 
 | 339 | 		} | 
 | 340 | 		if (err) {		/* swp entry is obsolete ? */ | 
 | 341 | 			radix_tree_preload_end(); | 
 | 342 | 			break; | 
 | 343 | 		} | 
 | 344 |  | 
 | 345 | 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
 | 346 | 		__set_page_locked(new_page); | 
 | 347 | 		SetPageSwapBacked(new_page); | 
 | 348 | 		err = __add_to_swap_cache(new_page, entry); | 
 | 349 | 		if (likely(!err)) { | 
 | 350 | 			radix_tree_preload_end(); | 
 | 351 | 			/* | 
 | 352 | 			 * Initiate read into locked page and return. | 
 | 353 | 			 */ | 
 | 354 | 			lru_cache_add_anon(new_page); | 
 | 355 | 			swap_readpage(new_page); | 
 | 356 | 			return new_page; | 
 | 357 | 		} | 
 | 358 | 		radix_tree_preload_end(); | 
 | 359 | 		ClearPageSwapBacked(new_page); | 
 | 360 | 		__clear_page_locked(new_page); | 
 | 361 | 		/* | 
 | 362 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 363 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 364 | 		 */ | 
 | 365 | 		swapcache_free(entry, NULL); | 
 | 366 | 	} while (err != -ENOMEM); | 
 | 367 |  | 
 | 368 | 	if (new_page) | 
 | 369 | 		page_cache_release(new_page); | 
 | 370 | 	return found_page; | 
 | 371 | } | 
 | 372 |  | 
 | 373 | /** | 
 | 374 |  * swapin_readahead - swap in pages in hope we need them soon | 
 | 375 |  * @entry: swap entry of this memory | 
 | 376 |  * @gfp_mask: memory allocation flags | 
 | 377 |  * @vma: user vma this address belongs to | 
 | 378 |  * @addr: target address for mempolicy | 
 | 379 |  * | 
 | 380 |  * Returns the struct page for entry and addr, after queueing swapin. | 
 | 381 |  * | 
 | 382 |  * Primitive swap readahead code. We simply read an aligned block of | 
 | 383 |  * (1 << page_cluster) entries in the swap area. This method is chosen | 
 | 384 |  * because it doesn't cost us any seek time.  We also make sure to queue | 
 | 385 |  * the 'original' request together with the readahead ones... | 
 | 386 |  * | 
 | 387 |  * This has been extended to use the NUMA policies from the mm triggering | 
 | 388 |  * the readahead. | 
 | 389 |  * | 
 | 390 |  * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
 | 391 |  */ | 
 | 392 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
 | 393 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 394 | { | 
 | 395 | 	struct page *page; | 
 | 396 | 	unsigned long offset = swp_offset(entry); | 
 | 397 | 	unsigned long start_offset, end_offset; | 
 | 398 | 	unsigned long mask = (1UL << page_cluster) - 1; | 
 | 399 |  | 
 | 400 | 	/* Read a page_cluster sized and aligned cluster around offset. */ | 
 | 401 | 	start_offset = offset & ~mask; | 
 | 402 | 	end_offset = offset | mask; | 
 | 403 | 	if (!start_offset)	/* First page is swap header. */ | 
 | 404 | 		start_offset++; | 
 | 405 |  | 
 | 406 | 	for (offset = start_offset; offset <= end_offset ; offset++) { | 
 | 407 | 		/* Ok, do the async read-ahead now */ | 
 | 408 | 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset), | 
 | 409 | 						gfp_mask, vma, addr); | 
 | 410 | 		if (!page) | 
 | 411 | 			continue; | 
 | 412 | 		page_cache_release(page); | 
 | 413 | 	} | 
 | 414 | 	lru_add_drain();	/* Push any new pages onto the LRU now */ | 
 | 415 | 	return read_swap_cache_async(entry, gfp_mask, vma, addr); | 
 | 416 | } |