| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * lib/bitmap.c | 
|  | 3 | * Helper functions for bitmap.h. | 
|  | 4 | * | 
|  | 5 | * This source code is licensed under the GNU General Public License, | 
|  | 6 | * Version 2.  See the file COPYING for more details. | 
|  | 7 | */ | 
|  | 8 | #include <linux/export.h> | 
|  | 9 | #include <linux/thread_info.h> | 
|  | 10 | #include <linux/ctype.h> | 
|  | 11 | #include <linux/errno.h> | 
|  | 12 | #include <linux/bitmap.h> | 
|  | 13 | #include <linux/bitops.h> | 
|  | 14 | #include <linux/bug.h> | 
|  | 15 | #include <asm/uaccess.h> | 
|  | 16 |  | 
|  | 17 | /* | 
|  | 18 | * bitmaps provide an array of bits, implemented using an an | 
|  | 19 | * array of unsigned longs.  The number of valid bits in a | 
|  | 20 | * given bitmap does _not_ need to be an exact multiple of | 
|  | 21 | * BITS_PER_LONG. | 
|  | 22 | * | 
|  | 23 | * The possible unused bits in the last, partially used word | 
|  | 24 | * of a bitmap are 'don't care'.  The implementation makes | 
|  | 25 | * no particular effort to keep them zero.  It ensures that | 
|  | 26 | * their value will not affect the results of any operation. | 
|  | 27 | * The bitmap operations that return Boolean (bitmap_empty, | 
|  | 28 | * for example) or scalar (bitmap_weight, for example) results | 
|  | 29 | * carefully filter out these unused bits from impacting their | 
|  | 30 | * results. | 
|  | 31 | * | 
|  | 32 | * These operations actually hold to a slightly stronger rule: | 
|  | 33 | * if you don't input any bitmaps to these ops that have some | 
|  | 34 | * unused bits set, then they won't output any set unused bits | 
|  | 35 | * in output bitmaps. | 
|  | 36 | * | 
|  | 37 | * The byte ordering of bitmaps is more natural on little | 
|  | 38 | * endian architectures.  See the big-endian headers | 
|  | 39 | * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h | 
|  | 40 | * for the best explanations of this ordering. | 
|  | 41 | */ | 
|  | 42 |  | 
|  | 43 | int __bitmap_empty(const unsigned long *bitmap, int bits) | 
|  | 44 | { | 
|  | 45 | int k, lim = bits/BITS_PER_LONG; | 
|  | 46 | for (k = 0; k < lim; ++k) | 
|  | 47 | if (bitmap[k]) | 
|  | 48 | return 0; | 
|  | 49 |  | 
|  | 50 | if (bits % BITS_PER_LONG) | 
|  | 51 | if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
|  | 52 | return 0; | 
|  | 53 |  | 
|  | 54 | return 1; | 
|  | 55 | } | 
|  | 56 | EXPORT_SYMBOL(__bitmap_empty); | 
|  | 57 |  | 
|  | 58 | int __bitmap_full(const unsigned long *bitmap, int bits) | 
|  | 59 | { | 
|  | 60 | int k, lim = bits/BITS_PER_LONG; | 
|  | 61 | for (k = 0; k < lim; ++k) | 
|  | 62 | if (~bitmap[k]) | 
|  | 63 | return 0; | 
|  | 64 |  | 
|  | 65 | if (bits % BITS_PER_LONG) | 
|  | 66 | if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
|  | 67 | return 0; | 
|  | 68 |  | 
|  | 69 | return 1; | 
|  | 70 | } | 
|  | 71 | EXPORT_SYMBOL(__bitmap_full); | 
|  | 72 |  | 
|  | 73 | int __bitmap_equal(const unsigned long *bitmap1, | 
|  | 74 | const unsigned long *bitmap2, int bits) | 
|  | 75 | { | 
|  | 76 | int k, lim = bits/BITS_PER_LONG; | 
|  | 77 | for (k = 0; k < lim; ++k) | 
|  | 78 | if (bitmap1[k] != bitmap2[k]) | 
|  | 79 | return 0; | 
|  | 80 |  | 
|  | 81 | if (bits % BITS_PER_LONG) | 
|  | 82 | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | 83 | return 0; | 
|  | 84 |  | 
|  | 85 | return 1; | 
|  | 86 | } | 
|  | 87 | EXPORT_SYMBOL(__bitmap_equal); | 
|  | 88 |  | 
|  | 89 | void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) | 
|  | 90 | { | 
|  | 91 | int k, lim = bits/BITS_PER_LONG; | 
|  | 92 | for (k = 0; k < lim; ++k) | 
|  | 93 | dst[k] = ~src[k]; | 
|  | 94 |  | 
|  | 95 | if (bits % BITS_PER_LONG) | 
|  | 96 | dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); | 
|  | 97 | } | 
|  | 98 | EXPORT_SYMBOL(__bitmap_complement); | 
|  | 99 |  | 
|  | 100 | /** | 
|  | 101 | * __bitmap_shift_right - logical right shift of the bits in a bitmap | 
|  | 102 | *   @dst : destination bitmap | 
|  | 103 | *   @src : source bitmap | 
|  | 104 | *   @shift : shift by this many bits | 
|  | 105 | *   @bits : bitmap size, in bits | 
|  | 106 | * | 
|  | 107 | * Shifting right (dividing) means moving bits in the MS -> LS bit | 
|  | 108 | * direction.  Zeros are fed into the vacated MS positions and the | 
|  | 109 | * LS bits shifted off the bottom are lost. | 
|  | 110 | */ | 
|  | 111 | void __bitmap_shift_right(unsigned long *dst, | 
|  | 112 | const unsigned long *src, int shift, int bits) | 
|  | 113 | { | 
|  | 114 | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
|  | 115 | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|  | 116 | unsigned long mask = (1UL << left) - 1; | 
|  | 117 | for (k = 0; off + k < lim; ++k) { | 
|  | 118 | unsigned long upper, lower; | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * If shift is not word aligned, take lower rem bits of | 
|  | 122 | * word above and make them the top rem bits of result. | 
|  | 123 | */ | 
|  | 124 | if (!rem || off + k + 1 >= lim) | 
|  | 125 | upper = 0; | 
|  | 126 | else { | 
|  | 127 | upper = src[off + k + 1]; | 
|  | 128 | if (off + k + 1 == lim - 1 && left) | 
|  | 129 | upper &= mask; | 
|  | 130 | } | 
|  | 131 | lower = src[off + k]; | 
|  | 132 | if (left && off + k == lim - 1) | 
|  | 133 | lower &= mask; | 
|  | 134 | dst[k] = lower >> rem; | 
|  | 135 | if (rem) | 
|  | 136 | dst[k] |= upper << (BITS_PER_LONG - rem); | 
|  | 137 | if (left && k == lim - 1) | 
|  | 138 | dst[k] &= mask; | 
|  | 139 | } | 
|  | 140 | if (off) | 
|  | 141 | memset(&dst[lim - off], 0, off*sizeof(unsigned long)); | 
|  | 142 | } | 
|  | 143 | EXPORT_SYMBOL(__bitmap_shift_right); | 
|  | 144 |  | 
|  | 145 |  | 
|  | 146 | /** | 
|  | 147 | * __bitmap_shift_left - logical left shift of the bits in a bitmap | 
|  | 148 | *   @dst : destination bitmap | 
|  | 149 | *   @src : source bitmap | 
|  | 150 | *   @shift : shift by this many bits | 
|  | 151 | *   @bits : bitmap size, in bits | 
|  | 152 | * | 
|  | 153 | * Shifting left (multiplying) means moving bits in the LS -> MS | 
|  | 154 | * direction.  Zeros are fed into the vacated LS bit positions | 
|  | 155 | * and those MS bits shifted off the top are lost. | 
|  | 156 | */ | 
|  | 157 |  | 
|  | 158 | void __bitmap_shift_left(unsigned long *dst, | 
|  | 159 | const unsigned long *src, int shift, int bits) | 
|  | 160 | { | 
|  | 161 | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
|  | 162 | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|  | 163 | for (k = lim - off - 1; k >= 0; --k) { | 
|  | 164 | unsigned long upper, lower; | 
|  | 165 |  | 
|  | 166 | /* | 
|  | 167 | * If shift is not word aligned, take upper rem bits of | 
|  | 168 | * word below and make them the bottom rem bits of result. | 
|  | 169 | */ | 
|  | 170 | if (rem && k > 0) | 
|  | 171 | lower = src[k - 1]; | 
|  | 172 | else | 
|  | 173 | lower = 0; | 
|  | 174 | upper = src[k]; | 
|  | 175 | if (left && k == lim - 1) | 
|  | 176 | upper &= (1UL << left) - 1; | 
|  | 177 | dst[k + off] = upper << rem; | 
|  | 178 | if (rem) | 
|  | 179 | dst[k + off] |= lower >> (BITS_PER_LONG - rem); | 
|  | 180 | if (left && k + off == lim - 1) | 
|  | 181 | dst[k + off] &= (1UL << left) - 1; | 
|  | 182 | } | 
|  | 183 | if (off) | 
|  | 184 | memset(dst, 0, off*sizeof(unsigned long)); | 
|  | 185 | } | 
|  | 186 | EXPORT_SYMBOL(__bitmap_shift_left); | 
|  | 187 |  | 
|  | 188 | int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
|  | 189 | const unsigned long *bitmap2, int bits) | 
|  | 190 | { | 
|  | 191 | int k; | 
|  | 192 | int nr = BITS_TO_LONGS(bits); | 
|  | 193 | unsigned long result = 0; | 
|  | 194 |  | 
|  | 195 | for (k = 0; k < nr; k++) | 
|  | 196 | result |= (dst[k] = bitmap1[k] & bitmap2[k]); | 
|  | 197 | return result != 0; | 
|  | 198 | } | 
|  | 199 | EXPORT_SYMBOL(__bitmap_and); | 
|  | 200 |  | 
|  | 201 | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
|  | 202 | const unsigned long *bitmap2, int bits) | 
|  | 203 | { | 
|  | 204 | int k; | 
|  | 205 | int nr = BITS_TO_LONGS(bits); | 
|  | 206 |  | 
|  | 207 | for (k = 0; k < nr; k++) | 
|  | 208 | dst[k] = bitmap1[k] | bitmap2[k]; | 
|  | 209 | } | 
|  | 210 | EXPORT_SYMBOL(__bitmap_or); | 
|  | 211 |  | 
|  | 212 | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
|  | 213 | const unsigned long *bitmap2, int bits) | 
|  | 214 | { | 
|  | 215 | int k; | 
|  | 216 | int nr = BITS_TO_LONGS(bits); | 
|  | 217 |  | 
|  | 218 | for (k = 0; k < nr; k++) | 
|  | 219 | dst[k] = bitmap1[k] ^ bitmap2[k]; | 
|  | 220 | } | 
|  | 221 | EXPORT_SYMBOL(__bitmap_xor); | 
|  | 222 |  | 
|  | 223 | int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
|  | 224 | const unsigned long *bitmap2, int bits) | 
|  | 225 | { | 
|  | 226 | int k; | 
|  | 227 | int nr = BITS_TO_LONGS(bits); | 
|  | 228 | unsigned long result = 0; | 
|  | 229 |  | 
|  | 230 | for (k = 0; k < nr; k++) | 
|  | 231 | result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); | 
|  | 232 | return result != 0; | 
|  | 233 | } | 
|  | 234 | EXPORT_SYMBOL(__bitmap_andnot); | 
|  | 235 |  | 
|  | 236 | int __bitmap_intersects(const unsigned long *bitmap1, | 
|  | 237 | const unsigned long *bitmap2, int bits) | 
|  | 238 | { | 
|  | 239 | int k, lim = bits/BITS_PER_LONG; | 
|  | 240 | for (k = 0; k < lim; ++k) | 
|  | 241 | if (bitmap1[k] & bitmap2[k]) | 
|  | 242 | return 1; | 
|  | 243 |  | 
|  | 244 | if (bits % BITS_PER_LONG) | 
|  | 245 | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | 246 | return 1; | 
|  | 247 | return 0; | 
|  | 248 | } | 
|  | 249 | EXPORT_SYMBOL(__bitmap_intersects); | 
|  | 250 |  | 
|  | 251 | int __bitmap_subset(const unsigned long *bitmap1, | 
|  | 252 | const unsigned long *bitmap2, int bits) | 
|  | 253 | { | 
|  | 254 | int k, lim = bits/BITS_PER_LONG; | 
|  | 255 | for (k = 0; k < lim; ++k) | 
|  | 256 | if (bitmap1[k] & ~bitmap2[k]) | 
|  | 257 | return 0; | 
|  | 258 |  | 
|  | 259 | if (bits % BITS_PER_LONG) | 
|  | 260 | if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | 261 | return 0; | 
|  | 262 | return 1; | 
|  | 263 | } | 
|  | 264 | EXPORT_SYMBOL(__bitmap_subset); | 
|  | 265 |  | 
|  | 266 | int __bitmap_weight(const unsigned long *bitmap, int bits) | 
|  | 267 | { | 
|  | 268 | int k, w = 0, lim = bits/BITS_PER_LONG; | 
|  | 269 |  | 
|  | 270 | for (k = 0; k < lim; k++) | 
|  | 271 | w += hweight_long(bitmap[k]); | 
|  | 272 |  | 
|  | 273 | if (bits % BITS_PER_LONG) | 
|  | 274 | w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); | 
|  | 275 |  | 
|  | 276 | return w; | 
|  | 277 | } | 
|  | 278 | EXPORT_SYMBOL(__bitmap_weight); | 
|  | 279 |  | 
|  | 280 | void bitmap_set(unsigned long *map, int start, int nr) | 
|  | 281 | { | 
|  | 282 | unsigned long *p = map + BIT_WORD(start); | 
|  | 283 | const int size = start + nr; | 
|  | 284 | int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|  | 285 | unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); | 
|  | 286 |  | 
|  | 287 | while (nr - bits_to_set >= 0) { | 
|  | 288 | *p |= mask_to_set; | 
|  | 289 | nr -= bits_to_set; | 
|  | 290 | bits_to_set = BITS_PER_LONG; | 
|  | 291 | mask_to_set = ~0UL; | 
|  | 292 | p++; | 
|  | 293 | } | 
|  | 294 | if (nr) { | 
|  | 295 | mask_to_set &= BITMAP_LAST_WORD_MASK(size); | 
|  | 296 | *p |= mask_to_set; | 
|  | 297 | } | 
|  | 298 | } | 
|  | 299 | EXPORT_SYMBOL(bitmap_set); | 
|  | 300 |  | 
|  | 301 | void bitmap_clear(unsigned long *map, int start, int nr) | 
|  | 302 | { | 
|  | 303 | unsigned long *p = map + BIT_WORD(start); | 
|  | 304 | const int size = start + nr; | 
|  | 305 | int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|  | 306 | unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); | 
|  | 307 |  | 
|  | 308 | while (nr - bits_to_clear >= 0) { | 
|  | 309 | *p &= ~mask_to_clear; | 
|  | 310 | nr -= bits_to_clear; | 
|  | 311 | bits_to_clear = BITS_PER_LONG; | 
|  | 312 | mask_to_clear = ~0UL; | 
|  | 313 | p++; | 
|  | 314 | } | 
|  | 315 | if (nr) { | 
|  | 316 | mask_to_clear &= BITMAP_LAST_WORD_MASK(size); | 
|  | 317 | *p &= ~mask_to_clear; | 
|  | 318 | } | 
|  | 319 | } | 
|  | 320 | EXPORT_SYMBOL(bitmap_clear); | 
|  | 321 |  | 
|  | 322 | /* | 
|  | 323 | * bitmap_find_next_zero_area - find a contiguous aligned zero area | 
|  | 324 | * @map: The address to base the search on | 
|  | 325 | * @size: The bitmap size in bits | 
|  | 326 | * @start: The bitnumber to start searching at | 
|  | 327 | * @nr: The number of zeroed bits we're looking for | 
|  | 328 | * @align_mask: Alignment mask for zero area | 
|  | 329 | * | 
|  | 330 | * The @align_mask should be one less than a power of 2; the effect is that | 
|  | 331 | * the bit offset of all zero areas this function finds is multiples of that | 
|  | 332 | * power of 2. A @align_mask of 0 means no alignment is required. | 
|  | 333 | */ | 
|  | 334 | unsigned long bitmap_find_next_zero_area(unsigned long *map, | 
|  | 335 | unsigned long size, | 
|  | 336 | unsigned long start, | 
|  | 337 | unsigned int nr, | 
|  | 338 | unsigned long align_mask) | 
|  | 339 | { | 
|  | 340 | unsigned long index, end, i; | 
|  | 341 | again: | 
|  | 342 | index = find_next_zero_bit(map, size, start); | 
|  | 343 |  | 
|  | 344 | /* Align allocation */ | 
|  | 345 | index = __ALIGN_MASK(index, align_mask); | 
|  | 346 |  | 
|  | 347 | end = index + nr; | 
|  | 348 | if (end > size) | 
|  | 349 | return end; | 
|  | 350 | i = find_next_bit(map, end, index); | 
|  | 351 | if (i < end) { | 
|  | 352 | start = i + 1; | 
|  | 353 | goto again; | 
|  | 354 | } | 
|  | 355 | return index; | 
|  | 356 | } | 
|  | 357 | EXPORT_SYMBOL(bitmap_find_next_zero_area); | 
|  | 358 |  | 
|  | 359 | /* | 
|  | 360 | * Bitmap printing & parsing functions: first version by Bill Irwin, | 
|  | 361 | * second version by Paul Jackson, third by Joe Korty. | 
|  | 362 | */ | 
|  | 363 |  | 
|  | 364 | #define CHUNKSZ				32 | 
|  | 365 | #define nbits_to_hold_value(val)	fls(val) | 
|  | 366 | #define BASEDEC 10		/* fancier cpuset lists input in decimal */ | 
|  | 367 |  | 
|  | 368 | /** | 
|  | 369 | * bitmap_scnprintf - convert bitmap to an ASCII hex string. | 
|  | 370 | * @buf: byte buffer into which string is placed | 
|  | 371 | * @buflen: reserved size of @buf, in bytes | 
|  | 372 | * @maskp: pointer to bitmap to convert | 
|  | 373 | * @nmaskbits: size of bitmap, in bits | 
|  | 374 | * | 
|  | 375 | * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into | 
|  | 376 | * comma-separated sets of eight digits per set. | 
|  | 377 | */ | 
|  | 378 | int bitmap_scnprintf(char *buf, unsigned int buflen, | 
|  | 379 | const unsigned long *maskp, int nmaskbits) | 
|  | 380 | { | 
|  | 381 | int i, word, bit, len = 0; | 
|  | 382 | unsigned long val; | 
|  | 383 | const char *sep = ""; | 
|  | 384 | int chunksz; | 
|  | 385 | u32 chunkmask; | 
|  | 386 |  | 
|  | 387 | chunksz = nmaskbits & (CHUNKSZ - 1); | 
|  | 388 | if (chunksz == 0) | 
|  | 389 | chunksz = CHUNKSZ; | 
|  | 390 |  | 
|  | 391 | i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; | 
|  | 392 | for (; i >= 0; i -= CHUNKSZ) { | 
|  | 393 | chunkmask = ((1ULL << chunksz) - 1); | 
|  | 394 | word = i / BITS_PER_LONG; | 
|  | 395 | bit = i % BITS_PER_LONG; | 
|  | 396 | val = (maskp[word] >> bit) & chunkmask; | 
|  | 397 | len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, | 
|  | 398 | (chunksz+3)/4, val); | 
|  | 399 | chunksz = CHUNKSZ; | 
|  | 400 | sep = ","; | 
|  | 401 | } | 
|  | 402 | return len; | 
|  | 403 | } | 
|  | 404 | EXPORT_SYMBOL(bitmap_scnprintf); | 
|  | 405 |  | 
|  | 406 | /** | 
|  | 407 | * __bitmap_parse - convert an ASCII hex string into a bitmap. | 
|  | 408 | * @buf: pointer to buffer containing string. | 
|  | 409 | * @buflen: buffer size in bytes.  If string is smaller than this | 
|  | 410 | *    then it must be terminated with a \0. | 
|  | 411 | * @is_user: location of buffer, 0 indicates kernel space | 
|  | 412 | * @maskp: pointer to bitmap array that will contain result. | 
|  | 413 | * @nmaskbits: size of bitmap, in bits. | 
|  | 414 | * | 
|  | 415 | * Commas group hex digits into chunks.  Each chunk defines exactly 32 | 
|  | 416 | * bits of the resultant bitmask.  No chunk may specify a value larger | 
|  | 417 | * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value | 
|  | 418 | * then leading 0-bits are prepended.  %-EINVAL is returned for illegal | 
|  | 419 | * characters and for grouping errors such as "1,,5", ",44", "," and "". | 
|  | 420 | * Leading and trailing whitespace accepted, but not embedded whitespace. | 
|  | 421 | */ | 
|  | 422 | int __bitmap_parse(const char *buf, unsigned int buflen, | 
|  | 423 | int is_user, unsigned long *maskp, | 
|  | 424 | int nmaskbits) | 
|  | 425 | { | 
|  | 426 | int c, old_c, totaldigits, ndigits, nchunks, nbits; | 
|  | 427 | u32 chunk; | 
|  | 428 | const char __user __force *ubuf = (const char __user __force *)buf; | 
|  | 429 |  | 
|  | 430 | bitmap_zero(maskp, nmaskbits); | 
|  | 431 |  | 
|  | 432 | nchunks = nbits = totaldigits = c = 0; | 
|  | 433 | do { | 
|  | 434 | chunk = ndigits = 0; | 
|  | 435 |  | 
|  | 436 | /* Get the next chunk of the bitmap */ | 
|  | 437 | while (buflen) { | 
|  | 438 | old_c = c; | 
|  | 439 | if (is_user) { | 
|  | 440 | if (__get_user(c, ubuf++)) | 
|  | 441 | return -EFAULT; | 
|  | 442 | } | 
|  | 443 | else | 
|  | 444 | c = *buf++; | 
|  | 445 | buflen--; | 
|  | 446 | if (isspace(c)) | 
|  | 447 | continue; | 
|  | 448 |  | 
|  | 449 | /* | 
|  | 450 | * If the last character was a space and the current | 
|  | 451 | * character isn't '\0', we've got embedded whitespace. | 
|  | 452 | * This is a no-no, so throw an error. | 
|  | 453 | */ | 
|  | 454 | if (totaldigits && c && isspace(old_c)) | 
|  | 455 | return -EINVAL; | 
|  | 456 |  | 
|  | 457 | /* A '\0' or a ',' signal the end of the chunk */ | 
|  | 458 | if (c == '\0' || c == ',') | 
|  | 459 | break; | 
|  | 460 |  | 
|  | 461 | if (!isxdigit(c)) | 
|  | 462 | return -EINVAL; | 
|  | 463 |  | 
|  | 464 | /* | 
|  | 465 | * Make sure there are at least 4 free bits in 'chunk'. | 
|  | 466 | * If not, this hexdigit will overflow 'chunk', so | 
|  | 467 | * throw an error. | 
|  | 468 | */ | 
|  | 469 | if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) | 
|  | 470 | return -EOVERFLOW; | 
|  | 471 |  | 
|  | 472 | chunk = (chunk << 4) | hex_to_bin(c); | 
|  | 473 | ndigits++; totaldigits++; | 
|  | 474 | } | 
|  | 475 | if (ndigits == 0) | 
|  | 476 | return -EINVAL; | 
|  | 477 | if (nchunks == 0 && chunk == 0) | 
|  | 478 | continue; | 
|  | 479 |  | 
|  | 480 | __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); | 
|  | 481 | *maskp |= chunk; | 
|  | 482 | nchunks++; | 
|  | 483 | nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; | 
|  | 484 | if (nbits > nmaskbits) | 
|  | 485 | return -EOVERFLOW; | 
|  | 486 | } while (buflen && c == ','); | 
|  | 487 |  | 
|  | 488 | return 0; | 
|  | 489 | } | 
|  | 490 | EXPORT_SYMBOL(__bitmap_parse); | 
|  | 491 |  | 
|  | 492 | /** | 
|  | 493 | * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap | 
|  | 494 | * | 
|  | 495 | * @ubuf: pointer to user buffer containing string. | 
|  | 496 | * @ulen: buffer size in bytes.  If string is smaller than this | 
|  | 497 | *    then it must be terminated with a \0. | 
|  | 498 | * @maskp: pointer to bitmap array that will contain result. | 
|  | 499 | * @nmaskbits: size of bitmap, in bits. | 
|  | 500 | * | 
|  | 501 | * Wrapper for __bitmap_parse(), providing it with user buffer. | 
|  | 502 | * | 
|  | 503 | * We cannot have this as an inline function in bitmap.h because it needs | 
|  | 504 | * linux/uaccess.h to get the access_ok() declaration and this causes | 
|  | 505 | * cyclic dependencies. | 
|  | 506 | */ | 
|  | 507 | int bitmap_parse_user(const char __user *ubuf, | 
|  | 508 | unsigned int ulen, unsigned long *maskp, | 
|  | 509 | int nmaskbits) | 
|  | 510 | { | 
|  | 511 | if (!access_ok(VERIFY_READ, ubuf, ulen)) | 
|  | 512 | return -EFAULT; | 
|  | 513 | return __bitmap_parse((const char __force *)ubuf, | 
|  | 514 | ulen, 1, maskp, nmaskbits); | 
|  | 515 |  | 
|  | 516 | } | 
|  | 517 | EXPORT_SYMBOL(bitmap_parse_user); | 
|  | 518 |  | 
|  | 519 | /* | 
|  | 520 | * bscnl_emit(buf, buflen, rbot, rtop, bp) | 
|  | 521 | * | 
|  | 522 | * Helper routine for bitmap_scnlistprintf().  Write decimal number | 
|  | 523 | * or range to buf, suppressing output past buf+buflen, with optional | 
|  | 524 | * comma-prefix.  Return len of what would be written to buf, if it | 
|  | 525 | * all fit. | 
|  | 526 | */ | 
|  | 527 | static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) | 
|  | 528 | { | 
|  | 529 | if (len > 0) | 
|  | 530 | len += scnprintf(buf + len, buflen - len, ","); | 
|  | 531 | if (rbot == rtop) | 
|  | 532 | len += scnprintf(buf + len, buflen - len, "%d", rbot); | 
|  | 533 | else | 
|  | 534 | len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); | 
|  | 535 | return len; | 
|  | 536 | } | 
|  | 537 |  | 
|  | 538 | /** | 
|  | 539 | * bitmap_scnlistprintf - convert bitmap to list format ASCII string | 
|  | 540 | * @buf: byte buffer into which string is placed | 
|  | 541 | * @buflen: reserved size of @buf, in bytes | 
|  | 542 | * @maskp: pointer to bitmap to convert | 
|  | 543 | * @nmaskbits: size of bitmap, in bits | 
|  | 544 | * | 
|  | 545 | * Output format is a comma-separated list of decimal numbers and | 
|  | 546 | * ranges.  Consecutively set bits are shown as two hyphen-separated | 
|  | 547 | * decimal numbers, the smallest and largest bit numbers set in | 
|  | 548 | * the range.  Output format is compatible with the format | 
|  | 549 | * accepted as input by bitmap_parselist(). | 
|  | 550 | * | 
|  | 551 | * The return value is the number of characters which would be | 
|  | 552 | * generated for the given input, excluding the trailing '\0', as | 
|  | 553 | * per ISO C99. | 
|  | 554 | */ | 
|  | 555 | int bitmap_scnlistprintf(char *buf, unsigned int buflen, | 
|  | 556 | const unsigned long *maskp, int nmaskbits) | 
|  | 557 | { | 
|  | 558 | int len = 0; | 
|  | 559 | /* current bit is 'cur', most recently seen range is [rbot, rtop] */ | 
|  | 560 | int cur, rbot, rtop; | 
|  | 561 |  | 
|  | 562 | if (buflen == 0) | 
|  | 563 | return 0; | 
|  | 564 | buf[0] = 0; | 
|  | 565 |  | 
|  | 566 | rbot = cur = find_first_bit(maskp, nmaskbits); | 
|  | 567 | while (cur < nmaskbits) { | 
|  | 568 | rtop = cur; | 
|  | 569 | cur = find_next_bit(maskp, nmaskbits, cur+1); | 
|  | 570 | if (cur >= nmaskbits || cur > rtop + 1) { | 
|  | 571 | len = bscnl_emit(buf, buflen, rbot, rtop, len); | 
|  | 572 | rbot = cur; | 
|  | 573 | } | 
|  | 574 | } | 
|  | 575 | return len; | 
|  | 576 | } | 
|  | 577 | EXPORT_SYMBOL(bitmap_scnlistprintf); | 
|  | 578 |  | 
|  | 579 | /** | 
|  | 580 | * __bitmap_parselist - convert list format ASCII string to bitmap | 
|  | 581 | * @buf: read nul-terminated user string from this buffer | 
|  | 582 | * @buflen: buffer size in bytes.  If string is smaller than this | 
|  | 583 | *    then it must be terminated with a \0. | 
|  | 584 | * @is_user: location of buffer, 0 indicates kernel space | 
|  | 585 | * @maskp: write resulting mask here | 
|  | 586 | * @nmaskbits: number of bits in mask to be written | 
|  | 587 | * | 
|  | 588 | * Input format is a comma-separated list of decimal numbers and | 
|  | 589 | * ranges.  Consecutively set bits are shown as two hyphen-separated | 
|  | 590 | * decimal numbers, the smallest and largest bit numbers set in | 
|  | 591 | * the range. | 
|  | 592 | * | 
|  | 593 | * Returns 0 on success, -errno on invalid input strings. | 
|  | 594 | * Error values: | 
|  | 595 | *    %-EINVAL: second number in range smaller than first | 
|  | 596 | *    %-EINVAL: invalid character in string | 
|  | 597 | *    %-ERANGE: bit number specified too large for mask | 
|  | 598 | */ | 
|  | 599 | static int __bitmap_parselist(const char *buf, unsigned int buflen, | 
|  | 600 | int is_user, unsigned long *maskp, | 
|  | 601 | int nmaskbits) | 
|  | 602 | { | 
|  | 603 | unsigned a, b; | 
|  | 604 | int c, old_c, totaldigits; | 
|  | 605 | const char __user __force *ubuf = (const char __user __force *)buf; | 
|  | 606 | int at_start, in_range; | 
|  | 607 |  | 
|  | 608 | totaldigits = c = 0; | 
|  | 609 | bitmap_zero(maskp, nmaskbits); | 
|  | 610 | do { | 
|  | 611 | at_start = 1; | 
|  | 612 | in_range = 0; | 
|  | 613 | a = b = 0; | 
|  | 614 |  | 
|  | 615 | /* Get the next cpu# or a range of cpu#'s */ | 
|  | 616 | while (buflen) { | 
|  | 617 | old_c = c; | 
|  | 618 | if (is_user) { | 
|  | 619 | if (__get_user(c, ubuf++)) | 
|  | 620 | return -EFAULT; | 
|  | 621 | } else | 
|  | 622 | c = *buf++; | 
|  | 623 | buflen--; | 
|  | 624 | if (isspace(c)) | 
|  | 625 | continue; | 
|  | 626 |  | 
|  | 627 | /* | 
|  | 628 | * If the last character was a space and the current | 
|  | 629 | * character isn't '\0', we've got embedded whitespace. | 
|  | 630 | * This is a no-no, so throw an error. | 
|  | 631 | */ | 
|  | 632 | if (totaldigits && c && isspace(old_c)) | 
|  | 633 | return -EINVAL; | 
|  | 634 |  | 
|  | 635 | /* A '\0' or a ',' signal the end of a cpu# or range */ | 
|  | 636 | if (c == '\0' || c == ',') | 
|  | 637 | break; | 
|  | 638 |  | 
|  | 639 | if (c == '-') { | 
|  | 640 | if (at_start || in_range) | 
|  | 641 | return -EINVAL; | 
|  | 642 | b = 0; | 
|  | 643 | in_range = 1; | 
|  | 644 | continue; | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | if (!isdigit(c)) | 
|  | 648 | return -EINVAL; | 
|  | 649 |  | 
|  | 650 | b = b * 10 + (c - '0'); | 
|  | 651 | if (!in_range) | 
|  | 652 | a = b; | 
|  | 653 | at_start = 0; | 
|  | 654 | totaldigits++; | 
|  | 655 | } | 
|  | 656 | if (!(a <= b)) | 
|  | 657 | return -EINVAL; | 
|  | 658 | if (b >= nmaskbits) | 
|  | 659 | return -ERANGE; | 
|  | 660 | if (!at_start) { | 
|  | 661 | while (a <= b) { | 
|  | 662 | set_bit(a, maskp); | 
|  | 663 | a++; | 
|  | 664 | } | 
|  | 665 | } | 
|  | 666 | } while (buflen && c == ','); | 
|  | 667 | return 0; | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) | 
|  | 671 | { | 
|  | 672 | char *nl  = strchr(bp, '\n'); | 
|  | 673 | int len; | 
|  | 674 |  | 
|  | 675 | if (nl) | 
|  | 676 | len = nl - bp; | 
|  | 677 | else | 
|  | 678 | len = strlen(bp); | 
|  | 679 |  | 
|  | 680 | return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); | 
|  | 681 | } | 
|  | 682 | EXPORT_SYMBOL(bitmap_parselist); | 
|  | 683 |  | 
|  | 684 |  | 
|  | 685 | /** | 
|  | 686 | * bitmap_parselist_user() | 
|  | 687 | * | 
|  | 688 | * @ubuf: pointer to user buffer containing string. | 
|  | 689 | * @ulen: buffer size in bytes.  If string is smaller than this | 
|  | 690 | *    then it must be terminated with a \0. | 
|  | 691 | * @maskp: pointer to bitmap array that will contain result. | 
|  | 692 | * @nmaskbits: size of bitmap, in bits. | 
|  | 693 | * | 
|  | 694 | * Wrapper for bitmap_parselist(), providing it with user buffer. | 
|  | 695 | * | 
|  | 696 | * We cannot have this as an inline function in bitmap.h because it needs | 
|  | 697 | * linux/uaccess.h to get the access_ok() declaration and this causes | 
|  | 698 | * cyclic dependencies. | 
|  | 699 | */ | 
|  | 700 | int bitmap_parselist_user(const char __user *ubuf, | 
|  | 701 | unsigned int ulen, unsigned long *maskp, | 
|  | 702 | int nmaskbits) | 
|  | 703 | { | 
|  | 704 | if (!access_ok(VERIFY_READ, ubuf, ulen)) | 
|  | 705 | return -EFAULT; | 
|  | 706 | return __bitmap_parselist((const char __force *)ubuf, | 
|  | 707 | ulen, 1, maskp, nmaskbits); | 
|  | 708 | } | 
|  | 709 | EXPORT_SYMBOL(bitmap_parselist_user); | 
|  | 710 |  | 
|  | 711 |  | 
|  | 712 | /** | 
|  | 713 | * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap | 
|  | 714 | *	@buf: pointer to a bitmap | 
|  | 715 | *	@pos: a bit position in @buf (0 <= @pos < @bits) | 
|  | 716 | *	@bits: number of valid bit positions in @buf | 
|  | 717 | * | 
|  | 718 | * Map the bit at position @pos in @buf (of length @bits) to the | 
|  | 719 | * ordinal of which set bit it is.  If it is not set or if @pos | 
|  | 720 | * is not a valid bit position, map to -1. | 
|  | 721 | * | 
|  | 722 | * If for example, just bits 4 through 7 are set in @buf, then @pos | 
|  | 723 | * values 4 through 7 will get mapped to 0 through 3, respectively, | 
|  | 724 | * and other @pos values will get mapped to 0.  When @pos value 7 | 
|  | 725 | * gets mapped to (returns) @ord value 3 in this example, that means | 
|  | 726 | * that bit 7 is the 3rd (starting with 0th) set bit in @buf. | 
|  | 727 | * | 
|  | 728 | * The bit positions 0 through @bits are valid positions in @buf. | 
|  | 729 | */ | 
|  | 730 | static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) | 
|  | 731 | { | 
|  | 732 | int i, ord; | 
|  | 733 |  | 
|  | 734 | if (pos < 0 || pos >= bits || !test_bit(pos, buf)) | 
|  | 735 | return -1; | 
|  | 736 |  | 
|  | 737 | i = find_first_bit(buf, bits); | 
|  | 738 | ord = 0; | 
|  | 739 | while (i < pos) { | 
|  | 740 | i = find_next_bit(buf, bits, i + 1); | 
|  | 741 | ord++; | 
|  | 742 | } | 
|  | 743 | BUG_ON(i != pos); | 
|  | 744 |  | 
|  | 745 | return ord; | 
|  | 746 | } | 
|  | 747 |  | 
|  | 748 | /** | 
|  | 749 | * bitmap_ord_to_pos - find position of n-th set bit in bitmap | 
|  | 750 | *	@buf: pointer to bitmap | 
|  | 751 | *	@ord: ordinal bit position (n-th set bit, n >= 0) | 
|  | 752 | *	@bits: number of valid bit positions in @buf | 
|  | 753 | * | 
|  | 754 | * Map the ordinal offset of bit @ord in @buf to its position in @buf. | 
|  | 755 | * Value of @ord should be in range 0 <= @ord < weight(buf), else | 
|  | 756 | * results are undefined. | 
|  | 757 | * | 
|  | 758 | * If for example, just bits 4 through 7 are set in @buf, then @ord | 
|  | 759 | * values 0 through 3 will get mapped to 4 through 7, respectively, | 
|  | 760 | * and all other @ord values return undefined values.  When @ord value 3 | 
|  | 761 | * gets mapped to (returns) @pos value 7 in this example, that means | 
|  | 762 | * that the 3rd set bit (starting with 0th) is at position 7 in @buf. | 
|  | 763 | * | 
|  | 764 | * The bit positions 0 through @bits are valid positions in @buf. | 
|  | 765 | */ | 
|  | 766 | int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) | 
|  | 767 | { | 
|  | 768 | int pos = 0; | 
|  | 769 |  | 
|  | 770 | if (ord >= 0 && ord < bits) { | 
|  | 771 | int i; | 
|  | 772 |  | 
|  | 773 | for (i = find_first_bit(buf, bits); | 
|  | 774 | i < bits && ord > 0; | 
|  | 775 | i = find_next_bit(buf, bits, i + 1)) | 
|  | 776 | ord--; | 
|  | 777 | if (i < bits && ord == 0) | 
|  | 778 | pos = i; | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | return pos; | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 | /** | 
|  | 785 | * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap | 
|  | 786 | *	@dst: remapped result | 
|  | 787 | *	@src: subset to be remapped | 
|  | 788 | *	@old: defines domain of map | 
|  | 789 | *	@new: defines range of map | 
|  | 790 | *	@bits: number of bits in each of these bitmaps | 
|  | 791 | * | 
|  | 792 | * Let @old and @new define a mapping of bit positions, such that | 
|  | 793 | * whatever position is held by the n-th set bit in @old is mapped | 
|  | 794 | * to the n-th set bit in @new.  In the more general case, allowing | 
|  | 795 | * for the possibility that the weight 'w' of @new is less than the | 
|  | 796 | * weight of @old, map the position of the n-th set bit in @old to | 
|  | 797 | * the position of the m-th set bit in @new, where m == n % w. | 
|  | 798 | * | 
|  | 799 | * If either of the @old and @new bitmaps are empty, or if @src and | 
|  | 800 | * @dst point to the same location, then this routine copies @src | 
|  | 801 | * to @dst. | 
|  | 802 | * | 
|  | 803 | * The positions of unset bits in @old are mapped to themselves | 
|  | 804 | * (the identify map). | 
|  | 805 | * | 
|  | 806 | * Apply the above specified mapping to @src, placing the result in | 
|  | 807 | * @dst, clearing any bits previously set in @dst. | 
|  | 808 | * | 
|  | 809 | * For example, lets say that @old has bits 4 through 7 set, and | 
|  | 810 | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|  | 811 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|  | 812 | * bit positions unchanged.  So if say @src comes into this routine | 
|  | 813 | * with bits 1, 5 and 7 set, then @dst should leave with bits 1, | 
|  | 814 | * 13 and 15 set. | 
|  | 815 | */ | 
|  | 816 | void bitmap_remap(unsigned long *dst, const unsigned long *src, | 
|  | 817 | const unsigned long *old, const unsigned long *new, | 
|  | 818 | int bits) | 
|  | 819 | { | 
|  | 820 | int oldbit, w; | 
|  | 821 |  | 
|  | 822 | if (dst == src)		/* following doesn't handle inplace remaps */ | 
|  | 823 | return; | 
|  | 824 | bitmap_zero(dst, bits); | 
|  | 825 |  | 
|  | 826 | w = bitmap_weight(new, bits); | 
|  | 827 | for_each_set_bit(oldbit, src, bits) { | 
|  | 828 | int n = bitmap_pos_to_ord(old, oldbit, bits); | 
|  | 829 |  | 
|  | 830 | if (n < 0 || w == 0) | 
|  | 831 | set_bit(oldbit, dst);	/* identity map */ | 
|  | 832 | else | 
|  | 833 | set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); | 
|  | 834 | } | 
|  | 835 | } | 
|  | 836 | EXPORT_SYMBOL(bitmap_remap); | 
|  | 837 |  | 
|  | 838 | /** | 
|  | 839 | * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit | 
|  | 840 | *	@oldbit: bit position to be mapped | 
|  | 841 | *	@old: defines domain of map | 
|  | 842 | *	@new: defines range of map | 
|  | 843 | *	@bits: number of bits in each of these bitmaps | 
|  | 844 | * | 
|  | 845 | * Let @old and @new define a mapping of bit positions, such that | 
|  | 846 | * whatever position is held by the n-th set bit in @old is mapped | 
|  | 847 | * to the n-th set bit in @new.  In the more general case, allowing | 
|  | 848 | * for the possibility that the weight 'w' of @new is less than the | 
|  | 849 | * weight of @old, map the position of the n-th set bit in @old to | 
|  | 850 | * the position of the m-th set bit in @new, where m == n % w. | 
|  | 851 | * | 
|  | 852 | * The positions of unset bits in @old are mapped to themselves | 
|  | 853 | * (the identify map). | 
|  | 854 | * | 
|  | 855 | * Apply the above specified mapping to bit position @oldbit, returning | 
|  | 856 | * the new bit position. | 
|  | 857 | * | 
|  | 858 | * For example, lets say that @old has bits 4 through 7 set, and | 
|  | 859 | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|  | 860 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|  | 861 | * bit positions unchanged.  So if say @oldbit is 5, then this routine | 
|  | 862 | * returns 13. | 
|  | 863 | */ | 
|  | 864 | int bitmap_bitremap(int oldbit, const unsigned long *old, | 
|  | 865 | const unsigned long *new, int bits) | 
|  | 866 | { | 
|  | 867 | int w = bitmap_weight(new, bits); | 
|  | 868 | int n = bitmap_pos_to_ord(old, oldbit, bits); | 
|  | 869 | if (n < 0 || w == 0) | 
|  | 870 | return oldbit; | 
|  | 871 | else | 
|  | 872 | return bitmap_ord_to_pos(new, n % w, bits); | 
|  | 873 | } | 
|  | 874 | EXPORT_SYMBOL(bitmap_bitremap); | 
|  | 875 |  | 
|  | 876 | /** | 
|  | 877 | * bitmap_onto - translate one bitmap relative to another | 
|  | 878 | *	@dst: resulting translated bitmap | 
|  | 879 | * 	@orig: original untranslated bitmap | 
|  | 880 | * 	@relmap: bitmap relative to which translated | 
|  | 881 | *	@bits: number of bits in each of these bitmaps | 
|  | 882 | * | 
|  | 883 | * Set the n-th bit of @dst iff there exists some m such that the | 
|  | 884 | * n-th bit of @relmap is set, the m-th bit of @orig is set, and | 
|  | 885 | * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. | 
|  | 886 | * (If you understood the previous sentence the first time your | 
|  | 887 | * read it, you're overqualified for your current job.) | 
|  | 888 | * | 
|  | 889 | * In other words, @orig is mapped onto (surjectively) @dst, | 
|  | 890 | * using the the map { <n, m> | the n-th bit of @relmap is the | 
|  | 891 | * m-th set bit of @relmap }. | 
|  | 892 | * | 
|  | 893 | * Any set bits in @orig above bit number W, where W is the | 
|  | 894 | * weight of (number of set bits in) @relmap are mapped nowhere. | 
|  | 895 | * In particular, if for all bits m set in @orig, m >= W, then | 
|  | 896 | * @dst will end up empty.  In situations where the possibility | 
|  | 897 | * of such an empty result is not desired, one way to avoid it is | 
|  | 898 | * to use the bitmap_fold() operator, below, to first fold the | 
|  | 899 | * @orig bitmap over itself so that all its set bits x are in the | 
|  | 900 | * range 0 <= x < W.  The bitmap_fold() operator does this by | 
|  | 901 | * setting the bit (m % W) in @dst, for each bit (m) set in @orig. | 
|  | 902 | * | 
|  | 903 | * Example [1] for bitmap_onto(): | 
|  | 904 | *  Let's say @relmap has bits 30-39 set, and @orig has bits | 
|  | 905 | *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine, | 
|  | 906 | *  @dst will have bits 31, 33, 35, 37 and 39 set. | 
|  | 907 | * | 
|  | 908 | *  When bit 0 is set in @orig, it means turn on the bit in | 
|  | 909 | *  @dst corresponding to whatever is the first bit (if any) | 
|  | 910 | *  that is turned on in @relmap.  Since bit 0 was off in the | 
|  | 911 | *  above example, we leave off that bit (bit 30) in @dst. | 
|  | 912 | * | 
|  | 913 | *  When bit 1 is set in @orig (as in the above example), it | 
|  | 914 | *  means turn on the bit in @dst corresponding to whatever | 
|  | 915 | *  is the second bit that is turned on in @relmap.  The second | 
|  | 916 | *  bit in @relmap that was turned on in the above example was | 
|  | 917 | *  bit 31, so we turned on bit 31 in @dst. | 
|  | 918 | * | 
|  | 919 | *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst, | 
|  | 920 | *  because they were the 4th, 6th, 8th and 10th set bits | 
|  | 921 | *  set in @relmap, and the 4th, 6th, 8th and 10th bits of | 
|  | 922 | *  @orig (i.e. bits 3, 5, 7 and 9) were also set. | 
|  | 923 | * | 
|  | 924 | *  When bit 11 is set in @orig, it means turn on the bit in | 
|  | 925 | *  @dst corresponding to whatever is the twelfth bit that is | 
|  | 926 | *  turned on in @relmap.  In the above example, there were | 
|  | 927 | *  only ten bits turned on in @relmap (30..39), so that bit | 
|  | 928 | *  11 was set in @orig had no affect on @dst. | 
|  | 929 | * | 
|  | 930 | * Example [2] for bitmap_fold() + bitmap_onto(): | 
|  | 931 | *  Let's say @relmap has these ten bits set: | 
|  | 932 | *		40 41 42 43 45 48 53 61 74 95 | 
|  | 933 | *  (for the curious, that's 40 plus the first ten terms of the | 
|  | 934 | *  Fibonacci sequence.) | 
|  | 935 | * | 
|  | 936 | *  Further lets say we use the following code, invoking | 
|  | 937 | *  bitmap_fold() then bitmap_onto, as suggested above to | 
|  | 938 | *  avoid the possitility of an empty @dst result: | 
|  | 939 | * | 
|  | 940 | *	unsigned long *tmp;	// a temporary bitmap's bits | 
|  | 941 | * | 
|  | 942 | *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); | 
|  | 943 | *	bitmap_onto(dst, tmp, relmap, bits); | 
|  | 944 | * | 
|  | 945 | *  Then this table shows what various values of @dst would be, for | 
|  | 946 | *  various @orig's.  I list the zero-based positions of each set bit. | 
|  | 947 | *  The tmp column shows the intermediate result, as computed by | 
|  | 948 | *  using bitmap_fold() to fold the @orig bitmap modulo ten | 
|  | 949 | *  (the weight of @relmap). | 
|  | 950 | * | 
|  | 951 | *      @orig           tmp            @dst | 
|  | 952 | *      0                0             40 | 
|  | 953 | *      1                1             41 | 
|  | 954 | *      9                9             95 | 
|  | 955 | *      10               0             40 (*) | 
|  | 956 | *      1 3 5 7          1 3 5 7       41 43 48 61 | 
|  | 957 | *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45 | 
|  | 958 | *      0 9 18 27        0 9 8 7       40 61 74 95 | 
|  | 959 | *      0 10 20 30       0             40 | 
|  | 960 | *      0 11 22 33       0 1 2 3       40 41 42 43 | 
|  | 961 | *      0 12 24 36       0 2 4 6       40 42 45 53 | 
|  | 962 | *      78 102 211       1 2 8         41 42 74 (*) | 
|  | 963 | * | 
|  | 964 | * (*) For these marked lines, if we hadn't first done bitmap_fold() | 
|  | 965 | *     into tmp, then the @dst result would have been empty. | 
|  | 966 | * | 
|  | 967 | * If either of @orig or @relmap is empty (no set bits), then @dst | 
|  | 968 | * will be returned empty. | 
|  | 969 | * | 
|  | 970 | * If (as explained above) the only set bits in @orig are in positions | 
|  | 971 | * m where m >= W, (where W is the weight of @relmap) then @dst will | 
|  | 972 | * once again be returned empty. | 
|  | 973 | * | 
|  | 974 | * All bits in @dst not set by the above rule are cleared. | 
|  | 975 | */ | 
|  | 976 | void bitmap_onto(unsigned long *dst, const unsigned long *orig, | 
|  | 977 | const unsigned long *relmap, int bits) | 
|  | 978 | { | 
|  | 979 | int n, m;       	/* same meaning as in above comment */ | 
|  | 980 |  | 
|  | 981 | if (dst == orig)	/* following doesn't handle inplace mappings */ | 
|  | 982 | return; | 
|  | 983 | bitmap_zero(dst, bits); | 
|  | 984 |  | 
|  | 985 | /* | 
|  | 986 | * The following code is a more efficient, but less | 
|  | 987 | * obvious, equivalent to the loop: | 
|  | 988 | *	for (m = 0; m < bitmap_weight(relmap, bits); m++) { | 
|  | 989 | *		n = bitmap_ord_to_pos(orig, m, bits); | 
|  | 990 | *		if (test_bit(m, orig)) | 
|  | 991 | *			set_bit(n, dst); | 
|  | 992 | *	} | 
|  | 993 | */ | 
|  | 994 |  | 
|  | 995 | m = 0; | 
|  | 996 | for_each_set_bit(n, relmap, bits) { | 
|  | 997 | /* m == bitmap_pos_to_ord(relmap, n, bits) */ | 
|  | 998 | if (test_bit(m, orig)) | 
|  | 999 | set_bit(n, dst); | 
|  | 1000 | m++; | 
|  | 1001 | } | 
|  | 1002 | } | 
|  | 1003 | EXPORT_SYMBOL(bitmap_onto); | 
|  | 1004 |  | 
|  | 1005 | /** | 
|  | 1006 | * bitmap_fold - fold larger bitmap into smaller, modulo specified size | 
|  | 1007 | *	@dst: resulting smaller bitmap | 
|  | 1008 | *	@orig: original larger bitmap | 
|  | 1009 | *	@sz: specified size | 
|  | 1010 | *	@bits: number of bits in each of these bitmaps | 
|  | 1011 | * | 
|  | 1012 | * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. | 
|  | 1013 | * Clear all other bits in @dst.  See further the comment and | 
|  | 1014 | * Example [2] for bitmap_onto() for why and how to use this. | 
|  | 1015 | */ | 
|  | 1016 | void bitmap_fold(unsigned long *dst, const unsigned long *orig, | 
|  | 1017 | int sz, int bits) | 
|  | 1018 | { | 
|  | 1019 | int oldbit; | 
|  | 1020 |  | 
|  | 1021 | if (dst == orig)	/* following doesn't handle inplace mappings */ | 
|  | 1022 | return; | 
|  | 1023 | bitmap_zero(dst, bits); | 
|  | 1024 |  | 
|  | 1025 | for_each_set_bit(oldbit, orig, bits) | 
|  | 1026 | set_bit(oldbit % sz, dst); | 
|  | 1027 | } | 
|  | 1028 | EXPORT_SYMBOL(bitmap_fold); | 
|  | 1029 |  | 
|  | 1030 | /* | 
|  | 1031 | * Common code for bitmap_*_region() routines. | 
|  | 1032 | *	bitmap: array of unsigned longs corresponding to the bitmap | 
|  | 1033 | *	pos: the beginning of the region | 
|  | 1034 | *	order: region size (log base 2 of number of bits) | 
|  | 1035 | *	reg_op: operation(s) to perform on that region of bitmap | 
|  | 1036 | * | 
|  | 1037 | * Can set, verify and/or release a region of bits in a bitmap, | 
|  | 1038 | * depending on which combination of REG_OP_* flag bits is set. | 
|  | 1039 | * | 
|  | 1040 | * A region of a bitmap is a sequence of bits in the bitmap, of | 
|  | 1041 | * some size '1 << order' (a power of two), aligned to that same | 
|  | 1042 | * '1 << order' power of two. | 
|  | 1043 | * | 
|  | 1044 | * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). | 
|  | 1045 | * Returns 0 in all other cases and reg_ops. | 
|  | 1046 | */ | 
|  | 1047 |  | 
|  | 1048 | enum { | 
|  | 1049 | REG_OP_ISFREE,		/* true if region is all zero bits */ | 
|  | 1050 | REG_OP_ALLOC,		/* set all bits in region */ | 
|  | 1051 | REG_OP_RELEASE,		/* clear all bits in region */ | 
|  | 1052 | }; | 
|  | 1053 |  | 
|  | 1054 | static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) | 
|  | 1055 | { | 
|  | 1056 | int nbits_reg;		/* number of bits in region */ | 
|  | 1057 | int index;		/* index first long of region in bitmap */ | 
|  | 1058 | int offset;		/* bit offset region in bitmap[index] */ | 
|  | 1059 | int nlongs_reg;		/* num longs spanned by region in bitmap */ | 
|  | 1060 | int nbitsinlong;	/* num bits of region in each spanned long */ | 
|  | 1061 | unsigned long mask;	/* bitmask for one long of region */ | 
|  | 1062 | int i;			/* scans bitmap by longs */ | 
|  | 1063 | int ret = 0;		/* return value */ | 
|  | 1064 |  | 
|  | 1065 | /* | 
|  | 1066 | * Either nlongs_reg == 1 (for small orders that fit in one long) | 
|  | 1067 | * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) | 
|  | 1068 | */ | 
|  | 1069 | nbits_reg = 1 << order; | 
|  | 1070 | index = pos / BITS_PER_LONG; | 
|  | 1071 | offset = pos - (index * BITS_PER_LONG); | 
|  | 1072 | nlongs_reg = BITS_TO_LONGS(nbits_reg); | 
|  | 1073 | nbitsinlong = min(nbits_reg,  BITS_PER_LONG); | 
|  | 1074 |  | 
|  | 1075 | /* | 
|  | 1076 | * Can't do "mask = (1UL << nbitsinlong) - 1", as that | 
|  | 1077 | * overflows if nbitsinlong == BITS_PER_LONG. | 
|  | 1078 | */ | 
|  | 1079 | mask = (1UL << (nbitsinlong - 1)); | 
|  | 1080 | mask += mask - 1; | 
|  | 1081 | mask <<= offset; | 
|  | 1082 |  | 
|  | 1083 | switch (reg_op) { | 
|  | 1084 | case REG_OP_ISFREE: | 
|  | 1085 | for (i = 0; i < nlongs_reg; i++) { | 
|  | 1086 | if (bitmap[index + i] & mask) | 
|  | 1087 | goto done; | 
|  | 1088 | } | 
|  | 1089 | ret = 1;	/* all bits in region free (zero) */ | 
|  | 1090 | break; | 
|  | 1091 |  | 
|  | 1092 | case REG_OP_ALLOC: | 
|  | 1093 | for (i = 0; i < nlongs_reg; i++) | 
|  | 1094 | bitmap[index + i] |= mask; | 
|  | 1095 | break; | 
|  | 1096 |  | 
|  | 1097 | case REG_OP_RELEASE: | 
|  | 1098 | for (i = 0; i < nlongs_reg; i++) | 
|  | 1099 | bitmap[index + i] &= ~mask; | 
|  | 1100 | break; | 
|  | 1101 | } | 
|  | 1102 | done: | 
|  | 1103 | return ret; | 
|  | 1104 | } | 
|  | 1105 |  | 
|  | 1106 | /** | 
|  | 1107 | * bitmap_find_free_region - find a contiguous aligned mem region | 
|  | 1108 | *	@bitmap: array of unsigned longs corresponding to the bitmap | 
|  | 1109 | *	@bits: number of bits in the bitmap | 
|  | 1110 | *	@order: region size (log base 2 of number of bits) to find | 
|  | 1111 | * | 
|  | 1112 | * Find a region of free (zero) bits in a @bitmap of @bits bits and | 
|  | 1113 | * allocate them (set them to one).  Only consider regions of length | 
|  | 1114 | * a power (@order) of two, aligned to that power of two, which | 
|  | 1115 | * makes the search algorithm much faster. | 
|  | 1116 | * | 
|  | 1117 | * Return the bit offset in bitmap of the allocated region, | 
|  | 1118 | * or -errno on failure. | 
|  | 1119 | */ | 
|  | 1120 | int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) | 
|  | 1121 | { | 
|  | 1122 | int pos, end;		/* scans bitmap by regions of size order */ | 
|  | 1123 |  | 
|  | 1124 | for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { | 
|  | 1125 | if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) | 
|  | 1126 | continue; | 
|  | 1127 | __reg_op(bitmap, pos, order, REG_OP_ALLOC); | 
|  | 1128 | return pos; | 
|  | 1129 | } | 
|  | 1130 | return -ENOMEM; | 
|  | 1131 | } | 
|  | 1132 | EXPORT_SYMBOL(bitmap_find_free_region); | 
|  | 1133 |  | 
|  | 1134 | /** | 
|  | 1135 | * bitmap_release_region - release allocated bitmap region | 
|  | 1136 | *	@bitmap: array of unsigned longs corresponding to the bitmap | 
|  | 1137 | *	@pos: beginning of bit region to release | 
|  | 1138 | *	@order: region size (log base 2 of number of bits) to release | 
|  | 1139 | * | 
|  | 1140 | * This is the complement to __bitmap_find_free_region() and releases | 
|  | 1141 | * the found region (by clearing it in the bitmap). | 
|  | 1142 | * | 
|  | 1143 | * No return value. | 
|  | 1144 | */ | 
|  | 1145 | void bitmap_release_region(unsigned long *bitmap, int pos, int order) | 
|  | 1146 | { | 
|  | 1147 | __reg_op(bitmap, pos, order, REG_OP_RELEASE); | 
|  | 1148 | } | 
|  | 1149 | EXPORT_SYMBOL(bitmap_release_region); | 
|  | 1150 |  | 
|  | 1151 | /** | 
|  | 1152 | * bitmap_allocate_region - allocate bitmap region | 
|  | 1153 | *	@bitmap: array of unsigned longs corresponding to the bitmap | 
|  | 1154 | *	@pos: beginning of bit region to allocate | 
|  | 1155 | *	@order: region size (log base 2 of number of bits) to allocate | 
|  | 1156 | * | 
|  | 1157 | * Allocate (set bits in) a specified region of a bitmap. | 
|  | 1158 | * | 
|  | 1159 | * Return 0 on success, or %-EBUSY if specified region wasn't | 
|  | 1160 | * free (not all bits were zero). | 
|  | 1161 | */ | 
|  | 1162 | int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) | 
|  | 1163 | { | 
|  | 1164 | if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) | 
|  | 1165 | return -EBUSY; | 
|  | 1166 | __reg_op(bitmap, pos, order, REG_OP_ALLOC); | 
|  | 1167 | return 0; | 
|  | 1168 | } | 
|  | 1169 | EXPORT_SYMBOL(bitmap_allocate_region); | 
|  | 1170 |  | 
|  | 1171 | /** | 
|  | 1172 | * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. | 
|  | 1173 | * @dst:   destination buffer | 
|  | 1174 | * @src:   bitmap to copy | 
|  | 1175 | * @nbits: number of bits in the bitmap | 
|  | 1176 | * | 
|  | 1177 | * Require nbits % BITS_PER_LONG == 0. | 
|  | 1178 | */ | 
|  | 1179 | void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) | 
|  | 1180 | { | 
|  | 1181 | unsigned long *d = dst; | 
|  | 1182 | int i; | 
|  | 1183 |  | 
|  | 1184 | for (i = 0; i < nbits/BITS_PER_LONG; i++) { | 
|  | 1185 | if (BITS_PER_LONG == 64) | 
|  | 1186 | d[i] = cpu_to_le64(src[i]); | 
|  | 1187 | else | 
|  | 1188 | d[i] = cpu_to_le32(src[i]); | 
|  | 1189 | } | 
|  | 1190 | } | 
|  | 1191 | EXPORT_SYMBOL(bitmap_copy_le); |