xf.li | 3dd5374 | 2024-09-27 00:06:23 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * RTC subsystem, base class |
| 4 | * |
| 5 | * Copyright (C) 2005 Tower Technologies |
| 6 | * Author: Alessandro Zummo <a.zummo@towertech.it> |
| 7 | * |
| 8 | * class skeleton from drivers/hwmon/hwmon.c |
| 9 | */ |
| 10 | |
| 11 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 12 | |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/of.h> |
| 15 | #include <linux/rtc.h> |
| 16 | #include <linux/kdev_t.h> |
| 17 | #include <linux/idr.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/workqueue.h> |
| 20 | |
| 21 | #include "rtc-core.h" |
| 22 | |
| 23 | static DEFINE_IDA(rtc_ida); |
| 24 | struct class *rtc_class; |
| 25 | |
| 26 | static void rtc_device_release(struct device *dev) |
| 27 | { |
| 28 | struct rtc_device *rtc = to_rtc_device(dev); |
| 29 | struct timerqueue_head *head = &rtc->timerqueue; |
| 30 | struct timerqueue_node *node; |
| 31 | |
| 32 | mutex_lock(&rtc->ops_lock); |
| 33 | while ((node = timerqueue_getnext(head))) |
| 34 | timerqueue_del(head, node); |
| 35 | mutex_unlock(&rtc->ops_lock); |
| 36 | |
| 37 | cancel_work_sync(&rtc->irqwork); |
| 38 | |
| 39 | ida_simple_remove(&rtc_ida, rtc->id); |
| 40 | kfree(rtc); |
| 41 | } |
| 42 | |
| 43 | #ifdef CONFIG_RTC_HCTOSYS_DEVICE |
| 44 | /* Result of the last RTC to system clock attempt. */ |
| 45 | int rtc_hctosys_ret = -ENODEV; |
| 46 | |
| 47 | /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary |
| 48 | * whether it stores the most close value or the value with partial |
| 49 | * seconds truncated. However, it is important that we use it to store |
| 50 | * the truncated value. This is because otherwise it is necessary, |
| 51 | * in an rtc sync function, to read both xtime.tv_sec and |
| 52 | * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read |
| 53 | * of >32bits is not possible. So storing the most close value would |
| 54 | * slow down the sync API. So here we have the truncated value and |
| 55 | * the best guess is to add 0.5s. |
| 56 | */ |
| 57 | |
| 58 | static void rtc_hctosys(struct rtc_device *rtc) |
| 59 | { |
| 60 | int err; |
| 61 | struct rtc_time tm; |
| 62 | struct timespec64 tv64 = { |
| 63 | .tv_nsec = NSEC_PER_SEC >> 1, |
| 64 | }; |
| 65 | |
| 66 | err = rtc_read_time(rtc, &tm); |
| 67 | if (err) { |
| 68 | dev_err(rtc->dev.parent, |
| 69 | "hctosys: unable to read the hardware clock\n"); |
| 70 | goto err_read; |
| 71 | } |
| 72 | |
| 73 | tv64.tv_sec = rtc_tm_to_time64(&tm); |
| 74 | |
| 75 | #if BITS_PER_LONG == 32 |
| 76 | if (tv64.tv_sec > INT_MAX) { |
| 77 | err = -ERANGE; |
| 78 | goto err_read; |
| 79 | } |
| 80 | #endif |
| 81 | |
| 82 | err = do_settimeofday64(&tv64); |
xf.li | a06dd22 | 2024-10-14 09:07:20 +0000 | [diff] [blame^] | 83 | |
xf.li | 3dd5374 | 2024-09-27 00:06:23 -0700 | [diff] [blame] | 84 | dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n", |
| 85 | &tm, (long long)tv64.tv_sec); |
| 86 | |
| 87 | err_read: |
| 88 | rtc_hctosys_ret = err; |
| 89 | } |
| 90 | #endif |
| 91 | |
| 92 | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) |
| 93 | /* |
| 94 | * On suspend(), measure the delta between one RTC and the |
| 95 | * system's wall clock; restore it on resume(). |
| 96 | */ |
| 97 | |
| 98 | static struct timespec64 old_rtc, old_system, old_delta; |
| 99 | |
| 100 | static int rtc_suspend(struct device *dev) |
| 101 | { |
| 102 | struct rtc_device *rtc = to_rtc_device(dev); |
| 103 | struct rtc_time tm; |
| 104 | struct timespec64 delta, delta_delta; |
| 105 | int err; |
| 106 | |
| 107 | if (timekeeping_rtc_skipsuspend()) |
| 108 | return 0; |
| 109 | |
| 110 | if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) |
| 111 | return 0; |
| 112 | |
| 113 | /* snapshot the current RTC and system time at suspend*/ |
| 114 | err = rtc_read_time(rtc, &tm); |
| 115 | if (err < 0) { |
| 116 | pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); |
| 117 | return 0; |
| 118 | } |
| 119 | |
| 120 | ktime_get_real_ts64(&old_system); |
| 121 | old_rtc.tv_sec = rtc_tm_to_time64(&tm); |
| 122 | |
| 123 | /* |
| 124 | * To avoid drift caused by repeated suspend/resumes, |
| 125 | * which each can add ~1 second drift error, |
| 126 | * try to compensate so the difference in system time |
| 127 | * and rtc time stays close to constant. |
| 128 | */ |
| 129 | delta = timespec64_sub(old_system, old_rtc); |
| 130 | delta_delta = timespec64_sub(delta, old_delta); |
| 131 | if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { |
| 132 | /* |
| 133 | * if delta_delta is too large, assume time correction |
| 134 | * has occurred and set old_delta to the current delta. |
| 135 | */ |
| 136 | old_delta = delta; |
| 137 | } else { |
| 138 | /* Otherwise try to adjust old_system to compensate */ |
| 139 | old_system = timespec64_sub(old_system, delta_delta); |
| 140 | } |
| 141 | |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | static int rtc_resume(struct device *dev) |
| 146 | { |
| 147 | struct rtc_device *rtc = to_rtc_device(dev); |
| 148 | struct rtc_time tm; |
| 149 | struct timespec64 new_system, new_rtc; |
| 150 | struct timespec64 sleep_time; |
| 151 | int err; |
| 152 | |
| 153 | if (timekeeping_rtc_skipresume()) |
| 154 | return 0; |
| 155 | |
| 156 | rtc_hctosys_ret = -ENODEV; |
| 157 | if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) |
| 158 | return 0; |
| 159 | |
| 160 | /* snapshot the current rtc and system time at resume */ |
| 161 | ktime_get_real_ts64(&new_system); |
| 162 | err = rtc_read_time(rtc, &tm); |
| 163 | if (err < 0) { |
| 164 | pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | new_rtc.tv_sec = rtc_tm_to_time64(&tm); |
| 169 | new_rtc.tv_nsec = 0; |
| 170 | |
| 171 | if (new_rtc.tv_sec < old_rtc.tv_sec) { |
| 172 | pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | /* calculate the RTC time delta (sleep time)*/ |
| 177 | sleep_time = timespec64_sub(new_rtc, old_rtc); |
| 178 | |
| 179 | /* |
| 180 | * Since these RTC suspend/resume handlers are not called |
| 181 | * at the very end of suspend or the start of resume, |
| 182 | * some run-time may pass on either sides of the sleep time |
| 183 | * so subtract kernel run-time between rtc_suspend to rtc_resume |
| 184 | * to keep things accurate. |
| 185 | */ |
| 186 | sleep_time = timespec64_sub(sleep_time, |
| 187 | timespec64_sub(new_system, old_system)); |
| 188 | |
| 189 | if (sleep_time.tv_sec >= 0) |
| 190 | timekeeping_inject_sleeptime64(&sleep_time); |
| 191 | rtc_hctosys_ret = 0; |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); |
| 196 | #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) |
| 197 | #else |
| 198 | #define RTC_CLASS_DEV_PM_OPS NULL |
| 199 | #endif |
| 200 | |
| 201 | /* Ensure the caller will set the id before releasing the device */ |
| 202 | static struct rtc_device *rtc_allocate_device(void) |
| 203 | { |
| 204 | struct rtc_device *rtc; |
| 205 | |
| 206 | rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
| 207 | if (!rtc) |
| 208 | return NULL; |
| 209 | |
| 210 | device_initialize(&rtc->dev); |
| 211 | |
| 212 | /* Drivers can revise this default after allocating the device. */ |
| 213 | rtc->set_offset_nsec = NSEC_PER_SEC / 2; |
| 214 | |
| 215 | rtc->irq_freq = 1; |
| 216 | rtc->max_user_freq = 64; |
| 217 | rtc->dev.class = rtc_class; |
| 218 | rtc->dev.groups = rtc_get_dev_attribute_groups(); |
| 219 | rtc->dev.release = rtc_device_release; |
| 220 | |
| 221 | mutex_init(&rtc->ops_lock); |
| 222 | spin_lock_init(&rtc->irq_lock); |
| 223 | init_waitqueue_head(&rtc->irq_queue); |
| 224 | |
| 225 | /* Init timerqueue */ |
| 226 | timerqueue_init_head(&rtc->timerqueue); |
| 227 | INIT_WORK(&rtc->irqwork, rtc_timer_do_work); |
| 228 | /* Init aie timer */ |
| 229 | rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); |
| 230 | /* Init uie timer */ |
| 231 | rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); |
| 232 | /* Init pie timer */ |
| 233 | hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 234 | rtc->pie_timer.function = rtc_pie_update_irq; |
| 235 | rtc->pie_enabled = 0; |
| 236 | |
| 237 | return rtc; |
| 238 | } |
| 239 | |
| 240 | static int rtc_device_get_id(struct device *dev) |
| 241 | { |
| 242 | int of_id = -1, id = -1; |
| 243 | |
| 244 | if (dev->of_node) |
| 245 | of_id = of_alias_get_id(dev->of_node, "rtc"); |
| 246 | else if (dev->parent && dev->parent->of_node) |
| 247 | of_id = of_alias_get_id(dev->parent->of_node, "rtc"); |
| 248 | |
| 249 | if (of_id >= 0) { |
| 250 | id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); |
| 251 | if (id < 0) |
| 252 | dev_warn(dev, "/aliases ID %d not available\n", of_id); |
| 253 | } |
| 254 | |
| 255 | if (id < 0) |
| 256 | id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); |
| 257 | |
| 258 | return id; |
| 259 | } |
| 260 | |
| 261 | static void rtc_device_get_offset(struct rtc_device *rtc) |
| 262 | { |
| 263 | time64_t range_secs; |
| 264 | u32 start_year; |
| 265 | int ret; |
| 266 | |
| 267 | /* |
| 268 | * If RTC driver did not implement the range of RTC hardware device, |
| 269 | * then we can not expand the RTC range by adding or subtracting one |
| 270 | * offset. |
| 271 | */ |
| 272 | if (rtc->range_min == rtc->range_max) |
| 273 | return; |
| 274 | |
| 275 | ret = device_property_read_u32(rtc->dev.parent, "start-year", |
| 276 | &start_year); |
| 277 | if (!ret) { |
| 278 | rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); |
| 279 | rtc->set_start_time = true; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * If user did not implement the start time for RTC driver, then no |
| 284 | * need to expand the RTC range. |
| 285 | */ |
| 286 | if (!rtc->set_start_time) |
| 287 | return; |
| 288 | |
| 289 | range_secs = rtc->range_max - rtc->range_min + 1; |
| 290 | |
| 291 | /* |
| 292 | * If the start_secs is larger than the maximum seconds (rtc->range_max) |
| 293 | * supported by RTC hardware or the maximum seconds of new expanded |
| 294 | * range (start_secs + rtc->range_max - rtc->range_min) is less than |
| 295 | * rtc->range_min, which means the minimum seconds (rtc->range_min) of |
| 296 | * RTC hardware will be mapped to start_secs by adding one offset, so |
| 297 | * the offset seconds calculation formula should be: |
| 298 | * rtc->offset_secs = rtc->start_secs - rtc->range_min; |
| 299 | * |
| 300 | * If the start_secs is larger than the minimum seconds (rtc->range_min) |
| 301 | * supported by RTC hardware, then there is one region is overlapped |
| 302 | * between the original RTC hardware range and the new expanded range, |
| 303 | * and this overlapped region do not need to be mapped into the new |
| 304 | * expanded range due to it is valid for RTC device. So the minimum |
| 305 | * seconds of RTC hardware (rtc->range_min) should be mapped to |
| 306 | * rtc->range_max + 1, then the offset seconds formula should be: |
| 307 | * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; |
| 308 | * |
| 309 | * If the start_secs is less than the minimum seconds (rtc->range_min), |
| 310 | * which is similar to case 2. So the start_secs should be mapped to |
| 311 | * start_secs + rtc->range_max - rtc->range_min + 1, then the |
| 312 | * offset seconds formula should be: |
| 313 | * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); |
| 314 | * |
| 315 | * Otherwise the offset seconds should be 0. |
| 316 | */ |
| 317 | if (rtc->start_secs > rtc->range_max || |
| 318 | rtc->start_secs + range_secs - 1 < rtc->range_min) |
| 319 | rtc->offset_secs = rtc->start_secs - rtc->range_min; |
| 320 | else if (rtc->start_secs > rtc->range_min) |
| 321 | rtc->offset_secs = range_secs; |
| 322 | else if (rtc->start_secs < rtc->range_min) |
| 323 | rtc->offset_secs = -range_secs; |
| 324 | else |
| 325 | rtc->offset_secs = 0; |
| 326 | } |
| 327 | |
| 328 | /** |
| 329 | * rtc_device_unregister - removes the previously registered RTC class device |
| 330 | * |
| 331 | * @rtc: the RTC class device to destroy |
| 332 | */ |
| 333 | static void rtc_device_unregister(struct rtc_device *rtc) |
| 334 | { |
| 335 | mutex_lock(&rtc->ops_lock); |
| 336 | /* |
| 337 | * Remove innards of this RTC, then disable it, before |
| 338 | * letting any rtc_class_open() users access it again |
| 339 | */ |
| 340 | rtc_proc_del_device(rtc); |
| 341 | cdev_device_del(&rtc->char_dev, &rtc->dev); |
| 342 | rtc->ops = NULL; |
| 343 | mutex_unlock(&rtc->ops_lock); |
| 344 | put_device(&rtc->dev); |
| 345 | } |
| 346 | |
| 347 | static void devm_rtc_release_device(struct device *dev, void *res) |
| 348 | { |
| 349 | struct rtc_device *rtc = *(struct rtc_device **)res; |
| 350 | |
| 351 | rtc_nvmem_unregister(rtc); |
| 352 | |
| 353 | if (rtc->registered) |
| 354 | rtc_device_unregister(rtc); |
| 355 | else |
| 356 | put_device(&rtc->dev); |
| 357 | } |
| 358 | |
| 359 | struct rtc_device *devm_rtc_allocate_device(struct device *dev) |
| 360 | { |
| 361 | struct rtc_device **ptr, *rtc; |
| 362 | int id, err; |
| 363 | |
| 364 | id = rtc_device_get_id(dev); |
| 365 | if (id < 0) |
| 366 | return ERR_PTR(id); |
| 367 | |
| 368 | ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); |
| 369 | if (!ptr) { |
| 370 | err = -ENOMEM; |
| 371 | goto exit_ida; |
| 372 | } |
| 373 | |
| 374 | rtc = rtc_allocate_device(); |
| 375 | if (!rtc) { |
| 376 | err = -ENOMEM; |
| 377 | goto exit_devres; |
| 378 | } |
| 379 | |
| 380 | *ptr = rtc; |
| 381 | devres_add(dev, ptr); |
| 382 | |
| 383 | rtc->id = id; |
| 384 | rtc->dev.parent = dev; |
| 385 | dev_set_name(&rtc->dev, "rtc%d", id); |
| 386 | |
| 387 | return rtc; |
| 388 | |
| 389 | exit_devres: |
| 390 | devres_free(ptr); |
| 391 | exit_ida: |
| 392 | ida_simple_remove(&rtc_ida, id); |
| 393 | return ERR_PTR(err); |
| 394 | } |
| 395 | EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); |
| 396 | |
| 397 | int __rtc_register_device(struct module *owner, struct rtc_device *rtc) |
| 398 | { |
| 399 | struct rtc_wkalrm alrm; |
| 400 | int err; |
| 401 | |
| 402 | if (!rtc->ops) { |
| 403 | dev_dbg(&rtc->dev, "no ops set\n"); |
| 404 | return -EINVAL; |
| 405 | } |
| 406 | |
| 407 | rtc->owner = owner; |
| 408 | rtc_device_get_offset(rtc); |
| 409 | |
| 410 | /* Check to see if there is an ALARM already set in hw */ |
| 411 | err = __rtc_read_alarm(rtc, &alrm); |
| 412 | if (!err && !rtc_valid_tm(&alrm.time)) |
| 413 | rtc_initialize_alarm(rtc, &alrm); |
| 414 | |
| 415 | rtc_dev_prepare(rtc); |
| 416 | |
| 417 | err = cdev_device_add(&rtc->char_dev, &rtc->dev); |
| 418 | if (err) |
| 419 | dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", |
| 420 | MAJOR(rtc->dev.devt), rtc->id); |
| 421 | else |
| 422 | dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", |
| 423 | MAJOR(rtc->dev.devt), rtc->id); |
| 424 | |
| 425 | rtc_proc_add_device(rtc); |
| 426 | |
| 427 | rtc->registered = true; |
| 428 | dev_info(rtc->dev.parent, "registered as %s\n", |
| 429 | dev_name(&rtc->dev)); |
| 430 | |
| 431 | #ifdef CONFIG_RTC_HCTOSYS_DEVICE |
| 432 | if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE)) |
| 433 | rtc_hctosys(rtc); |
| 434 | #endif |
| 435 | |
| 436 | return 0; |
| 437 | } |
| 438 | EXPORT_SYMBOL_GPL(__rtc_register_device); |
| 439 | |
| 440 | /** |
| 441 | * devm_rtc_device_register - resource managed rtc_device_register() |
| 442 | * @dev: the device to register |
| 443 | * @name: the name of the device (unused) |
| 444 | * @ops: the rtc operations structure |
| 445 | * @owner: the module owner |
| 446 | * |
| 447 | * @return a struct rtc on success, or an ERR_PTR on error |
| 448 | * |
| 449 | * Managed rtc_device_register(). The rtc_device returned from this function |
| 450 | * are automatically freed on driver detach. |
| 451 | * This function is deprecated, use devm_rtc_allocate_device and |
| 452 | * rtc_register_device instead |
| 453 | */ |
| 454 | struct rtc_device *devm_rtc_device_register(struct device *dev, |
| 455 | const char *name, |
| 456 | const struct rtc_class_ops *ops, |
| 457 | struct module *owner) |
| 458 | { |
| 459 | struct rtc_device *rtc; |
| 460 | int err; |
| 461 | |
| 462 | rtc = devm_rtc_allocate_device(dev); |
| 463 | if (IS_ERR(rtc)) |
| 464 | return rtc; |
| 465 | |
| 466 | rtc->ops = ops; |
| 467 | |
| 468 | err = __rtc_register_device(owner, rtc); |
| 469 | if (err) |
| 470 | return ERR_PTR(err); |
| 471 | |
| 472 | return rtc; |
| 473 | } |
| 474 | EXPORT_SYMBOL_GPL(devm_rtc_device_register); |
| 475 | |
| 476 | static int __init rtc_init(void) |
| 477 | { |
| 478 | rtc_class = class_create(THIS_MODULE, "rtc"); |
| 479 | if (IS_ERR(rtc_class)) { |
| 480 | pr_err("couldn't create class\n"); |
| 481 | return PTR_ERR(rtc_class); |
| 482 | } |
| 483 | rtc_class->pm = RTC_CLASS_DEV_PM_OPS; |
| 484 | rtc_dev_init(); |
| 485 | return 0; |
| 486 | } |
| 487 | subsys_initcall(rtc_init); |