blob: 87310cee4e3adfc2efe35d7e68d97e43898e308c [file] [log] [blame]
l.yangb8fdece2024-10-10 14:56:17 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, base class
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * class skeleton from drivers/hwmon/hwmon.c
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/rtc.h>
16#include <linux/kdev_t.h>
17#include <linux/idr.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "rtc-core.h"
l.yangafee7ee2024-10-10 15:01:10 +080022#include "pub_debug_info.h"
l.yangb8fdece2024-10-10 14:56:17 +080023
24static DEFINE_IDA(rtc_ida);
25struct class *rtc_class;
26
27static void rtc_device_release(struct device *dev)
28{
29 struct rtc_device *rtc = to_rtc_device(dev);
30 struct timerqueue_head *head = &rtc->timerqueue;
31 struct timerqueue_node *node;
32
33 mutex_lock(&rtc->ops_lock);
34 while ((node = timerqueue_getnext(head)))
35 timerqueue_del(head, node);
36 mutex_unlock(&rtc->ops_lock);
37
38 cancel_work_sync(&rtc->irqwork);
39
40 ida_simple_remove(&rtc_ida, rtc->id);
41 kfree(rtc);
42}
43
44#ifdef CONFIG_RTC_HCTOSYS_DEVICE
45/* Result of the last RTC to system clock attempt. */
46int rtc_hctosys_ret = -ENODEV;
47
48/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
49 * whether it stores the most close value or the value with partial
50 * seconds truncated. However, it is important that we use it to store
51 * the truncated value. This is because otherwise it is necessary,
52 * in an rtc sync function, to read both xtime.tv_sec and
53 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
54 * of >32bits is not possible. So storing the most close value would
55 * slow down the sync API. So here we have the truncated value and
56 * the best guess is to add 0.5s.
57 */
58
59static void rtc_hctosys(struct rtc_device *rtc)
60{
61 int err;
62 struct rtc_time tm;
63 struct timespec64 tv64 = {
64 .tv_nsec = NSEC_PER_SEC >> 1,
65 };
66
67 err = rtc_read_time(rtc, &tm);
68 if (err) {
69 dev_err(rtc->dev.parent,
70 "hctosys: unable to read the hardware clock\n");
71 goto err_read;
72 }
73
74 tv64.tv_sec = rtc_tm_to_time64(&tm);
75
76#if BITS_PER_LONG == 32
77 if (tv64.tv_sec > INT_MAX) {
78 err = -ERANGE;
79 goto err_read;
80 }
81#endif
82
83 err = do_settimeofday64(&tv64);
l.yangafee7ee2024-10-10 15:01:10 +080084 sc_debug_info_record("hctosys", "time synchronization successful!\r\n");
l.yangb8fdece2024-10-10 14:56:17 +080085 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
86 &tm, (long long)tv64.tv_sec);
87
88err_read:
89 rtc_hctosys_ret = err;
90}
91#endif
92
93#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
94/*
95 * On suspend(), measure the delta between one RTC and the
96 * system's wall clock; restore it on resume().
97 */
98
99static struct timespec64 old_rtc, old_system, old_delta;
100
101static int rtc_suspend(struct device *dev)
102{
103 struct rtc_device *rtc = to_rtc_device(dev);
104 struct rtc_time tm;
105 struct timespec64 delta, delta_delta;
106 int err;
107
108 if (timekeeping_rtc_skipsuspend())
109 return 0;
110
111 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
112 return 0;
113
114 /* snapshot the current RTC and system time at suspend*/
115 err = rtc_read_time(rtc, &tm);
116 if (err < 0) {
117 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
118 return 0;
119 }
120
121 ktime_get_real_ts64(&old_system);
122 old_rtc.tv_sec = rtc_tm_to_time64(&tm);
123
124 /*
125 * To avoid drift caused by repeated suspend/resumes,
126 * which each can add ~1 second drift error,
127 * try to compensate so the difference in system time
128 * and rtc time stays close to constant.
129 */
130 delta = timespec64_sub(old_system, old_rtc);
131 delta_delta = timespec64_sub(delta, old_delta);
132 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
133 /*
134 * if delta_delta is too large, assume time correction
135 * has occurred and set old_delta to the current delta.
136 */
137 old_delta = delta;
138 } else {
139 /* Otherwise try to adjust old_system to compensate */
140 old_system = timespec64_sub(old_system, delta_delta);
141 }
142
143 return 0;
144}
145
146static int rtc_resume(struct device *dev)
147{
148 struct rtc_device *rtc = to_rtc_device(dev);
149 struct rtc_time tm;
150 struct timespec64 new_system, new_rtc;
151 struct timespec64 sleep_time;
152 int err;
153
154 if (timekeeping_rtc_skipresume())
155 return 0;
156
157 rtc_hctosys_ret = -ENODEV;
158 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
159 return 0;
160
161 /* snapshot the current rtc and system time at resume */
162 ktime_get_real_ts64(&new_system);
163 err = rtc_read_time(rtc, &tm);
164 if (err < 0) {
165 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
166 return 0;
167 }
168
169 new_rtc.tv_sec = rtc_tm_to_time64(&tm);
170 new_rtc.tv_nsec = 0;
171
172 if (new_rtc.tv_sec < old_rtc.tv_sec) {
173 pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
174 return 0;
175 }
176
177 /* calculate the RTC time delta (sleep time)*/
178 sleep_time = timespec64_sub(new_rtc, old_rtc);
179
180 /*
181 * Since these RTC suspend/resume handlers are not called
182 * at the very end of suspend or the start of resume,
183 * some run-time may pass on either sides of the sleep time
184 * so subtract kernel run-time between rtc_suspend to rtc_resume
185 * to keep things accurate.
186 */
187 sleep_time = timespec64_sub(sleep_time,
188 timespec64_sub(new_system, old_system));
189
190 if (sleep_time.tv_sec >= 0)
191 timekeeping_inject_sleeptime64(&sleep_time);
192 rtc_hctosys_ret = 0;
193 return 0;
194}
195
196static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
197#define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
198#else
199#define RTC_CLASS_DEV_PM_OPS NULL
200#endif
201
202/* Ensure the caller will set the id before releasing the device */
203static struct rtc_device *rtc_allocate_device(void)
204{
205 struct rtc_device *rtc;
206
207 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
208 if (!rtc)
209 return NULL;
210
211 device_initialize(&rtc->dev);
212
213 /* Drivers can revise this default after allocating the device. */
214 rtc->set_offset_nsec = NSEC_PER_SEC / 2;
215
216 rtc->irq_freq = 1;
217 rtc->max_user_freq = 64;
218 rtc->dev.class = rtc_class;
219 rtc->dev.groups = rtc_get_dev_attribute_groups();
220 rtc->dev.release = rtc_device_release;
221
222 mutex_init(&rtc->ops_lock);
223 spin_lock_init(&rtc->irq_lock);
224 init_waitqueue_head(&rtc->irq_queue);
225
226 /* Init timerqueue */
227 timerqueue_init_head(&rtc->timerqueue);
228 INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
229 /* Init aie timer */
230 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
231 /* Init uie timer */
232 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
233 /* Init pie timer */
234 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
235 rtc->pie_timer.function = rtc_pie_update_irq;
236 rtc->pie_enabled = 0;
237
238 return rtc;
239}
240
241static int rtc_device_get_id(struct device *dev)
242{
243 int of_id = -1, id = -1;
244
245 if (dev->of_node)
246 of_id = of_alias_get_id(dev->of_node, "rtc");
247 else if (dev->parent && dev->parent->of_node)
248 of_id = of_alias_get_id(dev->parent->of_node, "rtc");
249
250 if (of_id >= 0) {
251 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
252 if (id < 0)
253 dev_warn(dev, "/aliases ID %d not available\n", of_id);
254 }
255
256 if (id < 0)
257 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
258
259 return id;
260}
261
262static void rtc_device_get_offset(struct rtc_device *rtc)
263{
264 time64_t range_secs;
265 u32 start_year;
266 int ret;
267
268 /*
269 * If RTC driver did not implement the range of RTC hardware device,
270 * then we can not expand the RTC range by adding or subtracting one
271 * offset.
272 */
273 if (rtc->range_min == rtc->range_max)
274 return;
275
276 ret = device_property_read_u32(rtc->dev.parent, "start-year",
277 &start_year);
278 if (!ret) {
279 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
280 rtc->set_start_time = true;
281 }
282
283 /*
284 * If user did not implement the start time for RTC driver, then no
285 * need to expand the RTC range.
286 */
287 if (!rtc->set_start_time)
288 return;
289
290 range_secs = rtc->range_max - rtc->range_min + 1;
291
292 /*
293 * If the start_secs is larger than the maximum seconds (rtc->range_max)
294 * supported by RTC hardware or the maximum seconds of new expanded
295 * range (start_secs + rtc->range_max - rtc->range_min) is less than
296 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
297 * RTC hardware will be mapped to start_secs by adding one offset, so
298 * the offset seconds calculation formula should be:
299 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
300 *
301 * If the start_secs is larger than the minimum seconds (rtc->range_min)
302 * supported by RTC hardware, then there is one region is overlapped
303 * between the original RTC hardware range and the new expanded range,
304 * and this overlapped region do not need to be mapped into the new
305 * expanded range due to it is valid for RTC device. So the minimum
306 * seconds of RTC hardware (rtc->range_min) should be mapped to
307 * rtc->range_max + 1, then the offset seconds formula should be:
308 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
309 *
310 * If the start_secs is less than the minimum seconds (rtc->range_min),
311 * which is similar to case 2. So the start_secs should be mapped to
312 * start_secs + rtc->range_max - rtc->range_min + 1, then the
313 * offset seconds formula should be:
314 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
315 *
316 * Otherwise the offset seconds should be 0.
317 */
318 if (rtc->start_secs > rtc->range_max ||
319 rtc->start_secs + range_secs - 1 < rtc->range_min)
320 rtc->offset_secs = rtc->start_secs - rtc->range_min;
321 else if (rtc->start_secs > rtc->range_min)
322 rtc->offset_secs = range_secs;
323 else if (rtc->start_secs < rtc->range_min)
324 rtc->offset_secs = -range_secs;
325 else
326 rtc->offset_secs = 0;
327}
328
329/**
330 * rtc_device_unregister - removes the previously registered RTC class device
331 *
332 * @rtc: the RTC class device to destroy
333 */
334static void rtc_device_unregister(struct rtc_device *rtc)
335{
336 mutex_lock(&rtc->ops_lock);
337 /*
338 * Remove innards of this RTC, then disable it, before
339 * letting any rtc_class_open() users access it again
340 */
341 rtc_proc_del_device(rtc);
342 cdev_device_del(&rtc->char_dev, &rtc->dev);
343 rtc->ops = NULL;
344 mutex_unlock(&rtc->ops_lock);
345 put_device(&rtc->dev);
346}
347
348static void devm_rtc_release_device(struct device *dev, void *res)
349{
350 struct rtc_device *rtc = *(struct rtc_device **)res;
351
352 rtc_nvmem_unregister(rtc);
353
354 if (rtc->registered)
355 rtc_device_unregister(rtc);
356 else
357 put_device(&rtc->dev);
358}
359
360struct rtc_device *devm_rtc_allocate_device(struct device *dev)
361{
362 struct rtc_device **ptr, *rtc;
363 int id, err;
364
365 id = rtc_device_get_id(dev);
366 if (id < 0)
367 return ERR_PTR(id);
368
369 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
370 if (!ptr) {
371 err = -ENOMEM;
372 goto exit_ida;
373 }
374
375 rtc = rtc_allocate_device();
376 if (!rtc) {
377 err = -ENOMEM;
378 goto exit_devres;
379 }
380
381 *ptr = rtc;
382 devres_add(dev, ptr);
383
384 rtc->id = id;
385 rtc->dev.parent = dev;
386 dev_set_name(&rtc->dev, "rtc%d", id);
387
388 return rtc;
389
390exit_devres:
391 devres_free(ptr);
392exit_ida:
393 ida_simple_remove(&rtc_ida, id);
394 return ERR_PTR(err);
395}
396EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
397
398int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
399{
400 struct rtc_wkalrm alrm;
401 int err;
402
403 if (!rtc->ops) {
404 dev_dbg(&rtc->dev, "no ops set\n");
405 return -EINVAL;
406 }
407
408 rtc->owner = owner;
409 rtc_device_get_offset(rtc);
410
411 /* Check to see if there is an ALARM already set in hw */
412 err = __rtc_read_alarm(rtc, &alrm);
413 if (!err && !rtc_valid_tm(&alrm.time))
414 rtc_initialize_alarm(rtc, &alrm);
415
416 rtc_dev_prepare(rtc);
417
418 err = cdev_device_add(&rtc->char_dev, &rtc->dev);
419 if (err)
420 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
421 MAJOR(rtc->dev.devt), rtc->id);
422 else
423 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
424 MAJOR(rtc->dev.devt), rtc->id);
425
426 rtc_proc_add_device(rtc);
427
428 rtc->registered = true;
429 dev_info(rtc->dev.parent, "registered as %s\n",
430 dev_name(&rtc->dev));
431
432#ifdef CONFIG_RTC_HCTOSYS_DEVICE
433 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
434 rtc_hctosys(rtc);
435#endif
436
437 return 0;
438}
439EXPORT_SYMBOL_GPL(__rtc_register_device);
440
441/**
442 * devm_rtc_device_register - resource managed rtc_device_register()
443 * @dev: the device to register
444 * @name: the name of the device (unused)
445 * @ops: the rtc operations structure
446 * @owner: the module owner
447 *
448 * @return a struct rtc on success, or an ERR_PTR on error
449 *
450 * Managed rtc_device_register(). The rtc_device returned from this function
451 * are automatically freed on driver detach.
452 * This function is deprecated, use devm_rtc_allocate_device and
453 * rtc_register_device instead
454 */
455struct rtc_device *devm_rtc_device_register(struct device *dev,
456 const char *name,
457 const struct rtc_class_ops *ops,
458 struct module *owner)
459{
460 struct rtc_device *rtc;
461 int err;
462
463 rtc = devm_rtc_allocate_device(dev);
464 if (IS_ERR(rtc))
465 return rtc;
466
467 rtc->ops = ops;
468
469 err = __rtc_register_device(owner, rtc);
470 if (err)
471 return ERR_PTR(err);
472
473 return rtc;
474}
475EXPORT_SYMBOL_GPL(devm_rtc_device_register);
476
477static int __init rtc_init(void)
478{
479 rtc_class = class_create(THIS_MODULE, "rtc");
480 if (IS_ERR(rtc_class)) {
481 pr_err("couldn't create class\n");
482 return PTR_ERR(rtc_class);
483 }
484 rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
485 rtc_dev_init();
486 return 0;
487}
488subsys_initcall(rtc_init);