| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | /* | 
 |  * Scheduler internal types and methods: | 
 |  */ | 
 | #include <linux/sched.h> | 
 |  | 
 | #include <linux/sched/autogroup.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/sched/cpufreq.h> | 
 | #include <linux/sched/cputime.h> | 
 | #include <linux/sched/deadline.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/sched/hotplug.h> | 
 | #include <linux/sched/idle.h> | 
 | #include <linux/sched/init.h> | 
 | #include <linux/sched/isolation.h> | 
 | #include <linux/sched/jobctl.h> | 
 | #include <linux/sched/loadavg.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/nohz.h> | 
 | #include <linux/sched/numa_balancing.h> | 
 | #include <linux/sched/prio.h> | 
 | #include <linux/sched/rt.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/smt.h> | 
 | #include <linux/sched/stat.h> | 
 | #include <linux/sched/sysctl.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/sched/topology.h> | 
 | #include <linux/sched/user.h> | 
 | #include <linux/sched/wake_q.h> | 
 | #include <linux/sched/xacct.h> | 
 |  | 
 | #include <uapi/linux/sched/types.h> | 
 |  | 
 | #include <linux/binfmts.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/energy_model.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/membarrier.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/mmu_context.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/psi.h> | 
 | #include <linux/rcupdate_wait.h> | 
 | #include <linux/security.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/swait.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/task_work.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/android_kabi.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 |  | 
 | #ifdef CONFIG_PARAVIRT | 
 | # include <asm/paravirt.h> | 
 | #endif | 
 |  | 
 | #include "cpupri.h" | 
 | #include "cpudeadline.h" | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x) | 
 | #else | 
 | # define SCHED_WARN_ON(x)	({ (void)(x), 0; }) | 
 | #endif | 
 |  | 
 | struct rq; | 
 | struct cpuidle_state; | 
 |  | 
 | /* task_struct::on_rq states: */ | 
 | #define TASK_ON_RQ_QUEUED	1 | 
 | #define TASK_ON_RQ_MIGRATING	2 | 
 |  | 
 | extern __read_mostly int scheduler_running; | 
 |  | 
 | extern unsigned long calc_load_update; | 
 | extern atomic_long_t calc_load_tasks; | 
 |  | 
 | extern void calc_global_load_tick(struct rq *this_rq); | 
 | extern long calc_load_fold_active(struct rq *this_rq, long adjust); | 
 |  | 
 | /* | 
 |  * Helpers for converting nanosecond timing to jiffy resolution | 
 |  */ | 
 | #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 
 |  | 
 | /* | 
 |  * Increase resolution of nice-level calculations for 64-bit architectures. | 
 |  * The extra resolution improves shares distribution and load balancing of | 
 |  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup | 
 |  * hierarchies, especially on larger systems. This is not a user-visible change | 
 |  * and does not change the user-interface for setting shares/weights. | 
 |  * | 
 |  * We increase resolution only if we have enough bits to allow this increased | 
 |  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit | 
 |  * are pretty high and the returns do not justify the increased costs. | 
 |  * | 
 |  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to | 
 |  * increase coverage and consistency always enable it on 64-bit platforms. | 
 |  */ | 
 | #ifdef CONFIG_64BIT | 
 | # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) | 
 | # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT) | 
 | # define scale_load_down(w) \ | 
 | ({ \ | 
 | 	unsigned long __w = (w); \ | 
 | 	if (__w) \ | 
 | 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ | 
 | 	__w; \ | 
 | }) | 
 | #else | 
 | # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT) | 
 | # define scale_load(w)		(w) | 
 | # define scale_load_down(w)	(w) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Task weight (visible to users) and its load (invisible to users) have | 
 |  * independent resolution, but they should be well calibrated. We use | 
 |  * scale_load() and scale_load_down(w) to convert between them. The | 
 |  * following must be true: | 
 |  * | 
 |  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD | 
 |  * | 
 |  */ | 
 | #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT) | 
 |  | 
 | /* | 
 |  * Single value that decides SCHED_DEADLINE internal math precision. | 
 |  * 10 -> just above 1us | 
 |  * 9  -> just above 0.5us | 
 |  */ | 
 | #define DL_SCALE		10 | 
 |  | 
 | /* | 
 |  * Single value that denotes runtime == period, ie unlimited time. | 
 |  */ | 
 | #define RUNTIME_INF		((u64)~0ULL) | 
 |  | 
 | static inline int idle_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_IDLE; | 
 | } | 
 | static inline int fair_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_NORMAL || policy == SCHED_BATCH; | 
 | } | 
 |  | 
 | static inline int rt_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_FIFO || policy == SCHED_RR; | 
 | } | 
 |  | 
 | static inline int dl_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_DEADLINE; | 
 | } | 
 | static inline bool valid_policy(int policy) | 
 | { | 
 | 	return idle_policy(policy) || fair_policy(policy) || | 
 | 		rt_policy(policy) || dl_policy(policy); | 
 | } | 
 |  | 
 | static inline int task_has_idle_policy(struct task_struct *p) | 
 | { | 
 | 	return idle_policy(p->policy); | 
 | } | 
 |  | 
 | static inline int task_has_rt_policy(struct task_struct *p) | 
 | { | 
 | 	return rt_policy(p->policy); | 
 | } | 
 |  | 
 | static inline int task_has_dl_policy(struct task_struct *p) | 
 | { | 
 | 	return dl_policy(p->policy); | 
 | } | 
 |  | 
 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) | 
 |  | 
 | /* | 
 |  * !! For sched_setattr_nocheck() (kernel) only !! | 
 |  * | 
 |  * This is actually gross. :( | 
 |  * | 
 |  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE | 
 |  * tasks, but still be able to sleep. We need this on platforms that cannot | 
 |  * atomically change clock frequency. Remove once fast switching will be | 
 |  * available on such platforms. | 
 |  * | 
 |  * SUGOV stands for SchedUtil GOVernor. | 
 |  */ | 
 | #define SCHED_FLAG_SUGOV	0x10000000 | 
 |  | 
 | #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) | 
 |  | 
 | static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) | 
 | { | 
 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL | 
 | 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Tells if entity @a should preempt entity @b. | 
 |  */ | 
 | static inline bool | 
 | dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) | 
 | { | 
 | 	return dl_entity_is_special(a) || | 
 | 	       dl_time_before(a->deadline, b->deadline); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the priority-queue data structure of the RT scheduling class: | 
 |  */ | 
 | struct rt_prio_array { | 
 | 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
 | 	struct list_head queue[MAX_RT_PRIO]; | 
 | }; | 
 |  | 
 | struct rt_bandwidth { | 
 | 	/* nests inside the rq lock: */ | 
 | 	raw_spinlock_t		rt_runtime_lock; | 
 | 	ktime_t			rt_period; | 
 | 	u64			rt_runtime; | 
 | 	struct hrtimer		rt_period_timer; | 
 | 	unsigned int		rt_period_active; | 
 | }; | 
 |  | 
 | void __dl_clear_params(struct task_struct *p); | 
 |  | 
 | struct dl_bandwidth { | 
 | 	raw_spinlock_t		dl_runtime_lock; | 
 | 	u64			dl_runtime; | 
 | 	u64			dl_period; | 
 | }; | 
 |  | 
 | static inline int dl_bandwidth_enabled(void) | 
 | { | 
 | 	return sysctl_sched_rt_runtime >= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * To keep the bandwidth of -deadline tasks under control | 
 |  * we need some place where: | 
 |  *  - store the maximum -deadline bandwidth of each cpu; | 
 |  *  - cache the fraction of bandwidth that is currently allocated in | 
 |  *    each root domain; | 
 |  * | 
 |  * This is all done in the data structure below. It is similar to the | 
 |  * one used for RT-throttling (rt_bandwidth), with the main difference | 
 |  * that, since here we are only interested in admission control, we | 
 |  * do not decrease any runtime while the group "executes", neither we | 
 |  * need a timer to replenish it. | 
 |  * | 
 |  * With respect to SMP, bandwidth is given on a per root domain basis, | 
 |  * meaning that: | 
 |  *  - bw (< 100%) is the deadline bandwidth of each CPU; | 
 |  *  - total_bw is the currently allocated bandwidth in each root domain; | 
 |  */ | 
 | struct dl_bw { | 
 | 	raw_spinlock_t		lock; | 
 | 	u64			bw; | 
 | 	u64			total_bw; | 
 | }; | 
 |  | 
 | static inline void __dl_update(struct dl_bw *dl_b, s64 bw); | 
 |  | 
 | static inline | 
 | void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) | 
 | { | 
 | 	dl_b->total_bw -= tsk_bw; | 
 | 	__dl_update(dl_b, (s32)tsk_bw / cpus); | 
 | } | 
 |  | 
 | static inline | 
 | void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) | 
 | { | 
 | 	dl_b->total_bw += tsk_bw; | 
 | 	__dl_update(dl_b, -((s32)tsk_bw / cpus)); | 
 | } | 
 |  | 
 | static inline | 
 | bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) | 
 | { | 
 | 	return dl_b->bw != -1 && | 
 | 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; | 
 | } | 
 |  | 
 | extern void dl_change_utilization(struct task_struct *p, u64 new_bw); | 
 | extern void init_dl_bw(struct dl_bw *dl_b); | 
 | extern int  sched_dl_global_validate(void); | 
 | extern void sched_dl_do_global(void); | 
 | extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); | 
 | extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); | 
 | extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); | 
 | extern bool __checkparam_dl(const struct sched_attr *attr); | 
 | extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); | 
 | extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); | 
 | extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); | 
 | extern bool dl_cpu_busy(unsigned int cpu); | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | #include <linux/cgroup.h> | 
 | #include <linux/psi.h> | 
 |  | 
 | struct cfs_rq; | 
 | struct rt_rq; | 
 |  | 
 | extern struct list_head task_groups; | 
 |  | 
 | struct cfs_bandwidth { | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | 	raw_spinlock_t		lock; | 
 | 	ktime_t			period; | 
 | 	u64			quota; | 
 | 	u64			runtime; | 
 | 	s64			hierarchical_quota; | 
 |  | 
 | 	u8			idle; | 
 | 	u8			period_active; | 
 | 	u8			distribute_running; | 
 | 	u8			slack_started; | 
 | 	struct hrtimer		period_timer; | 
 | 	struct hrtimer		slack_timer; | 
 | 	struct list_head	throttled_cfs_rq; | 
 |  | 
 | 	/* Statistics: */ | 
 | 	int			nr_periods; | 
 | 	int			nr_throttled; | 
 | 	u64			throttled_time; | 
 | #endif | 
 | }; | 
 |  | 
 | /* Task group related information */ | 
 | struct task_group { | 
 | 	struct cgroup_subsys_state css; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* schedulable entities of this group on each CPU */ | 
 | 	struct sched_entity	**se; | 
 | 	/* runqueue "owned" by this group on each CPU */ | 
 | 	struct cfs_rq		**cfs_rq; | 
 | 	unsigned long		shares; | 
 |  | 
 | #ifdef	CONFIG_SMP | 
 | 	/* | 
 | 	 * load_avg can be heavily contended at clock tick time, so put | 
 | 	 * it in its own cacheline separated from the fields above which | 
 | 	 * will also be accessed at each tick. | 
 | 	 */ | 
 | 	atomic_long_t		load_avg ____cacheline_aligned; | 
 | #endif | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	struct sched_rt_entity	**rt_se; | 
 | 	struct rt_rq		**rt_rq; | 
 |  | 
 | 	struct rt_bandwidth	rt_bandwidth; | 
 | #endif | 
 |  | 
 | 	struct rcu_head		rcu; | 
 | 	struct list_head	list; | 
 |  | 
 | 	struct task_group	*parent; | 
 | 	struct list_head	siblings; | 
 | 	struct list_head	children; | 
 |  | 
 | #ifdef CONFIG_SCHED_AUTOGROUP | 
 | 	struct autogroup	*autogroup; | 
 | #endif | 
 |  | 
 | 	struct cfs_bandwidth	cfs_bandwidth; | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
 | 	/* The two decimal precision [%] value requested from user-space */ | 
 | 	unsigned int		uclamp_pct[UCLAMP_CNT]; | 
 | 	/* Clamp values requested for a task group */ | 
 | 	struct uclamp_se	uclamp_req[UCLAMP_CNT]; | 
 | 	/* Effective clamp values used for a task group */ | 
 | 	struct uclamp_se	uclamp[UCLAMP_CNT]; | 
 | 	/* Latency-sensitive flag used for a task group */ | 
 | 	unsigned int		latency_sensitive; | 
 | #endif | 
 |  | 
 | 	ANDROID_KABI_RESERVE(1); | 
 | 	ANDROID_KABI_RESERVE(2); | 
 | 	ANDROID_KABI_RESERVE(3); | 
 | 	ANDROID_KABI_RESERVE(4); | 
 | }; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD | 
 |  | 
 | /* | 
 |  * A weight of 0 or 1 can cause arithmetics problems. | 
 |  * A weight of a cfs_rq is the sum of weights of which entities | 
 |  * are queued on this cfs_rq, so a weight of a entity should not be | 
 |  * too large, so as the shares value of a task group. | 
 |  * (The default weight is 1024 - so there's no practical | 
 |  *  limitation from this.) | 
 |  */ | 
 | #define MIN_SHARES		(1UL <<  1) | 
 | #define MAX_SHARES		(1UL << 18) | 
 | #endif | 
 |  | 
 | typedef int (*tg_visitor)(struct task_group *, void *); | 
 |  | 
 | extern int walk_tg_tree_from(struct task_group *from, | 
 | 			     tg_visitor down, tg_visitor up, void *data); | 
 |  | 
 | /* | 
 |  * Iterate the full tree, calling @down when first entering a node and @up when | 
 |  * leaving it for the final time. | 
 |  * | 
 |  * Caller must hold rcu_lock or sufficient equivalent. | 
 |  */ | 
 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 
 | { | 
 | 	return walk_tg_tree_from(&root_task_group, down, up, data); | 
 | } | 
 |  | 
 | extern int tg_nop(struct task_group *tg, void *data); | 
 |  | 
 | extern void free_fair_sched_group(struct task_group *tg); | 
 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | 
 | extern void online_fair_sched_group(struct task_group *tg); | 
 | extern void unregister_fair_sched_group(struct task_group *tg); | 
 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
 | 			struct sched_entity *se, int cpu, | 
 | 			struct sched_entity *parent); | 
 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | 
 |  | 
 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | 
 | extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | 
 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | 
 |  | 
 | extern void free_rt_sched_group(struct task_group *tg); | 
 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | 
 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
 | 		struct sched_rt_entity *rt_se, int cpu, | 
 | 		struct sched_rt_entity *parent); | 
 | extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); | 
 | extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); | 
 | extern long sched_group_rt_runtime(struct task_group *tg); | 
 | extern long sched_group_rt_period(struct task_group *tg); | 
 | extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); | 
 |  | 
 | extern struct task_group *sched_create_group(struct task_group *parent); | 
 | extern void sched_online_group(struct task_group *tg, | 
 | 			       struct task_group *parent); | 
 | extern void sched_destroy_group(struct task_group *tg); | 
 | extern void sched_offline_group(struct task_group *tg); | 
 |  | 
 | extern void sched_move_task(struct task_struct *tsk); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | extern void set_task_rq_fair(struct sched_entity *se, | 
 | 			     struct cfs_rq *prev, struct cfs_rq *next); | 
 | #else /* !CONFIG_SMP */ | 
 | static inline void set_task_rq_fair(struct sched_entity *se, | 
 | 			     struct cfs_rq *prev, struct cfs_rq *next) { } | 
 | #endif /* CONFIG_SMP */ | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | #else /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | struct cfs_bandwidth { }; | 
 |  | 
 | #endif	/* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | /* CFS-related fields in a runqueue */ | 
 | struct cfs_rq { | 
 | 	struct load_weight	load; | 
 | 	unsigned long		runnable_weight; | 
 | 	unsigned int		nr_running; | 
 | 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */ | 
 | 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */ | 
 |  | 
 | 	u64			exec_clock; | 
 | 	u64			min_vruntime; | 
 | #ifndef CONFIG_64BIT | 
 | 	u64			min_vruntime_copy; | 
 | #endif | 
 |  | 
 | 	struct rb_root_cached	tasks_timeline; | 
 |  | 
 | 	/* | 
 | 	 * 'curr' points to currently running entity on this cfs_rq. | 
 | 	 * It is set to NULL otherwise (i.e when none are currently running). | 
 | 	 */ | 
 | 	struct sched_entity	*curr; | 
 | 	struct sched_entity	*next; | 
 | 	struct sched_entity	*last; | 
 | 	struct sched_entity	*skip; | 
 |  | 
 | #ifdef	CONFIG_SCHED_DEBUG | 
 | 	unsigned int		nr_spread_over; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * CFS load tracking | 
 | 	 */ | 
 | 	struct sched_avg	avg; | 
 | #ifndef CONFIG_64BIT | 
 | 	u64			load_last_update_time_copy; | 
 | #endif | 
 | 	struct { | 
 | 		raw_spinlock_t	lock ____cacheline_aligned; | 
 | 		int		nr; | 
 | 		unsigned long	load_avg; | 
 | 		unsigned long	util_avg; | 
 | 		unsigned long	runnable_sum; | 
 | 	} removed; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	unsigned long		tg_load_avg_contrib; | 
 | 	long			propagate; | 
 | 	long			prop_runnable_sum; | 
 |  | 
 | 	/* | 
 | 	 *   h_load = weight * f(tg) | 
 | 	 * | 
 | 	 * Where f(tg) is the recursive weight fraction assigned to | 
 | 	 * this group. | 
 | 	 */ | 
 | 	unsigned long		h_load; | 
 | 	u64			last_h_load_update; | 
 | 	struct sched_entity	*h_load_next; | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */ | 
 |  | 
 | 	/* | 
 | 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
 | 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
 | 	 * (like users, containers etc.) | 
 | 	 * | 
 | 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. | 
 | 	 * This list is used during load balance. | 
 | 	 */ | 
 | 	int			on_list; | 
 | 	struct list_head	leaf_cfs_rq_list; | 
 | 	struct task_group	*tg;	/* group that "owns" this runqueue */ | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | 	int			runtime_enabled; | 
 | 	s64			runtime_remaining; | 
 |  | 
 | 	u64			throttled_clock; | 
 | 	u64			throttled_clock_pelt; | 
 | 	u64			throttled_clock_pelt_time; | 
 | 	int			throttled; | 
 | 	int			throttle_count; | 
 | 	struct list_head	throttled_list; | 
 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | }; | 
 |  | 
 | static inline int rt_bandwidth_enabled(void) | 
 | { | 
 | 	return sysctl_sched_rt_runtime >= 0; | 
 | } | 
 |  | 
 | /* RT IPI pull logic requires IRQ_WORK */ | 
 | #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) | 
 | # define HAVE_RT_PUSH_IPI | 
 | #endif | 
 |  | 
 | /* Real-Time classes' related field in a runqueue: */ | 
 | struct rt_rq { | 
 | 	struct rt_prio_array	active; | 
 | 	unsigned int		rt_nr_running; | 
 | 	unsigned int		rr_nr_running; | 
 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
 | 	struct { | 
 | 		int		curr; /* highest queued rt task prio */ | 
 | #ifdef CONFIG_SMP | 
 | 		int		next; /* next highest */ | 
 | #endif | 
 | 	} highest_prio; | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long		rt_nr_migratory; | 
 | 	unsigned long		rt_nr_total; | 
 | 	int			overloaded; | 
 | 	struct plist_head	pushable_tasks; | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 | 	int			rt_queued; | 
 |  | 
 | 	int			rt_throttled; | 
 | 	u64			rt_time; | 
 | 	u64			rt_runtime; | 
 | 	/* Nests inside the rq lock: */ | 
 | 	raw_spinlock_t		rt_runtime_lock; | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	unsigned long		rt_nr_boosted; | 
 |  | 
 | 	struct rq		*rq; | 
 | 	struct task_group	*tg; | 
 | #endif | 
 | }; | 
 |  | 
 | static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) | 
 | { | 
 | 	return rt_rq->rt_queued && rt_rq->rt_nr_running; | 
 | } | 
 |  | 
 | /* Deadline class' related fields in a runqueue */ | 
 | struct dl_rq { | 
 | 	/* runqueue is an rbtree, ordered by deadline */ | 
 | 	struct rb_root_cached	root; | 
 |  | 
 | 	unsigned long		dl_nr_running; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * Deadline values of the currently executing and the | 
 | 	 * earliest ready task on this rq. Caching these facilitates | 
 | 	 * the decision whether or not a ready but not running task | 
 | 	 * should migrate somewhere else. | 
 | 	 */ | 
 | 	struct { | 
 | 		u64		curr; | 
 | 		u64		next; | 
 | 	} earliest_dl; | 
 |  | 
 | 	unsigned long		dl_nr_migratory; | 
 | 	int			overloaded; | 
 |  | 
 | 	/* | 
 | 	 * Tasks on this rq that can be pushed away. They are kept in | 
 | 	 * an rb-tree, ordered by tasks' deadlines, with caching | 
 | 	 * of the leftmost (earliest deadline) element. | 
 | 	 */ | 
 | 	struct rb_root_cached	pushable_dl_tasks_root; | 
 | #else | 
 | 	struct dl_bw		dl_bw; | 
 | #endif | 
 | 	/* | 
 | 	 * "Active utilization" for this runqueue: increased when a | 
 | 	 * task wakes up (becomes TASK_RUNNING) and decreased when a | 
 | 	 * task blocks | 
 | 	 */ | 
 | 	u64			running_bw; | 
 |  | 
 | 	/* | 
 | 	 * Utilization of the tasks "assigned" to this runqueue (including | 
 | 	 * the tasks that are in runqueue and the tasks that executed on this | 
 | 	 * CPU and blocked). Increased when a task moves to this runqueue, and | 
 | 	 * decreased when the task moves away (migrates, changes scheduling | 
 | 	 * policy, or terminates). | 
 | 	 * This is needed to compute the "inactive utilization" for the | 
 | 	 * runqueue (inactive utilization = this_bw - running_bw). | 
 | 	 */ | 
 | 	u64			this_bw; | 
 | 	u64			extra_bw; | 
 |  | 
 | 	/* | 
 | 	 * Inverse of the fraction of CPU utilization that can be reclaimed | 
 | 	 * by the GRUB algorithm. | 
 | 	 */ | 
 | 	u64			bw_ratio; | 
 | }; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* An entity is a task if it doesn't "own" a runqueue */ | 
 | #define entity_is_task(se)	(!se->my_q) | 
 | #else | 
 | #define entity_is_task(se)	1 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * XXX we want to get rid of these helpers and use the full load resolution. | 
 |  */ | 
 | static inline long se_weight(struct sched_entity *se) | 
 | { | 
 | 	return scale_load_down(se->load.weight); | 
 | } | 
 |  | 
 | static inline long se_runnable(struct sched_entity *se) | 
 | { | 
 | 	return scale_load_down(se->runnable_weight); | 
 | } | 
 |  | 
 | static inline bool sched_asym_prefer(int a, int b) | 
 | { | 
 | 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); | 
 | } | 
 |  | 
 | struct perf_domain { | 
 | 	struct em_perf_domain *em_pd; | 
 | 	struct perf_domain *next; | 
 | 	struct rcu_head rcu; | 
 | }; | 
 |  | 
 | struct max_cpu_capacity { | 
 | 	raw_spinlock_t lock; | 
 | 	unsigned long val; | 
 | 	int cpu; | 
 | }; | 
 |  | 
 | /* Scheduling group status flags */ | 
 | #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */ | 
 | #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */ | 
 |  | 
 | /* | 
 |  * We add the notion of a root-domain which will be used to define per-domain | 
 |  * variables. Each exclusive cpuset essentially defines an island domain by | 
 |  * fully partitioning the member CPUs from any other cpuset. Whenever a new | 
 |  * exclusive cpuset is created, we also create and attach a new root-domain | 
 |  * object. | 
 |  * | 
 |  */ | 
 | struct root_domain { | 
 | 	atomic_t		refcount; | 
 | 	atomic_t		rto_count; | 
 | 	struct rcu_head		rcu; | 
 | 	cpumask_var_t		span; | 
 | 	cpumask_var_t		online; | 
 |  | 
 | 	/* | 
 | 	 * Indicate pullable load on at least one CPU, e.g: | 
 | 	 * - More than one runnable task | 
 | 	 * - Running task is misfit | 
 | 	 */ | 
 | 	int			overload; | 
 |  | 
 | 	/* Indicate one or more cpus over-utilized (tipping point) */ | 
 | 	int			overutilized; | 
 |  | 
 | 	/* | 
 | 	 * The bit corresponding to a CPU gets set here if such CPU has more | 
 | 	 * than one runnable -deadline task (as it is below for RT tasks). | 
 | 	 */ | 
 | 	cpumask_var_t		dlo_mask; | 
 | 	atomic_t		dlo_count; | 
 | 	struct dl_bw		dl_bw; | 
 | 	struct cpudl		cpudl; | 
 |  | 
 | #ifdef HAVE_RT_PUSH_IPI | 
 | 	/* | 
 | 	 * For IPI pull requests, loop across the rto_mask. | 
 | 	 */ | 
 | 	struct irq_work		rto_push_work; | 
 | 	raw_spinlock_t		rto_lock; | 
 | 	/* These are only updated and read within rto_lock */ | 
 | 	int			rto_loop; | 
 | 	int			rto_cpu; | 
 | 	/* These atomics are updated outside of a lock */ | 
 | 	atomic_t		rto_loop_next; | 
 | 	atomic_t		rto_loop_start; | 
 | #endif | 
 | 	/* | 
 | 	 * The "RT overload" flag: it gets set if a CPU has more than | 
 | 	 * one runnable RT task. | 
 | 	 */ | 
 | 	cpumask_var_t		rto_mask; | 
 | 	struct cpupri		cpupri; | 
 |  | 
 | 	/* Maximum cpu capacity in the system. */ | 
 | 	struct max_cpu_capacity max_cpu_capacity; | 
 |  | 
 | 	/* | 
 | 	 * NULL-terminated list of performance domains intersecting with the | 
 | 	 * CPUs of the rd. Protected by RCU. | 
 | 	 */ | 
 | 	struct perf_domain __rcu *pd; | 
 |  | 
 | 	ANDROID_KABI_RESERVE(1); | 
 | 	ANDROID_KABI_RESERVE(2); | 
 | 	ANDROID_KABI_RESERVE(3); | 
 | 	ANDROID_KABI_RESERVE(4); | 
 | }; | 
 |  | 
 | extern void init_defrootdomain(void); | 
 | extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc); | 
 | extern int sched_init_domains(const struct cpumask *cpu_map); | 
 | extern void rq_attach_root(struct rq *rq, struct root_domain *rd); | 
 | extern void sched_get_rd(struct root_domain *rd); | 
 | extern void sched_put_rd(struct root_domain *rd); | 
 |  | 
 | #ifdef HAVE_RT_PUSH_IPI | 
 | extern void rto_push_irq_work_func(struct irq_work *work); | 
 | #endif | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 | /* | 
 |  * struct uclamp_bucket - Utilization clamp bucket | 
 |  * @value: utilization clamp value for tasks on this clamp bucket | 
 |  * @tasks: number of RUNNABLE tasks on this clamp bucket | 
 |  * | 
 |  * Keep track of how many tasks are RUNNABLE for a given utilization | 
 |  * clamp value. | 
 |  */ | 
 | struct uclamp_bucket { | 
 | 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE); | 
 | 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); | 
 | }; | 
 |  | 
 | /* | 
 |  * struct uclamp_rq - rq's utilization clamp | 
 |  * @value: currently active clamp values for a rq | 
 |  * @bucket: utilization clamp buckets affecting a rq | 
 |  * | 
 |  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. | 
 |  * A clamp value is affecting a rq when there is at least one task RUNNABLE | 
 |  * (or actually running) with that value. | 
 |  * | 
 |  * There are up to UCLAMP_CNT possible different clamp values, currently there | 
 |  * are only two: minimum utilization and maximum utilization. | 
 |  * | 
 |  * All utilization clamping values are MAX aggregated, since: | 
 |  * - for util_min: we want to run the CPU at least at the max of the minimum | 
 |  *   utilization required by its currently RUNNABLE tasks. | 
 |  * - for util_max: we want to allow the CPU to run up to the max of the | 
 |  *   maximum utilization allowed by its currently RUNNABLE tasks. | 
 |  * | 
 |  * Since on each system we expect only a limited number of different | 
 |  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track | 
 |  * the metrics required to compute all the per-rq utilization clamp values. | 
 |  */ | 
 | struct uclamp_rq { | 
 | 	unsigned int value; | 
 | 	struct uclamp_bucket bucket[UCLAMP_BUCKETS]; | 
 | }; | 
 |  | 
 | DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); | 
 | #endif /* CONFIG_UCLAMP_TASK */ | 
 |  | 
 | /* | 
 |  * This is the main, per-CPU runqueue data structure. | 
 |  * | 
 |  * Locking rule: those places that want to lock multiple runqueues | 
 |  * (such as the load balancing or the thread migration code), lock | 
 |  * acquire operations must be ordered by ascending &runqueue. | 
 |  */ | 
 | struct rq { | 
 | 	/* runqueue lock: */ | 
 | 	raw_spinlock_t		lock; | 
 |  | 
 | 	/* | 
 | 	 * nr_running and cpu_load should be in the same cacheline because | 
 | 	 * remote CPUs use both these fields when doing load calculation. | 
 | 	 */ | 
 | 	unsigned int		nr_running; | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	unsigned int		nr_numa_running; | 
 | 	unsigned int		nr_preferred_running; | 
 | 	unsigned int		numa_migrate_on; | 
 | #endif | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long		last_load_update_tick; | 
 | 	unsigned long		last_blocked_load_update_tick; | 
 | 	unsigned int		has_blocked_load; | 
 | #endif /* CONFIG_SMP */ | 
 | 	unsigned int		nohz_tick_stopped; | 
 | 	atomic_t nohz_flags; | 
 | #endif /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | 	unsigned long		nr_load_updates; | 
 | 	u64			nr_switches; | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 | 	/* Utilization clamp values based on CPU's RUNNABLE tasks */ | 
 | 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned; | 
 | 	unsigned int		uclamp_flags; | 
 | #define UCLAMP_FLAG_IDLE 0x01 | 
 | #endif | 
 |  | 
 | 	struct cfs_rq		cfs; | 
 | 	struct rt_rq		rt; | 
 | 	struct dl_rq		dl; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* list of leaf cfs_rq on this CPU: */ | 
 | 	struct list_head	leaf_cfs_rq_list; | 
 | 	struct list_head	*tmp_alone_branch; | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | 	/* | 
 | 	 * This is part of a global counter where only the total sum | 
 | 	 * over all CPUs matters. A task can increase this counter on | 
 | 	 * one CPU and if it got migrated afterwards it may decrease | 
 | 	 * it on another CPU. Always updated under the runqueue lock: | 
 | 	 */ | 
 | 	unsigned long		nr_uninterruptible; | 
 |  | 
 | 	struct task_struct	*curr; | 
 | 	struct task_struct	*idle; | 
 | 	struct task_struct	*stop; | 
 | 	unsigned long		next_balance; | 
 | 	struct mm_struct	*prev_mm; | 
 |  | 
 | 	unsigned int		clock_update_flags; | 
 | 	u64			clock; | 
 | 	/* Ensure that all clocks are in the same cache line */ | 
 | 	u64			clock_task ____cacheline_aligned; | 
 | 	u64			clock_pelt; | 
 | 	unsigned long		lost_idle_time; | 
 |  | 
 | 	atomic_t		nr_iowait; | 
 |  | 
 | #ifdef CONFIG_MEMBARRIER | 
 | 	int membarrier_state; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct root_domain		*rd; | 
 | 	struct sched_domain __rcu	*sd; | 
 |  | 
 | 	unsigned long		cpu_capacity; | 
 | 	unsigned long		cpu_capacity_orig; | 
 |  | 
 | 	struct callback_head	*balance_callback; | 
 |  | 
 | 	unsigned char		idle_balance; | 
 |  | 
 | 	unsigned long		misfit_task_load; | 
 |  | 
 | 	/* For active balancing */ | 
 | 	int			active_balance; | 
 | 	int			push_cpu; | 
 | 	struct cpu_stop_work	active_balance_work; | 
 |  | 
 | 	/* CPU of this runqueue: */ | 
 | 	int			cpu; | 
 | 	int			online; | 
 |  | 
 | 	struct list_head cfs_tasks; | 
 |  | 
 | 	struct sched_avg	avg_rt; | 
 | 	struct sched_avg	avg_dl; | 
 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
 | 	struct sched_avg	avg_irq; | 
 | #endif | 
 | 	u64			idle_stamp; | 
 | 	u64			avg_idle; | 
 |  | 
 | 	/* This is used to determine avg_idle's max value */ | 
 | 	u64			max_idle_balance_cost; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
 | 	u64			prev_irq_time; | 
 | #endif | 
 | #ifdef CONFIG_PARAVIRT | 
 | 	u64			prev_steal_time; | 
 | #endif | 
 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
 | 	u64			prev_steal_time_rq; | 
 | #endif | 
 |  | 
 | 	/* calc_load related fields */ | 
 | 	unsigned long		calc_load_update; | 
 | 	long			calc_load_active; | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | #ifdef CONFIG_SMP | 
 | 	int			hrtick_csd_pending; | 
 | 	call_single_data_t	hrtick_csd; | 
 | #endif | 
 | 	struct hrtimer		hrtick_timer; | 
 | 	ktime_t 		hrtick_time; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* latency stats */ | 
 | 	struct sched_info	rq_sched_info; | 
 | 	unsigned long long	rq_cpu_time; | 
 | 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 
 |  | 
 | 	/* sys_sched_yield() stats */ | 
 | 	unsigned int		yld_count; | 
 |  | 
 | 	/* schedule() stats */ | 
 | 	unsigned int		sched_count; | 
 | 	unsigned int		sched_goidle; | 
 |  | 
 | 	/* try_to_wake_up() stats */ | 
 | 	unsigned int		ttwu_count; | 
 | 	unsigned int		ttwu_local; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct llist_head	wake_list; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | 	/* Must be inspected within a rcu lock section */ | 
 | 	struct cpuidle_state	*idle_state; | 
 | #endif | 
 |  | 
 | 	ANDROID_KABI_RESERVE(1); | 
 | 	ANDROID_KABI_RESERVE(2); | 
 | 	ANDROID_KABI_RESERVE(3); | 
 | 	ANDROID_KABI_RESERVE(4); | 
 | }; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | /* CPU runqueue to which this cfs_rq is attached */ | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->rq; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return container_of(cfs_rq, struct rq, cfs); | 
 | } | 
 | #endif | 
 |  | 
 | static inline int cpu_of(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return rq->cpu; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | extern void __update_idle_core(struct rq *rq); | 
 |  | 
 | static inline void update_idle_core(struct rq *rq) | 
 | { | 
 | 	if (static_branch_unlikely(&sched_smt_present)) | 
 | 		__update_idle_core(rq); | 
 | } | 
 |  | 
 | #else | 
 | static inline void update_idle_core(struct rq *rq) { } | 
 | #endif | 
 |  | 
 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
 |  | 
 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
 | #define this_rq()		this_cpu_ptr(&runqueues) | 
 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
 | #define raw_rq()		raw_cpu_ptr(&runqueues) | 
 |  | 
 | extern void update_rq_clock(struct rq *rq); | 
 |  | 
 | static inline u64 __rq_clock_broken(struct rq *rq) | 
 | { | 
 | 	return READ_ONCE(rq->clock); | 
 | } | 
 |  | 
 | /* | 
 |  * rq::clock_update_flags bits | 
 |  * | 
 |  * %RQCF_REQ_SKIP - will request skipping of clock update on the next | 
 |  *  call to __schedule(). This is an optimisation to avoid | 
 |  *  neighbouring rq clock updates. | 
 |  * | 
 |  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is | 
 |  *  in effect and calls to update_rq_clock() are being ignored. | 
 |  * | 
 |  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been | 
 |  *  made to update_rq_clock() since the last time rq::lock was pinned. | 
 |  * | 
 |  * If inside of __schedule(), clock_update_flags will have been | 
 |  * shifted left (a left shift is a cheap operation for the fast path | 
 |  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, | 
 |  * | 
 |  *	if (rq-clock_update_flags >= RQCF_UPDATED) | 
 |  * | 
 |  * to check if %RQCF_UPADTED is set. It'll never be shifted more than | 
 |  * one position though, because the next rq_unpin_lock() will shift it | 
 |  * back. | 
 |  */ | 
 | #define RQCF_REQ_SKIP		0x01 | 
 | #define RQCF_ACT_SKIP		0x02 | 
 | #define RQCF_UPDATED		0x04 | 
 |  | 
 | static inline void assert_clock_updated(struct rq *rq) | 
 | { | 
 | 	/* | 
 | 	 * The only reason for not seeing a clock update since the | 
 | 	 * last rq_pin_lock() is if we're currently skipping updates. | 
 | 	 */ | 
 | 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); | 
 | } | 
 |  | 
 | static inline u64 rq_clock(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	assert_clock_updated(rq); | 
 |  | 
 | 	return rq->clock; | 
 | } | 
 |  | 
 | static inline u64 rq_clock_task(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	assert_clock_updated(rq); | 
 |  | 
 | 	return rq->clock_task; | 
 | } | 
 |  | 
 | static inline void rq_clock_skip_update(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	rq->clock_update_flags |= RQCF_REQ_SKIP; | 
 | } | 
 |  | 
 | /* | 
 |  * See rt task throttling, which is the only time a skip | 
 |  * request is cancelled. | 
 |  */ | 
 | static inline void rq_clock_cancel_skipupdate(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	rq->clock_update_flags &= ~RQCF_REQ_SKIP; | 
 | } | 
 |  | 
 | struct rq_flags { | 
 | 	unsigned long flags; | 
 | 	struct pin_cookie cookie; | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	/* | 
 | 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the | 
 | 	 * current pin context is stashed here in case it needs to be | 
 | 	 * restored in rq_repin_lock(). | 
 | 	 */ | 
 | 	unsigned int clock_update_flags; | 
 | #endif | 
 | }; | 
 |  | 
 | static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) | 
 | { | 
 | 	rf->cookie = lockdep_pin_lock(&rq->lock); | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); | 
 | 	rf->clock_update_flags = 0; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	if (rq->clock_update_flags > RQCF_ACT_SKIP) | 
 | 		rf->clock_update_flags = RQCF_UPDATED; | 
 | #endif | 
 |  | 
 | 	lockdep_unpin_lock(&rq->lock, rf->cookie); | 
 | } | 
 |  | 
 | static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) | 
 | { | 
 | 	lockdep_repin_lock(&rq->lock, rf->cookie); | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	/* | 
 | 	 * Restore the value we stashed in @rf for this pin context. | 
 | 	 */ | 
 | 	rq->clock_update_flags |= rf->clock_update_flags; | 
 | #endif | 
 | } | 
 |  | 
 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
 | 	__acquires(rq->lock); | 
 |  | 
 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
 | 	__acquires(p->pi_lock) | 
 | 	__acquires(rq->lock); | 
 |  | 
 | static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	rq_unpin_lock(rq, rf); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline void | 
 | task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) | 
 | 	__releases(rq->lock) | 
 | 	__releases(p->pi_lock) | 
 | { | 
 | 	rq_unpin_lock(rq, rf); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	raw_spin_lock_irqsave(&rq->lock, rf->flags); | 
 | 	rq_pin_lock(rq, rf); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_lock_irq(struct rq *rq, struct rq_flags *rf) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	raw_spin_lock_irq(&rq->lock); | 
 | 	rq_pin_lock(rq, rf); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_lock(struct rq *rq, struct rq_flags *rf) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	rq_pin_lock(rq, rf); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_relock(struct rq *rq, struct rq_flags *rf) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	rq_repin_lock(rq, rf); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	rq_unpin_lock(rq, rf); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_unlock_irq(struct rq *rq, struct rq_flags *rf) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	rq_unpin_lock(rq, rf); | 
 | 	raw_spin_unlock_irq(&rq->lock); | 
 | } | 
 |  | 
 | static inline void | 
 | rq_unlock(struct rq *rq, struct rq_flags *rf) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	rq_unpin_lock(rq, rf); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline struct rq * | 
 | this_rq_lock_irq(struct rq_flags *rf) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	rq = this_rq(); | 
 | 	rq_lock(rq, rf); | 
 | 	return rq; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | enum numa_topology_type { | 
 | 	NUMA_DIRECT, | 
 | 	NUMA_GLUELESS_MESH, | 
 | 	NUMA_BACKPLANE, | 
 | }; | 
 | extern enum numa_topology_type sched_numa_topology_type; | 
 | extern int sched_max_numa_distance; | 
 | extern bool find_numa_distance(int distance); | 
 | extern void sched_init_numa(void); | 
 | extern void sched_domains_numa_masks_set(unsigned int cpu); | 
 | extern void sched_domains_numa_masks_clear(unsigned int cpu); | 
 | extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); | 
 | #else | 
 | static inline void sched_init_numa(void) { } | 
 | static inline void sched_domains_numa_masks_set(unsigned int cpu) { } | 
 | static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } | 
 | static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) | 
 | { | 
 | 	return nr_cpu_ids; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* The regions in numa_faults array from task_struct */ | 
 | enum numa_faults_stats { | 
 | 	NUMA_MEM = 0, | 
 | 	NUMA_CPU, | 
 | 	NUMA_MEMBUF, | 
 | 	NUMA_CPUBUF | 
 | }; | 
 | extern void sched_setnuma(struct task_struct *p, int node); | 
 | extern int migrate_task_to(struct task_struct *p, int cpu); | 
 | extern int migrate_swap(struct task_struct *p, struct task_struct *t, | 
 | 			int cpu, int scpu); | 
 | extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); | 
 | #else | 
 | static inline void | 
 | init_numa_balancing(unsigned long clone_flags, struct task_struct *p) | 
 | { | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static inline void | 
 | queue_balance_callback(struct rq *rq, | 
 | 		       struct callback_head *head, | 
 | 		       void (*func)(struct rq *rq)) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	if (unlikely(head->next)) | 
 | 		return; | 
 |  | 
 | 	head->func = (void (*)(struct callback_head *))func; | 
 | 	head->next = rq->balance_callback; | 
 | 	rq->balance_callback = head; | 
 | } | 
 |  | 
 | extern void sched_ttwu_pending(void); | 
 |  | 
 | #define rcu_dereference_check_sched_domain(p) \ | 
 | 	rcu_dereference_check((p), \ | 
 | 			      lockdep_is_held(&sched_domains_mutex)) | 
 |  | 
 | /* | 
 |  * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
 |  * See destroy_sched_domains: call_rcu for details. | 
 |  * | 
 |  * The domain tree of any CPU may only be accessed from within | 
 |  * preempt-disabled sections. | 
 |  */ | 
 | #define for_each_domain(cpu, __sd) \ | 
 | 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ | 
 | 			__sd; __sd = __sd->parent) | 
 |  | 
 | /** | 
 |  * highest_flag_domain - Return highest sched_domain containing flag. | 
 |  * @cpu:	The CPU whose highest level of sched domain is to | 
 |  *		be returned. | 
 |  * @flag:	The flag to check for the highest sched_domain | 
 |  *		for the given CPU. | 
 |  * | 
 |  * Returns the highest sched_domain of a CPU which contains the given flag. | 
 |  */ | 
 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd, *hsd = NULL; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (!(sd->flags & flag)) | 
 | 			break; | 
 | 		hsd = sd; | 
 | 	} | 
 |  | 
 | 	return hsd; | 
 | } | 
 |  | 
 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & flag) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); | 
 | DECLARE_PER_CPU(int, sd_llc_size); | 
 | DECLARE_PER_CPU(int, sd_llc_id); | 
 | DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); | 
 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); | 
 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); | 
 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); | 
 | extern struct static_key_false sched_asym_cpucapacity; | 
 |  | 
 | struct sched_group_capacity { | 
 | 	atomic_t		ref; | 
 | 	/* | 
 | 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity | 
 | 	 * for a single CPU. | 
 | 	 */ | 
 | 	unsigned long		capacity; | 
 | 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */ | 
 | 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */ | 
 | 	unsigned long		next_update; | 
 | 	int			imbalance;		/* XXX unrelated to capacity but shared group state */ | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	int			id; | 
 | #endif | 
 |  | 
 | 	unsigned long		cpumask[0];		/* Balance mask */ | 
 | }; | 
 |  | 
 | struct sched_group { | 
 | 	struct sched_group	*next;			/* Must be a circular list */ | 
 | 	atomic_t		ref; | 
 |  | 
 | 	unsigned int		group_weight; | 
 | 	struct sched_group_capacity *sgc; | 
 | 	int			asym_prefer_cpu;	/* CPU of highest priority in group */ | 
 |  | 
 | 	/* | 
 | 	 * The CPUs this group covers. | 
 | 	 * | 
 | 	 * NOTE: this field is variable length. (Allocated dynamically | 
 | 	 * by attaching extra space to the end of the structure, | 
 | 	 * depending on how many CPUs the kernel has booted up with) | 
 | 	 */ | 
 | 	unsigned long		cpumask[0]; | 
 | }; | 
 |  | 
 | static inline struct cpumask *sched_group_span(struct sched_group *sg) | 
 | { | 
 | 	return to_cpumask(sg->cpumask); | 
 | } | 
 |  | 
 | /* | 
 |  * See build_balance_mask(). | 
 |  */ | 
 | static inline struct cpumask *group_balance_mask(struct sched_group *sg) | 
 | { | 
 | 	return to_cpumask(sg->sgc->cpumask); | 
 | } | 
 |  | 
 | /** | 
 |  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. | 
 |  * @group: The group whose first CPU is to be returned. | 
 |  */ | 
 | static inline unsigned int group_first_cpu(struct sched_group *group) | 
 | { | 
 | 	return cpumask_first(sched_group_span(group)); | 
 | } | 
 |  | 
 | extern int group_balance_cpu(struct sched_group *sg); | 
 |  | 
 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 
 | void register_sched_domain_sysctl(void); | 
 | void dirty_sched_domain_sysctl(int cpu); | 
 | void unregister_sched_domain_sysctl(void); | 
 | #else | 
 | static inline void register_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | static inline void dirty_sched_domain_sysctl(int cpu) | 
 | { | 
 | } | 
 | static inline void unregister_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf); | 
 |  | 
 | #else | 
 |  | 
 | static inline void sched_ttwu_pending(void) { } | 
 |  | 
 | static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #include "stats.h" | 
 | #include "autogroup.h" | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | /* | 
 |  * Return the group to which this tasks belongs. | 
 |  * | 
 |  * We cannot use task_css() and friends because the cgroup subsystem | 
 |  * changes that value before the cgroup_subsys::attach() method is called, | 
 |  * therefore we cannot pin it and might observe the wrong value. | 
 |  * | 
 |  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup | 
 |  * core changes this before calling sched_move_task(). | 
 |  * | 
 |  * Instead we use a 'copy' which is updated from sched_move_task() while | 
 |  * holding both task_struct::pi_lock and rq::lock. | 
 |  */ | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	return p->sched_task_group; | 
 | } | 
 |  | 
 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | 
 | 	struct task_group *tg = task_group(p); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); | 
 | 	p->se.cfs_rq = tg->cfs_rq[cpu]; | 
 | 	p->se.parent = tg->se[cpu]; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	p->rt.rt_rq  = tg->rt_rq[cpu]; | 
 | 	p->rt.parent = tg->rt_se[cpu]; | 
 | #endif | 
 | } | 
 |  | 
 | #else /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | 	set_task_rq(p, cpu); | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 
 | 	 * successfully executed on another CPU. We must ensure that updates of | 
 | 	 * per-task data have been completed by this moment. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
 | 	WRITE_ONCE(p->cpu, cpu); | 
 | #else | 
 | 	WRITE_ONCE(task_thread_info(p)->cpu, cpu); | 
 | #endif | 
 | 	p->wake_cpu = cpu; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # include <linux/static_key.h> | 
 | # define const_debug __read_mostly | 
 | #else | 
 | # define const_debug const | 
 | #endif | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	__SCHED_FEAT_##name , | 
 |  | 
 | enum { | 
 | #include "features.h" | 
 | 	__SCHED_FEAT_NR, | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 |  | 
 | /* | 
 |  * To support run-time toggling of sched features, all the translation units | 
 |  * (but core.c) reference the sysctl_sched_features defined in core.c. | 
 |  */ | 
 | extern const_debug unsigned int sysctl_sched_features; | 
 |  | 
 | #ifdef CONFIG_JUMP_LABEL | 
 | #define SCHED_FEAT(name, enabled)					\ | 
 | static __always_inline bool static_branch_##name(struct static_key *key) \ | 
 | {									\ | 
 | 	return static_key_##enabled(key);				\ | 
 | } | 
 |  | 
 | #include "features.h" | 
 | #undef SCHED_FEAT | 
 |  | 
 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; | 
 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) | 
 |  | 
 | #else /* !CONFIG_JUMP_LABEL */ | 
 |  | 
 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
 |  | 
 | #endif /* CONFIG_JUMP_LABEL */ | 
 |  | 
 | #else /* !SCHED_DEBUG */ | 
 |  | 
 | /* | 
 |  * Each translation unit has its own copy of sysctl_sched_features to allow | 
 |  * constants propagation at compile time and compiler optimization based on | 
 |  * features default. | 
 |  */ | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	(1UL << __SCHED_FEAT_##name) * enabled | | 
 | static const_debug __maybe_unused unsigned int sysctl_sched_features = | 
 | #include "features.h" | 
 | 	0; | 
 | #undef SCHED_FEAT | 
 |  | 
 | #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
 |  | 
 | #endif /* SCHED_DEBUG */ | 
 |  | 
 | extern struct static_key_false sched_numa_balancing; | 
 | extern struct static_key_false sched_schedstats; | 
 |  | 
 | static inline u64 global_rt_period(void) | 
 | { | 
 | 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | static inline u64 global_rt_runtime(void) | 
 | { | 
 | 	if (sysctl_sched_rt_runtime < 0) | 
 | 		return RUNTIME_INF; | 
 |  | 
 | 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | static inline int task_current(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	return rq->curr == p; | 
 | } | 
 |  | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return p->on_cpu; | 
 | #else | 
 | 	return task_current(rq, p); | 
 | #endif | 
 | } | 
 |  | 
 | static inline int task_on_rq_queued(struct task_struct *p) | 
 | { | 
 | 	return p->on_rq == TASK_ON_RQ_QUEUED; | 
 | } | 
 |  | 
 | static inline int task_on_rq_migrating(struct task_struct *p) | 
 | { | 
 | 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; | 
 | } | 
 |  | 
 | /* | 
 |  * wake flags | 
 |  */ | 
 | #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */ | 
 | #define WF_FORK			0x02		/* Child wakeup after fork */ | 
 | #define WF_MIGRATED		0x4		/* Internal use, task got migrated */ | 
 |  | 
 | /* | 
 |  * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
 |  * of tasks with abnormal "nice" values across CPUs the contribution that | 
 |  * each task makes to its run queue's load is weighted according to its | 
 |  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 
 |  * scaled version of the new time slice allocation that they receive on time | 
 |  * slice expiry etc. | 
 |  */ | 
 |  | 
 | #define WEIGHT_IDLEPRIO		3 | 
 | #define WMULT_IDLEPRIO		1431655765 | 
 |  | 
 | extern const int		sched_prio_to_weight[40]; | 
 | extern const u32		sched_prio_to_wmult[40]; | 
 |  | 
 | /* | 
 |  * {de,en}queue flags: | 
 |  * | 
 |  * DEQUEUE_SLEEP  - task is no longer runnable | 
 |  * ENQUEUE_WAKEUP - task just became runnable | 
 |  * | 
 |  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks | 
 |  *                are in a known state which allows modification. Such pairs | 
 |  *                should preserve as much state as possible. | 
 |  * | 
 |  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location | 
 |  *        in the runqueue. | 
 |  * | 
 |  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified) | 
 |  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) | 
 |  * ENQUEUE_MIGRATED  - the task was migrated during wakeup | 
 |  * | 
 |  */ | 
 |  | 
 | #define DEQUEUE_SLEEP		0x01 | 
 | #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */ | 
 | #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */ | 
 | #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */ | 
 |  | 
 | #define ENQUEUE_WAKEUP		0x01 | 
 | #define ENQUEUE_RESTORE		0x02 | 
 | #define ENQUEUE_MOVE		0x04 | 
 | #define ENQUEUE_NOCLOCK		0x08 | 
 |  | 
 | #define ENQUEUE_HEAD		0x10 | 
 | #define ENQUEUE_REPLENISH	0x20 | 
 | #ifdef CONFIG_SMP | 
 | #define ENQUEUE_MIGRATED	0x40 | 
 | #else | 
 | #define ENQUEUE_MIGRATED	0x00 | 
 | #endif | 
 |  | 
 | #define RETRY_TASK		((void *)-1UL) | 
 |  | 
 | struct sched_class { | 
 | 	const struct sched_class *next; | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 | 	int uclamp_enabled; | 
 | #endif | 
 |  | 
 | 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); | 
 | 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); | 
 | 	void (*yield_task)   (struct rq *rq); | 
 | 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); | 
 |  | 
 | 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | 	/* | 
 | 	 * Both @prev and @rf are optional and may be NULL, in which case the | 
 | 	 * caller must already have invoked put_prev_task(rq, prev, rf). | 
 | 	 * | 
 | 	 * Otherwise it is the responsibility of the pick_next_task() to call | 
 | 	 * put_prev_task() on the @prev task or something equivalent, IFF it | 
 | 	 * returns a next task. | 
 | 	 * | 
 | 	 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a | 
 | 	 * higher prio class has runnable tasks. | 
 | 	 */ | 
 | 	struct task_struct * (*pick_next_task)(struct rq *rq, | 
 | 					       struct task_struct *prev, | 
 | 					       struct rq_flags *rf); | 
 | 	void (*put_prev_task)(struct rq *rq, struct task_struct *p); | 
 | 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); | 
 | 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); | 
 | 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu); | 
 |  | 
 | 	void (*task_woken)(struct rq *this_rq, struct task_struct *task); | 
 |  | 
 | 	void (*set_cpus_allowed)(struct task_struct *p, | 
 | 				 const struct cpumask *newmask); | 
 |  | 
 | 	void (*rq_online)(struct rq *rq); | 
 | 	void (*rq_offline)(struct rq *rq); | 
 | #endif | 
 |  | 
 | 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); | 
 | 	void (*task_fork)(struct task_struct *p); | 
 | 	void (*task_dead)(struct task_struct *p); | 
 |  | 
 | 	/* | 
 | 	 * The switched_from() call is allowed to drop rq->lock, therefore we | 
 | 	 * cannot assume the switched_from/switched_to pair is serliazed by | 
 | 	 * rq->lock. They are however serialized by p->pi_lock. | 
 | 	 */ | 
 | 	void (*switched_from)(struct rq *this_rq, struct task_struct *task); | 
 | 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task); | 
 | 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task, | 
 | 			      int oldprio); | 
 |  | 
 | 	unsigned int (*get_rr_interval)(struct rq *rq, | 
 | 					struct task_struct *task); | 
 |  | 
 | 	void (*update_curr)(struct rq *rq); | 
 |  | 
 | #define TASK_SET_GROUP		0 | 
 | #define TASK_MOVE_GROUP		1 | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	void (*task_change_group)(struct task_struct *p, int type); | 
 | #endif | 
 | }; | 
 |  | 
 | static inline void put_prev_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	WARN_ON_ONCE(rq->curr != prev); | 
 | 	prev->sched_class->put_prev_task(rq, prev); | 
 | } | 
 |  | 
 | static inline void set_next_task(struct rq *rq, struct task_struct *next) | 
 | { | 
 | 	WARN_ON_ONCE(rq->curr != next); | 
 | 	next->sched_class->set_next_task(rq, next, false); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #define sched_class_highest (&stop_sched_class) | 
 | #else | 
 | #define sched_class_highest (&dl_sched_class) | 
 | #endif | 
 |  | 
 | #define for_class_range(class, _from, _to) \ | 
 | 	for (class = (_from); class != (_to); class = class->next) | 
 |  | 
 | #define for_each_class(class) \ | 
 | 	for_class_range(class, sched_class_highest, NULL) | 
 |  | 
 | extern const struct sched_class stop_sched_class; | 
 | extern const struct sched_class dl_sched_class; | 
 | extern const struct sched_class rt_sched_class; | 
 | extern const struct sched_class fair_sched_class; | 
 | extern const struct sched_class idle_sched_class; | 
 |  | 
 | static inline bool sched_stop_runnable(struct rq *rq) | 
 | { | 
 | 	return rq->stop && task_on_rq_queued(rq->stop); | 
 | } | 
 |  | 
 | static inline bool sched_dl_runnable(struct rq *rq) | 
 | { | 
 | 	return rq->dl.dl_nr_running > 0; | 
 | } | 
 |  | 
 | static inline bool sched_rt_runnable(struct rq *rq) | 
 | { | 
 | 	return rq->rt.rt_queued > 0; | 
 | } | 
 |  | 
 | static inline bool sched_fair_runnable(struct rq *rq) | 
 | { | 
 | 	return rq->cfs.nr_running > 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | extern void update_group_capacity(struct sched_domain *sd, int cpu); | 
 |  | 
 | extern void trigger_load_balance(struct rq *rq); | 
 |  | 
 | extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | static inline void idle_set_state(struct rq *rq, | 
 | 				  struct cpuidle_state *idle_state) | 
 | { | 
 | 	rq->idle_state = idle_state; | 
 | } | 
 |  | 
 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | 
 | { | 
 | 	SCHED_WARN_ON(!rcu_read_lock_held()); | 
 |  | 
 | 	return rq->idle_state; | 
 | } | 
 | #else | 
 | static inline void idle_set_state(struct rq *rq, | 
 | 				  struct cpuidle_state *idle_state) | 
 | { | 
 | } | 
 |  | 
 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | extern void schedule_idle(void); | 
 |  | 
 | extern void sysrq_sched_debug_show(void); | 
 | extern void sched_init_granularity(void); | 
 | extern void update_max_interval(void); | 
 |  | 
 | extern void init_sched_dl_class(void); | 
 | extern void init_sched_rt_class(void); | 
 | extern void init_sched_fair_class(void); | 
 |  | 
 | extern void reweight_task(struct task_struct *p, int prio); | 
 |  | 
 | extern void resched_curr(struct rq *rq); | 
 | extern void resched_cpu(int cpu); | 
 |  | 
 | extern struct rt_bandwidth def_rt_bandwidth; | 
 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | 
 |  | 
 | extern struct dl_bandwidth def_dl_bandwidth; | 
 | extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); | 
 | extern void init_dl_task_timer(struct sched_dl_entity *dl_se); | 
 | extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); | 
 | extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); | 
 |  | 
 | #define BW_SHIFT		20 | 
 | #define BW_UNIT			(1 << BW_SHIFT) | 
 | #define RATIO_SHIFT		8 | 
 | #define MAX_BW_BITS		(64 - BW_SHIFT) | 
 | #define MAX_BW			((1ULL << MAX_BW_BITS) - 1) | 
 | unsigned long to_ratio(u64 period, u64 runtime); | 
 |  | 
 | extern void init_entity_runnable_average(struct sched_entity *se); | 
 | extern void post_init_entity_util_avg(struct task_struct *p); | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | extern bool sched_can_stop_tick(struct rq *rq); | 
 | extern int __init sched_tick_offload_init(void); | 
 |  | 
 | /* | 
 |  * Tick may be needed by tasks in the runqueue depending on their policy and | 
 |  * requirements. If tick is needed, lets send the target an IPI to kick it out of | 
 |  * nohz mode if necessary. | 
 |  */ | 
 | static inline void sched_update_tick_dependency(struct rq *rq) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (!tick_nohz_full_enabled()) | 
 | 		return; | 
 |  | 
 | 	cpu = cpu_of(rq); | 
 |  | 
 | 	if (!tick_nohz_full_cpu(cpu)) | 
 | 		return; | 
 |  | 
 | 	if (sched_can_stop_tick(rq)) | 
 | 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); | 
 | 	else | 
 | 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | 
 | } | 
 | #else | 
 | static inline int sched_tick_offload_init(void) { return 0; } | 
 | static inline void sched_update_tick_dependency(struct rq *rq) { } | 
 | #endif | 
 |  | 
 | static inline void add_nr_running(struct rq *rq, unsigned count) | 
 | { | 
 | 	unsigned prev_nr = rq->nr_running; | 
 |  | 
 | 	rq->nr_running = prev_nr + count; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (prev_nr < 2 && rq->nr_running >= 2) { | 
 | 		if (!READ_ONCE(rq->rd->overload)) | 
 | 			WRITE_ONCE(rq->rd->overload, 1); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	sched_update_tick_dependency(rq); | 
 | } | 
 |  | 
 | static inline void sub_nr_running(struct rq *rq, unsigned count) | 
 | { | 
 | 	rq->nr_running -= count; | 
 | 	/* Check if we still need preemption */ | 
 | 	sched_update_tick_dependency(rq); | 
 | } | 
 |  | 
 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | 
 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | extern const_debug unsigned int sysctl_sched_nr_migrate; | 
 | extern const_debug unsigned int sysctl_sched_migration_cost; | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 |  | 
 | /* | 
 |  * Use hrtick when: | 
 |  *  - enabled by features | 
 |  *  - hrtimer is actually high res | 
 |  */ | 
 | static inline int hrtick_enabled(struct rq *rq) | 
 | { | 
 | 	if (!sched_feat(HRTICK)) | 
 | 		return 0; | 
 | 	if (!cpu_active(cpu_of(rq))) | 
 | 		return 0; | 
 | 	return hrtimer_is_hres_active(&rq->hrtick_timer); | 
 | } | 
 |  | 
 | void hrtick_start(struct rq *rq, u64 delay); | 
 |  | 
 | #else | 
 |  | 
 | static inline int hrtick_enabled(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SCHED_HRTICK */ | 
 |  | 
 | #ifndef arch_scale_freq_capacity | 
 | static __always_inline | 
 | unsigned long arch_scale_freq_capacity(int cpu) | 
 | { | 
 | 	return SCHED_CAPACITY_SCALE; | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef arch_scale_max_freq_capacity | 
 | struct sched_domain; | 
 | static __always_inline | 
 | unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return SCHED_CAPACITY_SCALE; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #ifdef CONFIG_PREEMPTION | 
 |  | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | 
 |  | 
 | /* | 
 |  * fair double_lock_balance: Safely acquires both rq->locks in a fair | 
 |  * way at the expense of forcing extra atomic operations in all | 
 |  * invocations.  This assures that the double_lock is acquired using the | 
 |  * same underlying policy as the spinlock_t on this architecture, which | 
 |  * reduces latency compared to the unfair variant below.  However, it | 
 |  * also adds more overhead and therefore may reduce throughput. | 
 |  */ | 
 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 | 	double_rq_lock(this_rq, busiest); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else | 
 | /* | 
 |  * Unfair double_lock_balance: Optimizes throughput at the expense of | 
 |  * latency by eliminating extra atomic operations when the locks are | 
 |  * already in proper order on entry.  This favors lower CPU-ids and will | 
 |  * grant the double lock to lower CPUs over higher ids under contention, | 
 |  * regardless of entry order into the function. | 
 |  */ | 
 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(!raw_spin_trylock(&busiest->lock))) { | 
 | 		if (busiest < this_rq) { | 
 | 			raw_spin_unlock(&this_rq->lock); | 
 | 			raw_spin_lock(&busiest->lock); | 
 | 			raw_spin_lock_nested(&this_rq->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 			ret = 1; | 
 | 		} else | 
 | 			raw_spin_lock_nested(&busiest->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPTION */ | 
 |  | 
 | /* | 
 |  * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
 |  */ | 
 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | { | 
 | 	if (unlikely(!irqs_disabled())) { | 
 | 		/* printk() doesn't work well under rq->lock */ | 
 | 		raw_spin_unlock(&this_rq->lock); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	return _double_lock_balance(this_rq, busiest); | 
 | } | 
 |  | 
 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(busiest->lock) | 
 | { | 
 | 	raw_spin_unlock(&busiest->lock); | 
 | 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 
 | } | 
 |  | 
 | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	spin_lock(l1); | 
 | 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	spin_lock_irq(l1); | 
 | 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	raw_spin_lock(l1); | 
 | 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	if (rq1 == rq2) { | 
 | 		raw_spin_lock(&rq1->lock); | 
 | 		__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | 	} else { | 
 | 		if (rq1 < rq2) { | 
 | 			raw_spin_lock(&rq1->lock); | 
 | 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 
 | 		} else { | 
 | 			raw_spin_lock(&rq2->lock); | 
 | 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq1->lock); | 
 | 	if (rq1 != rq2) | 
 | 		raw_spin_unlock(&rq2->lock); | 
 | 	else | 
 | 		__release(rq2->lock); | 
 | } | 
 |  | 
 | extern void set_rq_online (struct rq *rq); | 
 | extern void set_rq_offline(struct rq *rq); | 
 | extern bool sched_smp_initialized; | 
 |  | 
 | #else /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	BUG_ON(rq1 != rq2); | 
 | 	raw_spin_lock(&rq1->lock); | 
 | 	__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	BUG_ON(rq1 != rq2); | 
 | 	raw_spin_unlock(&rq1->lock); | 
 | 	__release(rq2->lock); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | 
 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | 
 |  | 
 | #ifdef	CONFIG_SCHED_DEBUG | 
 | extern bool sched_debug_enabled; | 
 |  | 
 | extern void print_cfs_stats(struct seq_file *m, int cpu); | 
 | extern void print_rt_stats(struct seq_file *m, int cpu); | 
 | extern void print_dl_stats(struct seq_file *m, int cpu); | 
 | extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); | 
 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 
 | extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | extern void | 
 | show_numa_stats(struct task_struct *p, struct seq_file *m); | 
 | extern void | 
 | print_numa_stats(struct seq_file *m, int node, unsigned long tsf, | 
 | 	unsigned long tpf, unsigned long gsf, unsigned long gpf); | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | 
 | extern void init_rt_rq(struct rt_rq *rt_rq); | 
 | extern void init_dl_rq(struct dl_rq *dl_rq); | 
 |  | 
 | extern void cfs_bandwidth_usage_inc(void); | 
 | extern void cfs_bandwidth_usage_dec(void); | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | #define NOHZ_BALANCE_KICK_BIT	0 | 
 | #define NOHZ_STATS_KICK_BIT	1 | 
 |  | 
 | #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT) | 
 | #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT) | 
 |  | 
 | #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) | 
 |  | 
 | #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags) | 
 |  | 
 | extern void nohz_balance_exit_idle(struct rq *rq); | 
 | #else | 
 | static inline void nohz_balance_exit_idle(struct rq *rq) { } | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static inline | 
 | void __dl_update(struct dl_bw *dl_b, s64 bw) | 
 | { | 
 | 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); | 
 | 	int i; | 
 |  | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
 | 			 "sched RCU must be held"); | 
 | 	for_each_cpu_and(i, rd->span, cpu_active_mask) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 |  | 
 | 		rq->dl.extra_bw += bw; | 
 | 	} | 
 | } | 
 | #else | 
 | static inline | 
 | void __dl_update(struct dl_bw *dl_b, s64 bw) | 
 | { | 
 | 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); | 
 |  | 
 | 	dl->extra_bw += bw; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
 | struct irqtime { | 
 | 	u64			total; | 
 | 	u64			tick_delta; | 
 | 	u64			irq_start_time; | 
 | 	struct u64_stats_sync	sync; | 
 | }; | 
 |  | 
 | DECLARE_PER_CPU(struct irqtime, cpu_irqtime); | 
 |  | 
 | /* | 
 |  * Returns the irqtime minus the softirq time computed by ksoftirqd. | 
 |  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime | 
 |  * and never move forward. | 
 |  */ | 
 | static inline u64 irq_time_read(int cpu) | 
 | { | 
 | 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); | 
 | 	unsigned int seq; | 
 | 	u64 total; | 
 |  | 
 | 	do { | 
 | 		seq = __u64_stats_fetch_begin(&irqtime->sync); | 
 | 		total = irqtime->total; | 
 | 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq)); | 
 |  | 
 | 	return total; | 
 | } | 
 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ | 
 | DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); | 
 |  | 
 | /** | 
 |  * cpufreq_update_util - Take a note about CPU utilization changes. | 
 |  * @rq: Runqueue to carry out the update for. | 
 |  * @flags: Update reason flags. | 
 |  * | 
 |  * This function is called by the scheduler on the CPU whose utilization is | 
 |  * being updated. | 
 |  * | 
 |  * It can only be called from RCU-sched read-side critical sections. | 
 |  * | 
 |  * The way cpufreq is currently arranged requires it to evaluate the CPU | 
 |  * performance state (frequency/voltage) on a regular basis to prevent it from | 
 |  * being stuck in a completely inadequate performance level for too long. | 
 |  * That is not guaranteed to happen if the updates are only triggered from CFS | 
 |  * and DL, though, because they may not be coming in if only RT tasks are | 
 |  * active all the time (or there are RT tasks only). | 
 |  * | 
 |  * As a workaround for that issue, this function is called periodically by the | 
 |  * RT sched class to trigger extra cpufreq updates to prevent it from stalling, | 
 |  * but that really is a band-aid.  Going forward it should be replaced with | 
 |  * solutions targeted more specifically at RT tasks. | 
 |  */ | 
 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) | 
 | { | 
 | 	struct update_util_data *data; | 
 |  | 
 | 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, | 
 | 						  cpu_of(rq))); | 
 | 	if (data) | 
 | 		data->func(data, rq_clock(rq), flags); | 
 | } | 
 | #else | 
 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} | 
 | #endif /* CONFIG_CPU_FREQ */ | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 | unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); | 
 |  | 
 | /** | 
 |  * uclamp_util_with - clamp @util with @rq and @p effective uclamp values. | 
 |  * @rq:		The rq to clamp against. Must not be NULL. | 
 |  * @util:	The util value to clamp. | 
 |  * @p:		The task to clamp against. Can be NULL if you want to clamp | 
 |  *		against @rq only. | 
 |  * | 
 |  * Clamps the passed @util to the max(@rq, @p) effective uclamp values. | 
 |  * | 
 |  * If sched_uclamp_used static key is disabled, then just return the util | 
 |  * without any clamping since uclamp aggregation at the rq level in the fast | 
 |  * path is disabled, rendering this operation a NOP. | 
 |  * | 
 |  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It | 
 |  * will return the correct effective uclamp value of the task even if the | 
 |  * static key is disabled. | 
 |  */ | 
 | static __always_inline | 
 | unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, | 
 | 				  struct task_struct *p) | 
 | { | 
 | 	unsigned long min_util; | 
 | 	unsigned long max_util; | 
 |  | 
 | 	if (!static_branch_likely(&sched_uclamp_used)) | 
 | 		return util; | 
 |  | 
 | 	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value); | 
 | 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); | 
 |  | 
 | 	if (p) { | 
 | 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN)); | 
 | 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering | 
 | 	 * RUNNABLE tasks with _different_ clamps, we can end up with an | 
 | 	 * inversion. Fix it now when the clamps are applied. | 
 | 	 */ | 
 | 	if (unlikely(min_util >= max_util)) | 
 | 		return min_util; | 
 |  | 
 | 	return clamp(util, min_util, max_util); | 
 | } | 
 |  | 
 | static inline bool uclamp_boosted(struct task_struct *p) | 
 | { | 
 | 	return uclamp_eff_value(p, UCLAMP_MIN) > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When uclamp is compiled in, the aggregation at rq level is 'turned off' | 
 |  * by default in the fast path and only gets turned on once userspace performs | 
 |  * an operation that requires it. | 
 |  * | 
 |  * Returns true if userspace opted-in to use uclamp and aggregation at rq level | 
 |  * hence is active. | 
 |  */ | 
 | static inline bool uclamp_is_used(void) | 
 | { | 
 | 	return static_branch_likely(&sched_uclamp_used); | 
 | } | 
 | #else /* CONFIG_UCLAMP_TASK */ | 
 | static inline | 
 | unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, | 
 | 				  struct task_struct *p) | 
 | { | 
 | 	return util; | 
 | } | 
 | static inline bool uclamp_boosted(struct task_struct *p) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline bool uclamp_is_used(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_UCLAMP_TASK */ | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
 | static inline bool uclamp_latency_sensitive(struct task_struct *p) | 
 | { | 
 | 	struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id); | 
 | 	struct task_group *tg; | 
 |  | 
 | 	if (!css) | 
 | 		return false; | 
 | 	tg = container_of(css, struct task_group, css); | 
 |  | 
 | 	return tg->latency_sensitive; | 
 | } | 
 | #else | 
 | static inline bool uclamp_latency_sensitive(struct task_struct *p) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_UCLAMP_TASK_GROUP */ | 
 |  | 
 | #ifdef arch_scale_freq_capacity | 
 | # ifndef arch_scale_freq_invariant | 
 | #  define arch_scale_freq_invariant()	true | 
 | # endif | 
 | #else | 
 | # define arch_scale_freq_invariant()	false | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static inline unsigned long capacity_orig_of(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->cpu_capacity_orig; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * enum schedutil_type - CPU utilization type | 
 |  * @FREQUENCY_UTIL:	Utilization used to select frequency | 
 |  * @ENERGY_UTIL:	Utilization used during energy calculation | 
 |  * | 
 |  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time | 
 |  * need to be aggregated differently depending on the usage made of them. This | 
 |  * enum is used within schedutil_freq_util() to differentiate the types of | 
 |  * utilization expected by the callers, and adjust the aggregation accordingly. | 
 |  */ | 
 | enum schedutil_type { | 
 | 	FREQUENCY_UTIL, | 
 | 	ENERGY_UTIL, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL | 
 |  | 
 | unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, | 
 | 				 unsigned long max, enum schedutil_type type, | 
 | 				 struct task_struct *p); | 
 |  | 
 | static inline unsigned long cpu_bw_dl(struct rq *rq) | 
 | { | 
 | 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; | 
 | } | 
 |  | 
 | static inline unsigned long cpu_util_dl(struct rq *rq) | 
 | { | 
 | 	return READ_ONCE(rq->avg_dl.util_avg); | 
 | } | 
 |  | 
 | static inline unsigned long cpu_util_cfs(struct rq *rq) | 
 | { | 
 | 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); | 
 |  | 
 | 	if (sched_feat(UTIL_EST)) { | 
 | 		util = max_t(unsigned long, util, | 
 | 			     READ_ONCE(rq->cfs.avg.util_est.enqueued)); | 
 | 	} | 
 |  | 
 | 	return util; | 
 | } | 
 |  | 
 | static inline unsigned long cpu_util_rt(struct rq *rq) | 
 | { | 
 | 	return READ_ONCE(rq->avg_rt.util_avg); | 
 | } | 
 | #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ | 
 | static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, | 
 | 				 unsigned long max, enum schedutil_type type, | 
 | 				 struct task_struct *p) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ | 
 |  | 
 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
 | static inline unsigned long cpu_util_irq(struct rq *rq) | 
 | { | 
 | 	return rq->avg_irq.util_avg; | 
 | } | 
 |  | 
 | static inline | 
 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) | 
 | { | 
 | 	util *= (max - irq); | 
 | 	util /= max; | 
 |  | 
 | 	return util; | 
 |  | 
 | } | 
 | #else | 
 | static inline unsigned long cpu_util_irq(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline | 
 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) | 
 | { | 
 | 	return util; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) | 
 |  | 
 | #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) | 
 |  | 
 | DECLARE_STATIC_KEY_FALSE(sched_energy_present); | 
 |  | 
 | static inline bool sched_energy_enabled(void) | 
 | { | 
 | 	return static_branch_unlikely(&sched_energy_present); | 
 | } | 
 |  | 
 | #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ | 
 |  | 
 | #define perf_domain_span(pd) NULL | 
 | static inline bool sched_energy_enabled(void) { return false; } | 
 |  | 
 | #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ | 
 |  | 
 | #ifdef CONFIG_MEMBARRIER | 
 | /* | 
 |  * The scheduler provides memory barriers required by membarrier between: | 
 |  * - prior user-space memory accesses and store to rq->membarrier_state, | 
 |  * - store to rq->membarrier_state and following user-space memory accesses. | 
 |  * In the same way it provides those guarantees around store to rq->curr. | 
 |  */ | 
 | static inline void membarrier_switch_mm(struct rq *rq, | 
 | 					struct mm_struct *prev_mm, | 
 | 					struct mm_struct *next_mm) | 
 | { | 
 | 	int membarrier_state; | 
 |  | 
 | 	if (prev_mm == next_mm) | 
 | 		return; | 
 |  | 
 | 	membarrier_state = atomic_read(&next_mm->membarrier_state); | 
 | 	if (READ_ONCE(rq->membarrier_state) == membarrier_state) | 
 | 		return; | 
 |  | 
 | 	WRITE_ONCE(rq->membarrier_state, membarrier_state); | 
 | } | 
 | #else | 
 | static inline void membarrier_switch_mm(struct rq *rq, | 
 | 					struct mm_struct *prev_mm, | 
 | 					struct mm_struct *next_mm) | 
 | { | 
 | } | 
 | #endif |