| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
 |  * | 
 |  *  No idle tick implementation for low and high resolution timers | 
 |  * | 
 |  *  Started by: Thomas Gleixner and Ingo Molnar | 
 |  */ | 
 | #include <linux/cpu.h> | 
 | #include <linux/err.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/sched/stat.h> | 
 | #include <linux/sched/nohz.h> | 
 | #include <linux/module.h> | 
 | #include <linux/irq_work.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <linux/mm.h> | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | #include "tick-internal.h" | 
 |  | 
 | #include <trace/events/timer.h> | 
 |  | 
 | /* | 
 |  * Per-CPU nohz control structure | 
 |  */ | 
 | static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); | 
 |  | 
 | struct tick_sched *tick_get_tick_sched(int cpu) | 
 | { | 
 | 	return &per_cpu(tick_cpu_sched, cpu); | 
 | } | 
 |  | 
 | #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) | 
 | /* | 
 |  * The time, when the last jiffy update happened. Protected by jiffies_lock. | 
 |  */ | 
 | static ktime_t last_jiffies_update; | 
 |  | 
 | /* | 
 |  * Must be called with interrupts disabled ! | 
 |  */ | 
 | static void tick_do_update_jiffies64(ktime_t now) | 
 | { | 
 | 	unsigned long ticks = 1; | 
 | 	ktime_t delta; | 
 |  | 
 | 	/* | 
 | 	 * Do a quick check without holding jiffies_lock. The READ_ONCE() | 
 | 	 * pairs with the update done later in this function. | 
 | 	 * | 
 | 	 * This is also an intentional data race which is even safe on | 
 | 	 * 32bit in theory. If there is a concurrent update then the check | 
 | 	 * might give a random answer. It does not matter because if it | 
 | 	 * returns then the concurrent update is already taking care, if it | 
 | 	 * falls through then it will pointlessly contend on jiffies_lock. | 
 | 	 * | 
 | 	 * Though there is one nasty case on 32bit due to store tearing of | 
 | 	 * the 64bit value. If the first 32bit store makes the quick check | 
 | 	 * return on all other CPUs and the writing CPU context gets | 
 | 	 * delayed to complete the second store (scheduled out on virt) | 
 | 	 * then jiffies can become stale for up to ~2^32 nanoseconds | 
 | 	 * without noticing. After that point all CPUs will wait for | 
 | 	 * jiffies lock. | 
 | 	 * | 
 | 	 * OTOH, this is not any different than the situation with NOHZ=off | 
 | 	 * where one CPU is responsible for updating jiffies and | 
 | 	 * timekeeping. If that CPU goes out for lunch then all other CPUs | 
 | 	 * will operate on stale jiffies until it decides to come back. | 
 | 	 */ | 
 | 	if (ktime_before(now, READ_ONCE(tick_next_period))) | 
 | 		return; | 
 |  | 
 | 	/* Reevaluate with jiffies_lock held */ | 
 | 	raw_spin_lock(&jiffies_lock); | 
 | 	if (ktime_before(now, tick_next_period)) { | 
 | 		raw_spin_unlock(&jiffies_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	write_seqcount_begin(&jiffies_seq); | 
 |  | 
 | 	delta = ktime_sub(now, tick_next_period); | 
 | 	if (unlikely(delta >= TICK_NSEC)) { | 
 | 		/* Slow path for long idle sleep times */ | 
 | 		s64 incr = TICK_NSEC; | 
 |  | 
 | 		ticks += ktime_divns(delta, incr); | 
 |  | 
 | 		last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
 | 						   incr * ticks); | 
 | 	} else { | 
 | 		last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
 | 						   TICK_NSEC); | 
 | 	} | 
 |  | 
 | 	do_timer(ticks); | 
 |  | 
 | 	/* | 
 | 	 * Keep the tick_next_period variable up to date.  WRITE_ONCE() | 
 | 	 * pairs with the READ_ONCE() in the lockless quick check above. | 
 | 	 */ | 
 | 	WRITE_ONCE(tick_next_period, | 
 | 		   ktime_add_ns(last_jiffies_update, TICK_NSEC)); | 
 |  | 
 | 	write_seqcount_end(&jiffies_seq); | 
 | 	raw_spin_unlock(&jiffies_lock); | 
 | 	update_wall_time(); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize and return retrieve the jiffies update. | 
 |  */ | 
 | static ktime_t tick_init_jiffy_update(void) | 
 | { | 
 | 	ktime_t period; | 
 |  | 
 | 	raw_spin_lock(&jiffies_lock); | 
 | 	write_seqcount_begin(&jiffies_seq); | 
 | 	/* Did we start the jiffies update yet ? */ | 
 | 	if (last_jiffies_update == 0) { | 
 | 		u32 rem; | 
 |  | 
 | 		/* | 
 | 		 * Ensure that the tick is aligned to a multiple of | 
 | 		 * TICK_NSEC. | 
 | 		 */ | 
 | 		div_u64_rem(tick_next_period, TICK_NSEC, &rem); | 
 | 		if (rem) | 
 | 			tick_next_period += TICK_NSEC - rem; | 
 |  | 
 | 		last_jiffies_update = tick_next_period; | 
 | 	} | 
 | 	period = last_jiffies_update; | 
 | 	write_seqcount_end(&jiffies_seq); | 
 | 	raw_spin_unlock(&jiffies_lock); | 
 | 	return period; | 
 | } | 
 |  | 
 | static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	/* | 
 | 	 * Check if the do_timer duty was dropped. We don't care about | 
 | 	 * concurrency: This happens only when the CPU in charge went | 
 | 	 * into a long sleep. If two CPUs happen to assign themselves to | 
 | 	 * this duty, then the jiffies update is still serialized by | 
 | 	 * jiffies_lock. | 
 | 	 * | 
 | 	 * If nohz_full is enabled, this should not happen because the | 
 | 	 * tick_do_timer_cpu never relinquishes. | 
 | 	 */ | 
 | 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 		WARN_ON_ONCE(tick_nohz_full_running); | 
 | #endif | 
 | 		tick_do_timer_cpu = cpu; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Check, if the jiffies need an update */ | 
 | 	if (tick_do_timer_cpu == cpu) | 
 | 		tick_do_update_jiffies64(now); | 
 |  | 
 | 	if (ts->inidle) | 
 | 		ts->got_idle_tick = 1; | 
 | } | 
 |  | 
 | static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	/* | 
 | 	 * When we are idle and the tick is stopped, we have to touch | 
 | 	 * the watchdog as we might not schedule for a really long | 
 | 	 * time. This happens on complete idle SMP systems while | 
 | 	 * waiting on the login prompt. We also increment the "start of | 
 | 	 * idle" jiffy stamp so the idle accounting adjustment we do | 
 | 	 * when we go busy again does not account too much ticks. | 
 | 	 */ | 
 | 	if (ts->tick_stopped) { | 
 | 		touch_softlockup_watchdog_sched(); | 
 | 		if (is_idle_task(current)) | 
 | 			ts->idle_jiffies++; | 
 | 		/* | 
 | 		 * In case the current tick fired too early past its expected | 
 | 		 * expiration, make sure we don't bypass the next clock reprogramming | 
 | 		 * to the same deadline. | 
 | 		 */ | 
 | 		ts->next_tick = 0; | 
 | 	} | 
 | #endif | 
 | 	update_process_times(user_mode(regs)); | 
 | 	profile_tick(CPU_PROFILING); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | cpumask_var_t tick_nohz_full_mask; | 
 | bool tick_nohz_full_running; | 
 | static atomic_t tick_dep_mask; | 
 |  | 
 | static bool check_tick_dependency(atomic_t *dep) | 
 | { | 
 | 	int val = atomic_read(dep); | 
 |  | 
 | 	if (val & TICK_DEP_MASK_POSIX_TIMER) { | 
 | 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (val & TICK_DEP_MASK_PERF_EVENTS) { | 
 | 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (val & TICK_DEP_MASK_SCHED) { | 
 | 		trace_tick_stop(0, TICK_DEP_MASK_SCHED); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { | 
 | 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (val & TICK_DEP_MASK_RCU) { | 
 | 		trace_tick_stop(0, TICK_DEP_MASK_RCU); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool can_stop_full_tick(int cpu, struct tick_sched *ts) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	if (unlikely(!cpu_online(cpu))) | 
 | 		return false; | 
 |  | 
 | 	if (check_tick_dependency(&tick_dep_mask)) | 
 | 		return false; | 
 |  | 
 | 	if (check_tick_dependency(&ts->tick_dep_mask)) | 
 | 		return false; | 
 |  | 
 | 	if (check_tick_dependency(¤t->tick_dep_mask)) | 
 | 		return false; | 
 |  | 
 | 	if (check_tick_dependency(¤t->signal->tick_dep_mask)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void nohz_full_kick_func(struct irq_work *work) | 
 | { | 
 | 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */ | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { | 
 | 	.func = nohz_full_kick_func, | 
 | }; | 
 |  | 
 | /* | 
 |  * Kick this CPU if it's full dynticks in order to force it to | 
 |  * re-evaluate its dependency on the tick and restart it if necessary. | 
 |  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), | 
 |  * is NMI safe. | 
 |  */ | 
 | static void tick_nohz_full_kick(void) | 
 | { | 
 | 	if (!tick_nohz_full_cpu(smp_processor_id())) | 
 | 		return; | 
 |  | 
 | 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); | 
 | } | 
 |  | 
 | /* | 
 |  * Kick the CPU if it's full dynticks in order to force it to | 
 |  * re-evaluate its dependency on the tick and restart it if necessary. | 
 |  */ | 
 | void tick_nohz_full_kick_cpu(int cpu) | 
 | { | 
 | 	if (!tick_nohz_full_cpu(cpu)) | 
 | 		return; | 
 |  | 
 | 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Kick all full dynticks CPUs in order to force these to re-evaluate | 
 |  * their dependency on the tick and restart it if necessary. | 
 |  */ | 
 | static void tick_nohz_full_kick_all(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (!tick_nohz_full_running) | 
 | 		return; | 
 |  | 
 | 	preempt_disable(); | 
 | 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) | 
 | 		tick_nohz_full_kick_cpu(cpu); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void tick_nohz_dep_set_all(atomic_t *dep, | 
 | 				  enum tick_dep_bits bit) | 
 | { | 
 | 	int prev; | 
 |  | 
 | 	prev = atomic_fetch_or(BIT(bit), dep); | 
 | 	if (!prev) | 
 | 		tick_nohz_full_kick_all(); | 
 | } | 
 |  | 
 | /* | 
 |  * Set a global tick dependency. Used by perf events that rely on freq and | 
 |  * by unstable clock. | 
 |  */ | 
 | void tick_nohz_dep_set(enum tick_dep_bits bit) | 
 | { | 
 | 	tick_nohz_dep_set_all(&tick_dep_mask, bit); | 
 | } | 
 |  | 
 | void tick_nohz_dep_clear(enum tick_dep_bits bit) | 
 | { | 
 | 	atomic_andnot(BIT(bit), &tick_dep_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Set per-CPU tick dependency. Used by scheduler and perf events in order to | 
 |  * manage events throttling. | 
 |  */ | 
 | void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) | 
 | { | 
 | 	int prev; | 
 | 	struct tick_sched *ts; | 
 |  | 
 | 	ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
 |  | 
 | 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); | 
 | 	if (!prev) { | 
 | 		preempt_disable(); | 
 | 		/* Perf needs local kick that is NMI safe */ | 
 | 		if (cpu == smp_processor_id()) { | 
 | 			tick_nohz_full_kick(); | 
 | 		} else { | 
 | 			/* Remote irq work not NMI-safe */ | 
 | 			if (!WARN_ON_ONCE(in_nmi())) | 
 | 				tick_nohz_full_kick_cpu(cpu); | 
 | 		} | 
 | 		preempt_enable(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); | 
 |  | 
 | void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) | 
 | { | 
 | 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
 |  | 
 | 	atomic_andnot(BIT(bit), &ts->tick_dep_mask); | 
 | } | 
 | EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); | 
 |  | 
 | /* | 
 |  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse | 
 |  * per task timers. | 
 |  */ | 
 | void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) | 
 | { | 
 | 	/* | 
 | 	 * We could optimize this with just kicking the target running the task | 
 | 	 * if that noise matters for nohz full users. | 
 | 	 */ | 
 | 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); | 
 | } | 
 |  | 
 | void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) | 
 | { | 
 | 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse | 
 |  * per process timers. | 
 |  */ | 
 | void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) | 
 | { | 
 | 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); | 
 | } | 
 |  | 
 | void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) | 
 | { | 
 | 	atomic_andnot(BIT(bit), &sig->tick_dep_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Re-evaluate the need for the tick as we switch the current task. | 
 |  * It might need the tick due to per task/process properties: | 
 |  * perf events, posix CPU timers, ... | 
 |  */ | 
 | void __tick_nohz_task_switch(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct tick_sched *ts; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	if (!tick_nohz_full_cpu(smp_processor_id())) | 
 | 		goto out; | 
 |  | 
 | 	ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	if (ts->tick_stopped) { | 
 | 		if (atomic_read(¤t->tick_dep_mask) || | 
 | 		    atomic_read(¤t->signal->tick_dep_mask)) | 
 | 			tick_nohz_full_kick(); | 
 | 	} | 
 | out: | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Get the boot-time nohz CPU list from the kernel parameters. */ | 
 | void __init tick_nohz_full_setup(cpumask_var_t cpumask) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask); | 
 | 	cpumask_copy(tick_nohz_full_mask, cpumask); | 
 | 	tick_nohz_full_running = true; | 
 | } | 
 |  | 
 | bool tick_nohz_cpu_hotpluggable(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound | 
 | 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks | 
 | 	 * CPUs. It must remain online when nohz full is enabled. | 
 | 	 */ | 
 | 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int tick_nohz_cpu_down(unsigned int cpu) | 
 | { | 
 | 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; | 
 | } | 
 |  | 
 | void __init tick_nohz_init(void) | 
 | { | 
 | 	int cpu, ret; | 
 |  | 
 | 	if (!tick_nohz_full_running) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Full dynticks uses irq work to drive the tick rescheduling on safe | 
 | 	 * locking contexts. But then we need irq work to raise its own | 
 | 	 * interrupts to avoid circular dependency on the tick | 
 | 	 */ | 
 | 	if (!arch_irq_work_has_interrupt()) { | 
 | 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); | 
 | 		cpumask_clear(tick_nohz_full_mask); | 
 | 		tick_nohz_full_running = false; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && | 
 | 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { | 
 | 		cpu = smp_processor_id(); | 
 |  | 
 | 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { | 
 | 			pr_warn("NO_HZ: Clearing %d from nohz_full range " | 
 | 				"for timekeeping\n", cpu); | 
 | 			cpumask_clear_cpu(cpu, tick_nohz_full_mask); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_cpu(cpu, tick_nohz_full_mask) | 
 | 		context_tracking_cpu_set(cpu); | 
 |  | 
 | 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
 | 					"kernel/nohz:predown", NULL, | 
 | 					tick_nohz_cpu_down); | 
 | 	WARN_ON(ret < 0); | 
 | 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", | 
 | 		cpumask_pr_args(tick_nohz_full_mask)); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * NOHZ - aka dynamic tick functionality | 
 |  */ | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * NO HZ enabled ? | 
 |  */ | 
 | bool tick_nohz_enabled __read_mostly  = true; | 
 | unsigned long tick_nohz_active  __read_mostly; | 
 | /* | 
 |  * Enable / Disable tickless mode | 
 |  */ | 
 | static int __init setup_tick_nohz(char *str) | 
 | { | 
 | 	return (kstrtobool(str, &tick_nohz_enabled) == 0); | 
 | } | 
 |  | 
 | __setup("nohz=", setup_tick_nohz); | 
 |  | 
 | bool tick_nohz_tick_stopped(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	return ts->tick_stopped; | 
 | } | 
 |  | 
 | bool tick_nohz_tick_stopped_cpu(int cpu) | 
 | { | 
 | 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
 |  | 
 | 	return ts->tick_stopped; | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_update_jiffies - update jiffies when idle was interrupted | 
 |  * | 
 |  * Called from interrupt entry when the CPU was idle | 
 |  * | 
 |  * In case the sched_tick was stopped on this CPU, we have to check if jiffies | 
 |  * must be updated. Otherwise an interrupt handler could use a stale jiffy | 
 |  * value. We do this unconditionally on any CPU, as we don't know whether the | 
 |  * CPU, which has the update task assigned is in a long sleep. | 
 |  */ | 
 | static void tick_nohz_update_jiffies(ktime_t now) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	__this_cpu_write(tick_cpu_sched.idle_waketime, now); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	tick_do_update_jiffies64(now); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	touch_softlockup_watchdog_sched(); | 
 | } | 
 |  | 
 | /* | 
 |  * Updates the per-CPU time idle statistics counters | 
 |  */ | 
 | static void | 
 | update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) | 
 | { | 
 | 	ktime_t delta; | 
 |  | 
 | 	if (ts->idle_active) { | 
 | 		delta = ktime_sub(now, ts->idle_entrytime); | 
 | 		if (nr_iowait_cpu(cpu) > 0) | 
 | 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); | 
 | 		else | 
 | 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | 
 | 		ts->idle_entrytime = now; | 
 | 	} | 
 |  | 
 | 	if (last_update_time) | 
 | 		*last_update_time = ktime_to_us(now); | 
 |  | 
 | } | 
 |  | 
 | static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) | 
 | { | 
 | 	update_ts_time_stats(smp_processor_id(), ts, now, NULL); | 
 | 	ts->idle_active = 0; | 
 |  | 
 | 	sched_clock_idle_wakeup_event(); | 
 | } | 
 |  | 
 | static void tick_nohz_start_idle(struct tick_sched *ts) | 
 | { | 
 | 	ts->idle_entrytime = ktime_get(); | 
 | 	ts->idle_active = 1; | 
 | 	sched_clock_idle_sleep_event(); | 
 | } | 
 |  | 
 | /** | 
 |  * get_cpu_idle_time_us - get the total idle time of a CPU | 
 |  * @cpu: CPU number to query | 
 |  * @last_update_time: variable to store update time in. Do not update | 
 |  * counters if NULL. | 
 |  * | 
 |  * Return the cumulative idle time (since boot) for a given | 
 |  * CPU, in microseconds. | 
 |  * | 
 |  * This time is measured via accounting rather than sampling, | 
 |  * and is as accurate as ktime_get() is. | 
 |  * | 
 |  * This function returns -1 if NOHZ is not enabled. | 
 |  */ | 
 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 
 | { | 
 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 	ktime_t now, idle; | 
 |  | 
 | 	if (!tick_nohz_active) | 
 | 		return -1; | 
 |  | 
 | 	now = ktime_get(); | 
 | 	if (last_update_time) { | 
 | 		update_ts_time_stats(cpu, ts, now, last_update_time); | 
 | 		idle = ts->idle_sleeptime; | 
 | 	} else { | 
 | 		if (ts->idle_active && !nr_iowait_cpu(cpu)) { | 
 | 			ktime_t delta = ktime_sub(now, ts->idle_entrytime); | 
 |  | 
 | 			idle = ktime_add(ts->idle_sleeptime, delta); | 
 | 		} else { | 
 | 			idle = ts->idle_sleeptime; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ktime_to_us(idle); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); | 
 |  | 
 | /** | 
 |  * get_cpu_iowait_time_us - get the total iowait time of a CPU | 
 |  * @cpu: CPU number to query | 
 |  * @last_update_time: variable to store update time in. Do not update | 
 |  * counters if NULL. | 
 |  * | 
 |  * Return the cumulative iowait time (since boot) for a given | 
 |  * CPU, in microseconds. | 
 |  * | 
 |  * This time is measured via accounting rather than sampling, | 
 |  * and is as accurate as ktime_get() is. | 
 |  * | 
 |  * This function returns -1 if NOHZ is not enabled. | 
 |  */ | 
 | u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) | 
 | { | 
 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 	ktime_t now, iowait; | 
 |  | 
 | 	if (!tick_nohz_active) | 
 | 		return -1; | 
 |  | 
 | 	now = ktime_get(); | 
 | 	if (last_update_time) { | 
 | 		update_ts_time_stats(cpu, ts, now, last_update_time); | 
 | 		iowait = ts->iowait_sleeptime; | 
 | 	} else { | 
 | 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { | 
 | 			ktime_t delta = ktime_sub(now, ts->idle_entrytime); | 
 |  | 
 | 			iowait = ktime_add(ts->iowait_sleeptime, delta); | 
 | 		} else { | 
 | 			iowait = ts->iowait_sleeptime; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ktime_to_us(iowait); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); | 
 |  | 
 | static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) | 
 | { | 
 | 	hrtimer_cancel(&ts->sched_timer); | 
 | 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick); | 
 |  | 
 | 	/* Forward the time to expire in the future */ | 
 | 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); | 
 |  | 
 | 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
 | 		hrtimer_start_expires(&ts->sched_timer, | 
 | 				      HRTIMER_MODE_ABS_PINNED_HARD); | 
 | 	} else { | 
 | 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reset to make sure next tick stop doesn't get fooled by past | 
 | 	 * cached clock deadline. | 
 | 	 */ | 
 | 	ts->next_tick = 0; | 
 | } | 
 |  | 
 | static inline bool local_timer_softirq_pending(void) | 
 | { | 
 | 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ); | 
 | } | 
 |  | 
 | static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) | 
 | { | 
 | 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; | 
 | 	unsigned long basejiff; | 
 | 	unsigned int seq; | 
 |  | 
 | 	/* Read jiffies and the time when jiffies were updated last */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&jiffies_seq); | 
 | 		basemono = last_jiffies_update; | 
 | 		basejiff = jiffies; | 
 | 	} while (read_seqcount_retry(&jiffies_seq, seq)); | 
 | 	ts->last_jiffies = basejiff; | 
 | 	ts->timer_expires_base = basemono; | 
 |  | 
 | 	/* | 
 | 	 * Keep the periodic tick, when RCU, architecture or irq_work | 
 | 	 * requests it. | 
 | 	 * Aside of that check whether the local timer softirq is | 
 | 	 * pending. If so its a bad idea to call get_next_timer_interrupt() | 
 | 	 * because there is an already expired timer, so it will request | 
 | 	 * immeditate expiry, which rearms the hardware timer with a | 
 | 	 * minimal delta which brings us back to this place | 
 | 	 * immediately. Lather, rinse and repeat... | 
 | 	 */ | 
 | 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || | 
 | 	    irq_work_needs_cpu() || local_timer_softirq_pending()) { | 
 | 		next_tick = basemono + TICK_NSEC; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Get the next pending timer. If high resolution | 
 | 		 * timers are enabled this only takes the timer wheel | 
 | 		 * timers into account. If high resolution timers are | 
 | 		 * disabled this also looks at the next expiring | 
 | 		 * hrtimer. | 
 | 		 */ | 
 | 		next_tmr = get_next_timer_interrupt(basejiff, basemono); | 
 | 		ts->next_timer = next_tmr; | 
 | 		/* Take the next rcu event into account */ | 
 | 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the tick is due in the next period, keep it ticking or | 
 | 	 * force prod the timer. | 
 | 	 */ | 
 | 	delta = next_tick - basemono; | 
 | 	if (delta <= (u64)TICK_NSEC) { | 
 | 		/* | 
 | 		 * Tell the timer code that the base is not idle, i.e. undo | 
 | 		 * the effect of get_next_timer_interrupt(): | 
 | 		 */ | 
 | 		timer_clear_idle(); | 
 | 		/* | 
 | 		 * We've not stopped the tick yet, and there's a timer in the | 
 | 		 * next period, so no point in stopping it either, bail. | 
 | 		 */ | 
 | 		if (!ts->tick_stopped) { | 
 | 			ts->timer_expires = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this CPU is the one which had the do_timer() duty last, we limit | 
 | 	 * the sleep time to the timekeeping max_deferment value. | 
 | 	 * Otherwise we can sleep as long as we want. | 
 | 	 */ | 
 | 	delta = timekeeping_max_deferment(); | 
 | 	if (cpu != tick_do_timer_cpu && | 
 | 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) | 
 | 		delta = KTIME_MAX; | 
 |  | 
 | 	/* Calculate the next expiry time */ | 
 | 	if (delta < (KTIME_MAX - basemono)) | 
 | 		expires = basemono + delta; | 
 | 	else | 
 | 		expires = KTIME_MAX; | 
 |  | 
 | 	ts->timer_expires = min_t(u64, expires, next_tick); | 
 |  | 
 | out: | 
 | 	return ts->timer_expires; | 
 | } | 
 |  | 
 | static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) | 
 | { | 
 | 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
 | 	u64 basemono = ts->timer_expires_base; | 
 | 	u64 expires = ts->timer_expires; | 
 | 	ktime_t tick = expires; | 
 |  | 
 | 	/* Make sure we won't be trying to stop it twice in a row. */ | 
 | 	ts->timer_expires_base = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this CPU is the one which updates jiffies, then give up | 
 | 	 * the assignment and let it be taken by the CPU which runs | 
 | 	 * the tick timer next, which might be this CPU as well. If we | 
 | 	 * don't drop this here the jiffies might be stale and | 
 | 	 * do_timer() never invoked. Keep track of the fact that it | 
 | 	 * was the one which had the do_timer() duty last. | 
 | 	 */ | 
 | 	if (cpu == tick_do_timer_cpu) { | 
 | 		tick_do_timer_cpu = TICK_DO_TIMER_NONE; | 
 | 		ts->do_timer_last = 1; | 
 | 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { | 
 | 		ts->do_timer_last = 0; | 
 | 	} | 
 |  | 
 | 	/* Skip reprogram of event if its not changed */ | 
 | 	if (ts->tick_stopped && (expires == ts->next_tick)) { | 
 | 		/* Sanity check: make sure clockevent is actually programmed */ | 
 | 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) | 
 | 			return; | 
 |  | 
 | 		WARN_ON_ONCE(1); | 
 | 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", | 
 | 			    basemono, ts->next_tick, dev->next_event, | 
 | 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * nohz_stop_sched_tick can be called several times before | 
 | 	 * the nohz_restart_sched_tick is called. This happens when | 
 | 	 * interrupts arrive which do not cause a reschedule. In the | 
 | 	 * first call we save the current tick time, so we can restart | 
 | 	 * the scheduler tick in nohz_restart_sched_tick. | 
 | 	 */ | 
 | 	if (!ts->tick_stopped) { | 
 | 		calc_load_nohz_start(); | 
 | 		quiet_vmstat(); | 
 |  | 
 | 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer); | 
 | 		ts->tick_stopped = 1; | 
 | 		trace_tick_stop(1, TICK_DEP_MASK_NONE); | 
 | 	} | 
 |  | 
 | 	ts->next_tick = tick; | 
 |  | 
 | 	/* | 
 | 	 * If the expiration time == KTIME_MAX, then we simply stop | 
 | 	 * the tick timer. | 
 | 	 */ | 
 | 	if (unlikely(expires == KTIME_MAX)) { | 
 | 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) | 
 | 			hrtimer_cancel(&ts->sched_timer); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
 | 		hrtimer_start(&ts->sched_timer, tick, | 
 | 			      HRTIMER_MODE_ABS_PINNED_HARD); | 
 | 	} else { | 
 | 		hrtimer_set_expires(&ts->sched_timer, tick); | 
 | 		tick_program_event(tick, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void tick_nohz_retain_tick(struct tick_sched *ts) | 
 | { | 
 | 	ts->timer_expires_base = 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) | 
 | { | 
 | 	if (tick_nohz_next_event(ts, cpu)) | 
 | 		tick_nohz_stop_tick(ts, cpu); | 
 | 	else | 
 | 		tick_nohz_retain_tick(ts); | 
 | } | 
 | #endif /* CONFIG_NO_HZ_FULL */ | 
 |  | 
 | static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) | 
 | { | 
 | 	/* Update jiffies first */ | 
 | 	tick_do_update_jiffies64(now); | 
 |  | 
 | 	/* | 
 | 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and | 
 | 	 * the clock forward checks in the enqueue path: | 
 | 	 */ | 
 | 	timer_clear_idle(); | 
 |  | 
 | 	calc_load_nohz_stop(); | 
 | 	touch_softlockup_watchdog_sched(); | 
 | 	/* | 
 | 	 * Cancel the scheduled timer and restore the tick | 
 | 	 */ | 
 | 	ts->tick_stopped  = 0; | 
 | 	ts->idle_exittime = now; | 
 |  | 
 | 	tick_nohz_restart(ts, now); | 
 | } | 
 |  | 
 | static void tick_nohz_full_update_tick(struct tick_sched *ts) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (!tick_nohz_full_cpu(cpu)) | 
 | 		return; | 
 |  | 
 | 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) | 
 | 		return; | 
 |  | 
 | 	if (can_stop_full_tick(cpu, ts)) | 
 | 		tick_nohz_stop_sched_tick(ts, cpu); | 
 | 	else if (ts->tick_stopped) | 
 | 		tick_nohz_restart_sched_tick(ts, ktime_get()); | 
 | #endif | 
 | } | 
 |  | 
 | static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) | 
 | { | 
 | 	/* | 
 | 	 * If this CPU is offline and it is the one which updates | 
 | 	 * jiffies, then give up the assignment and let it be taken by | 
 | 	 * the CPU which runs the tick timer next. If we don't drop | 
 | 	 * this here the jiffies might be stale and do_timer() never | 
 | 	 * invoked. | 
 | 	 */ | 
 | 	if (unlikely(!cpu_online(cpu))) { | 
 | 		if (cpu == tick_do_timer_cpu) | 
 | 			tick_do_timer_cpu = TICK_DO_TIMER_NONE; | 
 | 		/* | 
 | 		 * Make sure the CPU doesn't get fooled by obsolete tick | 
 | 		 * deadline if it comes back online later. | 
 | 		 */ | 
 | 		ts->next_tick = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) | 
 | 		return false; | 
 |  | 
 | 	if (need_resched()) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely(local_softirq_pending())) { | 
 | 		static int ratelimit; | 
 |  | 
 | 		if (ratelimit < 10 && | 
 | 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { | 
 | 			pr_warn("NOHZ: local_softirq_pending %02x\n", | 
 | 				(unsigned int) local_softirq_pending()); | 
 | 			ratelimit++; | 
 | 		} | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (tick_nohz_full_enabled()) { | 
 | 		/* | 
 | 		 * Keep the tick alive to guarantee timekeeping progression | 
 | 		 * if there are full dynticks CPUs around | 
 | 		 */ | 
 | 		if (tick_do_timer_cpu == cpu) | 
 | 			return false; | 
 |  | 
 | 		/* Should not happen for nohz-full */ | 
 | 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) | 
 | { | 
 | 	ktime_t expires; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the | 
 | 	 * tick timer expiration time is known already. | 
 | 	 */ | 
 | 	if (ts->timer_expires_base) | 
 | 		expires = ts->timer_expires; | 
 | 	else if (can_stop_idle_tick(cpu, ts)) | 
 | 		expires = tick_nohz_next_event(ts, cpu); | 
 | 	else | 
 | 		return; | 
 |  | 
 | 	ts->idle_calls++; | 
 |  | 
 | 	if (expires > 0LL) { | 
 | 		int was_stopped = ts->tick_stopped; | 
 |  | 
 | 		tick_nohz_stop_tick(ts, cpu); | 
 |  | 
 | 		ts->idle_sleeps++; | 
 | 		ts->idle_expires = expires; | 
 |  | 
 | 		if (!was_stopped && ts->tick_stopped) { | 
 | 			ts->idle_jiffies = ts->last_jiffies; | 
 | 			nohz_balance_enter_idle(cpu); | 
 | 		} | 
 | 	} else { | 
 | 		tick_nohz_retain_tick(ts); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task | 
 |  * | 
 |  * When the next event is more than a tick into the future, stop the idle tick | 
 |  */ | 
 | void tick_nohz_idle_stop_tick(void) | 
 | { | 
 | 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); | 
 | } | 
 |  | 
 | void tick_nohz_idle_retain_tick(void) | 
 | { | 
 | 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); | 
 | 	/* | 
 | 	 * Undo the effect of get_next_timer_interrupt() called from | 
 | 	 * tick_nohz_next_event(). | 
 | 	 */ | 
 | 	timer_clear_idle(); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_idle_enter - prepare for entering idle on the current CPU | 
 |  * | 
 |  * Called when we start the idle loop. | 
 |  */ | 
 | void tick_nohz_idle_enter(void) | 
 | { | 
 | 	struct tick_sched *ts; | 
 |  | 
 | 	lockdep_assert_irqs_enabled(); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	WARN_ON_ONCE(ts->timer_expires_base); | 
 |  | 
 | 	ts->inidle = 1; | 
 | 	tick_nohz_start_idle(ts); | 
 |  | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_irq_exit - update next tick event from interrupt exit | 
 |  * | 
 |  * When an interrupt fires while we are idle and it doesn't cause | 
 |  * a reschedule, it may still add, modify or delete a timer, enqueue | 
 |  * an RCU callback, etc... | 
 |  * So we need to re-calculate and reprogram the next tick event. | 
 |  */ | 
 | void tick_nohz_irq_exit(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	if (ts->inidle) | 
 | 		tick_nohz_start_idle(ts); | 
 | 	else | 
 | 		tick_nohz_full_update_tick(ts); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run | 
 |  */ | 
 | bool tick_nohz_idle_got_tick(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	if (ts->got_idle_tick) { | 
 | 		ts->got_idle_tick = 0; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer | 
 |  * or the tick, whatever that expires first. Note that, if the tick has been | 
 |  * stopped, it returns the next hrtimer. | 
 |  * | 
 |  * Called from power state control code with interrupts disabled | 
 |  */ | 
 | ktime_t tick_nohz_get_next_hrtimer(void) | 
 | { | 
 | 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event; | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_get_sleep_length - return the expected length of the current sleep | 
 |  * @delta_next: duration until the next event if the tick cannot be stopped | 
 |  * | 
 |  * Called from power state control code with interrupts disabled | 
 |  */ | 
 | ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) | 
 | { | 
 | 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	int cpu = smp_processor_id(); | 
 | 	/* | 
 | 	 * The idle entry time is expected to be a sufficient approximation of | 
 | 	 * the current time at this point. | 
 | 	 */ | 
 | 	ktime_t now = ts->idle_entrytime; | 
 | 	ktime_t next_event; | 
 |  | 
 | 	WARN_ON_ONCE(!ts->inidle); | 
 |  | 
 | 	*delta_next = ktime_sub(dev->next_event, now); | 
 |  | 
 | 	if (!can_stop_idle_tick(cpu, ts)) | 
 | 		return *delta_next; | 
 |  | 
 | 	next_event = tick_nohz_next_event(ts, cpu); | 
 | 	if (!next_event) | 
 | 		return *delta_next; | 
 |  | 
 | 	/* | 
 | 	 * If the next highres timer to expire is earlier than next_event, the | 
 | 	 * idle governor needs to know that. | 
 | 	 */ | 
 | 	next_event = min_t(u64, next_event, | 
 | 			   hrtimer_next_event_without(&ts->sched_timer)); | 
 |  | 
 | 	return ktime_sub(next_event, now); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value | 
 |  * for a particular CPU. | 
 |  * | 
 |  * Called from the schedutil frequency scaling governor in scheduler context. | 
 |  */ | 
 | unsigned long tick_nohz_get_idle_calls_cpu(int cpu) | 
 | { | 
 | 	struct tick_sched *ts = tick_get_tick_sched(cpu); | 
 |  | 
 | 	return ts->idle_calls; | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_get_idle_calls - return the current idle calls counter value | 
 |  * | 
 |  * Called from the schedutil frequency scaling governor in scheduler context. | 
 |  */ | 
 | unsigned long tick_nohz_get_idle_calls(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	return ts->idle_calls; | 
 | } | 
 |  | 
 | static void tick_nohz_account_idle_ticks(struct tick_sched *ts) | 
 | { | 
 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE | 
 | 	unsigned long ticks; | 
 |  | 
 | 	if (vtime_accounting_cpu_enabled()) | 
 | 		return; | 
 | 	/* | 
 | 	 * We stopped the tick in idle. Update process times would miss the | 
 | 	 * time we slept as update_process_times does only a 1 tick | 
 | 	 * accounting. Enforce that this is accounted to idle ! | 
 | 	 */ | 
 | 	ticks = jiffies - ts->idle_jiffies; | 
 | 	/* | 
 | 	 * We might be one off. Do not randomly account a huge number of ticks! | 
 | 	 */ | 
 | 	if (ticks && ticks < LONG_MAX) | 
 | 		account_idle_ticks(ticks); | 
 | #endif | 
 | } | 
 |  | 
 | static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) | 
 | { | 
 | 	tick_nohz_restart_sched_tick(ts, now); | 
 | 	tick_nohz_account_idle_ticks(ts); | 
 | } | 
 |  | 
 | void tick_nohz_idle_restart_tick(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	if (ts->tick_stopped) | 
 | 		__tick_nohz_idle_restart_tick(ts, ktime_get()); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_idle_exit - restart the idle tick from the idle task | 
 |  * | 
 |  * Restart the idle tick when the CPU is woken up from idle | 
 |  * This also exit the RCU extended quiescent state. The CPU | 
 |  * can use RCU again after this function is called. | 
 |  */ | 
 | void tick_nohz_idle_exit(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	bool idle_active, tick_stopped; | 
 | 	ktime_t now; | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	WARN_ON_ONCE(!ts->inidle); | 
 | 	WARN_ON_ONCE(ts->timer_expires_base); | 
 |  | 
 | 	ts->inidle = 0; | 
 | 	idle_active = ts->idle_active; | 
 | 	tick_stopped = ts->tick_stopped; | 
 |  | 
 | 	if (idle_active || tick_stopped) | 
 | 		now = ktime_get(); | 
 |  | 
 | 	if (idle_active) | 
 | 		tick_nohz_stop_idle(ts, now); | 
 |  | 
 | 	if (tick_stopped) | 
 | 		__tick_nohz_idle_restart_tick(ts, now); | 
 |  | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * The nohz low res interrupt handler | 
 |  */ | 
 | static void tick_nohz_handler(struct clock_event_device *dev) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	struct pt_regs *regs = get_irq_regs(); | 
 | 	ktime_t now = ktime_get(); | 
 |  | 
 | 	dev->next_event = KTIME_MAX; | 
 |  | 
 | 	tick_sched_do_timer(ts, now); | 
 | 	tick_sched_handle(ts, regs); | 
 |  | 
 | 	/* No need to reprogram if we are running tickless  */ | 
 | 	if (unlikely(ts->tick_stopped)) | 
 | 		return; | 
 |  | 
 | 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); | 
 | 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); | 
 | } | 
 |  | 
 | static inline void tick_nohz_activate(struct tick_sched *ts, int mode) | 
 | { | 
 | 	if (!tick_nohz_enabled) | 
 | 		return; | 
 | 	ts->nohz_mode = mode; | 
 | 	/* One update is enough */ | 
 | 	if (!test_and_set_bit(0, &tick_nohz_active)) | 
 | 		timers_update_nohz(); | 
 | } | 
 |  | 
 | /** | 
 |  * tick_nohz_switch_to_nohz - switch to nohz mode | 
 |  */ | 
 | static void tick_nohz_switch_to_nohz(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	ktime_t next; | 
 |  | 
 | 	if (!tick_nohz_enabled) | 
 | 		return; | 
 |  | 
 | 	if (tick_switch_to_oneshot(tick_nohz_handler)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Recycle the hrtimer in ts, so we can share the | 
 | 	 * hrtimer_forward with the highres code. | 
 | 	 */ | 
 | 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); | 
 | 	/* Get the next period */ | 
 | 	next = tick_init_jiffy_update(); | 
 |  | 
 | 	hrtimer_set_expires(&ts->sched_timer, next); | 
 | 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); | 
 | 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); | 
 | 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES); | 
 | } | 
 |  | 
 | static inline void tick_nohz_irq_enter(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	ktime_t now; | 
 |  | 
 | 	if (!ts->idle_active && !ts->tick_stopped) | 
 | 		return; | 
 | 	now = ktime_get(); | 
 | 	if (ts->idle_active) | 
 | 		tick_nohz_stop_idle(ts, now); | 
 | 	if (ts->tick_stopped) | 
 | 		tick_nohz_update_jiffies(now); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void tick_nohz_switch_to_nohz(void) { } | 
 | static inline void tick_nohz_irq_enter(void) { } | 
 | static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } | 
 |  | 
 | #endif /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | /* | 
 |  * Called from irq_enter to notify about the possible interruption of idle() | 
 |  */ | 
 | void tick_irq_enter(void) | 
 | { | 
 | 	tick_check_oneshot_broadcast_this_cpu(); | 
 | 	tick_nohz_irq_enter(); | 
 | } | 
 |  | 
 | /* | 
 |  * High resolution timer specific code | 
 |  */ | 
 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 | /* | 
 |  * We rearm the timer until we get disabled by the idle code. | 
 |  * Called with interrupts disabled. | 
 |  */ | 
 | static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct tick_sched *ts = | 
 | 		container_of(timer, struct tick_sched, sched_timer); | 
 | 	struct pt_regs *regs = get_irq_regs(); | 
 | 	ktime_t now = ktime_get(); | 
 |  | 
 | 	tick_sched_do_timer(ts, now); | 
 |  | 
 | 	/* | 
 | 	 * Do not call, when we are not in irq context and have | 
 | 	 * no valid regs pointer | 
 | 	 */ | 
 | 	if (regs) | 
 | 		tick_sched_handle(ts, regs); | 
 | 	else | 
 | 		ts->next_tick = 0; | 
 |  | 
 | 	/* No need to reprogram if we are in idle or full dynticks mode */ | 
 | 	if (unlikely(ts->tick_stopped)) | 
 | 		return HRTIMER_NORESTART; | 
 |  | 
 | 	hrtimer_forward(timer, now, TICK_NSEC); | 
 |  | 
 | 	return HRTIMER_RESTART; | 
 | } | 
 |  | 
 | static int sched_skew_tick; | 
 |  | 
 | static int __init skew_tick(char *str) | 
 | { | 
 | 	get_option(&str, &sched_skew_tick); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("skew_tick", skew_tick); | 
 |  | 
 | /** | 
 |  * tick_setup_sched_timer - setup the tick emulation timer | 
 |  */ | 
 | void tick_setup_sched_timer(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 | 	ktime_t now = ktime_get(); | 
 |  | 
 | 	/* | 
 | 	 * Emulate tick processing via per-CPU hrtimers: | 
 | 	 */ | 
 | 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); | 
 | 	ts->sched_timer.function = tick_sched_timer; | 
 |  | 
 | 	/* Get the next period (per-CPU) */ | 
 | 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); | 
 |  | 
 | 	/* Offset the tick to avert jiffies_lock contention. */ | 
 | 	if (sched_skew_tick) { | 
 | 		u64 offset = TICK_NSEC >> 1; | 
 | 		do_div(offset, num_possible_cpus()); | 
 | 		offset *= smp_processor_id(); | 
 | 		hrtimer_add_expires_ns(&ts->sched_timer, offset); | 
 | 	} | 
 |  | 
 | 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); | 
 | 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); | 
 | 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); | 
 | } | 
 | #endif /* HIGH_RES_TIMERS */ | 
 |  | 
 | #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS | 
 | void tick_cancel_sched_timer(int cpu) | 
 | { | 
 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 	ktime_t idle_sleeptime, iowait_sleeptime; | 
 | 	unsigned long idle_calls, idle_sleeps; | 
 |  | 
 | # ifdef CONFIG_HIGH_RES_TIMERS | 
 | 	if (ts->sched_timer.base) | 
 | 		hrtimer_cancel(&ts->sched_timer); | 
 | # endif | 
 |  | 
 | 	idle_sleeptime = ts->idle_sleeptime; | 
 | 	iowait_sleeptime = ts->iowait_sleeptime; | 
 | 	idle_calls = ts->idle_calls; | 
 | 	idle_sleeps = ts->idle_sleeps; | 
 | 	memset(ts, 0, sizeof(*ts)); | 
 | 	ts->idle_sleeptime = idle_sleeptime; | 
 | 	ts->iowait_sleeptime = iowait_sleeptime; | 
 | 	ts->idle_calls = idle_calls; | 
 | 	ts->idle_sleeps = idle_sleeps; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * Async notification about clocksource changes | 
 |  */ | 
 | void tick_clock_notify(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); | 
 | } | 
 |  | 
 | /* | 
 |  * Async notification about clock event changes | 
 |  */ | 
 | void tick_oneshot_notify(void) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	set_bit(0, &ts->check_clocks); | 
 | } | 
 |  | 
 | /** | 
 |  * Check, if a change happened, which makes oneshot possible. | 
 |  * | 
 |  * Called cyclic from the hrtimer softirq (driven by the timer | 
 |  * softirq) allow_nohz signals, that we can switch into low-res nohz | 
 |  * mode, because high resolution timers are disabled (either compile | 
 |  * or runtime). Called with interrupts disabled. | 
 |  */ | 
 | int tick_check_oneshot_change(int allow_nohz) | 
 | { | 
 | 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
 |  | 
 | 	if (!test_and_clear_bit(0, &ts->check_clocks)) | 
 | 		return 0; | 
 |  | 
 | 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) | 
 | 		return 0; | 
 |  | 
 | 	if (!allow_nohz) | 
 | 		return 1; | 
 |  | 
 | 	tick_nohz_switch_to_nohz(); | 
 | 	return 0; | 
 | } |